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Introduction

• Motion capture systems attach
markers to 3D objects (Fig. 1) and
track the markers’positions as the
objects move.

• Motion capture data can be
considered four-dimensional: at
each time instance a frame of
3D coordinates of the makers are
recorded.

200 400 600
400

500
600

200

400

600

800

1000

1200

1400

20

22
23

19

21

18

17

35

41

37

36

25

38

x

9

39

27

40

4

6

2

5

26

7

32

3

31

1

24

30

29

28

33
34

10

11

14

12

13

15

16

z

y

Figure 1: Human body with41 Markers
attached on it.
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Introduction

• Like in most other fields, abstraction, summarization and modeling of raw
observation data is of fundamental value for motion capture research and
applications. Temporal segmentation is a natural process of extracting semantic
elements and identifying syntactic structures of the actions in an acquired 3D data
sequence.

• The key design is to fit a parametric dynamic model to the input motion sequence,
and implicitly extract the segments at the time instances when the discontinuities
of model parameter values occur.

• The parameters of the dynamic model has clear mechanical and geometrical
meanings. Therefore, the motion segments generated by this model provide key
constructs in scene analysis and motion synthesis, hence help understanding the
motion capture data.
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Mathematical Formulation of Optimal Segmentation

• In Fig. 2, the dotted line is the original trajectory (two dimensional) of150 time
samples. It is segmented in to14 segments. The solid line is the approximately
reconstructed trajectory by linear interpolation.
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Figure 2: Linear Segmentation.
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Mathematical Formulation of Optimal Segmentation

• Assume there areN time samples and denote the3D position of markerpi at time
samplen asp(n)

i . Markerpi’s original trajectory isPi = (p(1)
i ,p(2)

i , · · · ,p(N)
i ),

• Let Si = (i1, i2, · · · , iKi
) as the segmentation’s key points,1 = i1 < i2 < · · · <

iKi
= N . Samples ofpi between any two adjacent key points will be fit to a

dynamic model and can be approximately reconstructed by that dynamic model
later.
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Mathematical Formulation of Optimal Segmentation

•
ei(a, b] = ‖P̂i(a, b],Pi(a, b]‖ (1)

is the approximation error between the original trajectory and the reconstructed
trajectory using dynamic model from time stepa + 1 to time stepb.

• Markers belong to the same rigid part of human body should be segmented
identically in time. The approximation error of all the markers on rigid body
Um is

Dm(Sm) =
∑

pi∈Um

Km∑

k=1

ei(mk−1,mk]. (2)

• Optimal motion segmentation for rigid bodyUm is to minimizeDm(Sm) over all
possible partitions ofN frames.
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Algorithms for Optimal Segmentation

• The optimal segmentation problem can be casted into two variants of a discrete
optimization problem and solve it by a graph theoretical approach.

• First variant is to minimize the distortion while the segmentation number is given.

• Second variant is to minimize the segmentation number while satisfying
prespecified error bounds.

• It could be seen that the algorithms to be developed here are general, independent
of specific dynamic models for data fitting.
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Algorithms for Optimal Segmentation

• In the first variant, construct a complete direct acyclic graphG = 〈V,E〉
(Fig. 3). The vertex setV containsN + 1 nodes labelled0, 1, 2, · · · , N , noden
corresponding to time stampn. The edge setE consists ofN(N + 1)/2 directed
edges: edge(a, b) from nodea to nodeb exists if and only ifa < b.

Figure 3: A complete directed acyclic graph (DAG) of6 Nodes

8



Poster Seminar 7 Apr, 2005

Algorithms for Optimal Segmentation

• Assign to each edge(a, b) ∈ E the weight

w(a, b) =
∑

pi∈Um

ei(a, b]. (3)

Then the optimalKm segmentation is determined by the theKm-link shortest
path form node0 to N . This problem can be solved inO(KmN2) time by
dynamic programming.
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Algorithms for Optimal Segmentation

• The second variant of minimizingKm while meeting the error boundDm ≤ Dm

can be casted into a Lagrangian optimization problem of minimizingKm + λDm

with a binary search on the value ofλ.

