
Computers & Security 122 (2022) 102889

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A flIo t : Fuzzing on linux-based IoT device with binary-level

instrumentation

Xuechao Du

a , Andong Chen

a , Boyuan He

b , Hao Chen

c , 1 , Fan Zhang

a , d , 1 , ∗, Yan Chen

b , 2

a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
b Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
c Department of Computer Science, University of California, Davis, CA 95616, USA
d Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province, Hangzhou, China, 310027

a r t i c l e i n f o

Article history:

Received 1 September 2020

Revised 8 June 2022

Accepted 18 August 2022

Available online 23 August 2022

Keywords:

Greybox fuzzing

Internet of things

On-device

Binary-level

Daemon analysis

a b s t r a c t

In recent years, coverage-guided greybox fuzzing has demonstrated its efficiency in detecting security vul-

nerabilities on traditional devices. Instrumentation information plays a significant role in sophisticated

greybox fuzzer such as American Fuzzing Lop to directionally improve coverage and distill seeds. While

open-source programs leverage wrapped assemblers to glean instrumentation information, closed-source

programs can utilize the emulation-based instrumentation for coverage-guided fuzzing. The pervasiveness

of the closed source puts a strong demand for emulation instrumentation. However, the required access

to peripherals brings great difficulty in fuzzing on the emulator, especially for those various IoT devices.

This paper presents A flIo t , the first generic on-device fuzzing framework for Linux-based IoT binary pro-

grams. By leveraging offset-free binary-level instrumentation, binary programs can avoid unnecessarily

rewriting, inherit compatibility of peripherals, and be executed directly on IoT devices by A flIo t . We

evaluate A flIo t on multiple benchmarks with real-world IoT programs. A flIo t identified 437 unique

crashes in 13 binary programs, including 95 newly confirmed unique crashes. Those crashes demonstrate

that A flIo t is efficient and effective in detecting potential software bugs in binary programs on Linux-

based IoT devices.

© 2022 Elsevier Ltd. All rights reserved.

1

o

w

o

r

l

c

p

t

o

n

t

b

(

s

c

r

a

N

i

U

i

g

a

T

t

t

s

h

0

. Introduction

Although it has been decades since the concept of the Internet

f Things (IoT) was first presented, only in recent years have we

itnessed an outbreak of its application in our daily lives. Vari-

us types of Commercial-Off-The-Shelf (COTS) IoT devices emerged

apidly, such as home routers, IP cameras, printers, smart TVs,

amps, fridges, and air conditioners. These devices extend Internet

onnectivity beyond traditional ones (e.g., computers and smart-

hones) to any object we may use. Thus IoT dramatically expands

he capability of the Internet and provides convenience for every-

ne.

However, the widespread application of IoT devices also brings

ew challenges to security and privacy. The interconnection of

hese devices that are initially isolated expands the attacking
∗ Corresponding author.

E-mail addresses: xcdu@zju.edu.cn (X. Du), chenandong@zju.edu.cn (A. Chen),

he@northwestern.edu (B. He), chen@ucdavis.edu (H. Chen), fanzhang@zju.edu.cn

F. Zhang), ychen@northwestern.edu (Y. Chen) .
1 Member, IEEE
2 Fellow, IEEE

a

f

c

o

L

ttps://doi.org/10.1016/j.cose.2022.102889

167-4048/© 2022 Elsevier Ltd. All rights reserved.
urface significantly and makes IoT devices more vulnerable to

yber-attacks. For example, privilege escalation vulnerabilities have

ecently been found in the smart lock and can be used by

ttackers to break the authentication (loc, 0 0 0 0). Even worse,

ie et al. (2017) have demonstrated that it is possible to hack

nto a car and take over the remote control of Engine Control

nits (ECU) through a phishing Wi-Fi hotspot.

Many security assessment works have been devoted to find-

ng software vulnerabilities and flaws in COTS devices to miti-

ate those security problems. Costin et al. (2014) leveraged static

nalysis techniques to acquire and analyze firmware automatically.

hey used specific patterns to search for existing security flaws. Al-

hough their approach is efficient and scalable, the static analyses

hey applied are too simple and do not involve any code analy-

is technique, which is insufficient to find software vulnerabilities

nd flaws. On the other side, Zaddach et al. (2014) took a dynamic

uzzing approach on embedded devices through serial GDB proto-

ol (Alves, 0 0 0 0). They monitored much of the firmware execution

n a hybrid system combining an emulator with real hardware.

Besides, a generic dynamic fuzzing framework, American Fuzzy

op (AFL) (Zalewski, 0 0 0 0), also provides support for whitebox

https://doi.org/10.1016/j.cose.2022.102889
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102889&domain=pdf
mailto:xcdu@zju.edu.cn
mailto:chenandong@zju.edu.cn
mailto:bhe@northwestern.edu
mailto:chen@ucdavis.edu
mailto:fanzhang@zju.edu.cn
mailto:ychen@northwestern.edu
https://doi.org/10.1016/j.cose.2022.102889

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

a

t

a

p

s

(

(

d

n

c

i

v

u

t

t

(

(

a

o

B

e

R

e

e

d

p

I

d

g

t

c

7

A

p

d

f

r

o

t

w

D

t

g

g

p

L

p

c

f

p

p

d

v

d

k

b

p

t

i

2

t

b

m

w

f

p

a

w

w

a

g

m

v

d

1

c

t

u

s

b

d

3 we provide our source code at https://www.github.com/SocietyMaster/AFLIoT.git
nd greybox fuzzing. Specifically, it constructs greybox fuzzing on

op of Quick Emulator (QEMU) binary translation (Liaw, 0 0 0 0)

nd records instrumentation information by the native sup-

ort from QEMU. Well-known greybox fuzzers include AFL it-

elf (Zalewski, 0 0 0 0) and other AFL-based ones such as AFLFast

 Böhme et al., 2017b), AFLGo (Böhme et al., 2017a), and FairFuzz

 Lemieux and Sen, 2018), all of which share the advantages and

isadvantages of the QEMU emulator. On one side, for those bi-

ary programs that can execute in the emulator, those fuzzers

an apply their dynamic security assessment capability by leverag-

ng the instrumentation information returned from emulated de-

ices. However, on the other side, those greybox fuzzers will nat-

rally inherit characteristics from QEMU and thus suffer its in-

rinsic incapability of emulating unsupported devices. Furthermore,

here are other replaced[id = xcdu]works workds such as Firm-AFL

 Zheng et al., 2019), PeriScope (Song et al., 2019), and Pretender

 Gustafson et al., 2019) trying to leverage special mechanisms, such

s MMIO and DMA, to detect communications from the peripherals

r communicate with the virtual host.

Fuzzing has already been studied for years (Bastani et al., 2017;

öhme et al., 2017b; Cadar et al., 2008; Cha et al., 2015; Ganesh

t al., 2009; Godefroid et al., 2005; 2012; 2017; Haller et al., 2013;

awat et al., 2017; Sen et al., 2005; Stephens et al., 2016; Wang

t al., 2017; 2010; Zheng et al., 2019), (Dinesh et al., 2020; Song

t al., 2019). However, we still rarely identify its application in IoT

evices nowadays. To help bridge this gap, we take a different ap-

roach instead, which applies the fuzzing techniques directly onto

oT devices.

Compared with its application on x86 platforms, fuzzing on IoT

evices is facing several significant challenges:

1) Highly diverse and limited hardware and software. Unlike

most x86 platform devices, IoT devices have a greater diver-

sity in hardware and software