• We adopt the same DAG of previous case, but change the edge weight to

w(a, b) =
∑

pi∈Um

(1 + λei(a, b]). (4)

Minimizing Km + λDm for a given λ can be solved by computing the
conventional shortest path from node0 to N , which can be solved inO(N2)
time by dynamic programming.
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Algorithms for Optimal Segmentation

• In the second variant, if the minimax approximation criterion is used, then
Dm(Sm) is of theL∞ norm:

Dm = max
pi∈Um,1≤k≤Km

ei(mk−1,mk]. (5)

• Although the objective function is no longer additive, the problem remains
solvable by a shortest path algorithm. We prune all the edges(a, b) ∈ E from
the DAG G if there exists a markerpi ∈ Um such thatei(a, b] > Dm. Then
we assign the unit weight1 to all the survived edges. Now it is immediate that
minimizing Km under the constraintD∞,m ≤ Dm is equivalent to finding the
shortest path from node0 to nodeN in the edge-pruned graph.
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Fitting Motion Capture Data to Dynamic Model

• The role of motion segmentation
is to provide a sequence of
semantically meaningful and
well-defined motion alphabets to be
interpreted by later stage. This view
leads us to the dynamic model based
on classic Newton kinematics.

• All marker movements are specified
in relative motions about a joint to
which they are connected. If marker
pi is on an ideal rigid body, then it
moves on a sphere that is centered
at the joint o and has the radius
d(pi,o) (Fig. 4).
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Figure 4: Marker move on the surface
of a sphere.
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Fitting Motion Capture Data to Dynamic Model

• In a segment(a, b], assume markerpi has a constant angular accelerationτ , then
it leaves a circular trajectoryÄab on the sphere. The motion can be modeled by
Newton kinematics equation:

θ(n) = θ̂(a) + ω(a)(n− a) +
1
2
τ(n− a)2. (6)

• The dynamic model with constant angular velocity is simple yet reasonable
as human movement contains a lot of accelerating and decelerating processes
(Fig. 5).
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Fitting Motion Capture Data to Dynamic Model
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Figure 5: Angular Velocity of two markers belong to the same rigid body.

• We first find a plane fit to sample pointsp(a+1)
i ,p(a+2)

i , · · · ,p(b)
i in least square

sense, as these samples are not exactly in the same plane because of noise and
model mismatch.
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Fitting Motion Capture Data to Dynamic Model

• Then as markers on the same rigid body have the same angular velocity, we can
solve a least square fitting problem to get the parametersθi

(a), ω(a) andτ .

min
θ̂
(a)
i ,ω(a),τ

∑

pi∈U

∑

a<n≤b

[
θ
(n)
i −

(
θ
(a)
i + ω(a)(n− a) +

1
2
τ(n− a)2

)]2

(7)

• With the estimated parameters, theθ̂
(n)
i in time n can be reconstructed via

equation (6). Transforminĝθ(n)
i , n ∈ (a, b], back to the original coordinate

system yieldŝp(n)
i , and hence the approximation errorei(a, b] of the model can

be calculated in the motion segmentation process.
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Motion Primitives and Motion Sequence

• Introducing a quantization step, the parameter vector in each segment can be
represented by a symbol named motion primitive, and the totalKm segments
can be represented by a sequence of lengthKm, which is called motion sequence.

• We could apply sequence analysis algorithms on motion sequence to help
understanding human movements.

• Human movement can be called body language. In motion primitive sequence,
a motion primitive is analogical to an English character, and a higher
level structured subsequence named motion episodes is analogical to English
vocabulary.
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Segmenting Motion Sequence into Meaningful Motion Episodes

• Segmenting a sequence into episodes is just like finding the word
boundaries after removing all the spaces and punctuation from a text.
E.g. ”eachpersonassignedasbelowshouldsubmitanindividualpostertobepresented”
could be segment to ”each person assigned as below should submit an individual
poster to be presented”.

• Episode is a subsequence not only occurs frequently but also meaningful. E.g.,
though in English both ”the” and ”th” occurs frequently, ”the” is an episode while
”th” is not.

• Cohen [1] used ”boundary entropy” and ”frequency” rules and segment characters
into words with some accuracy.
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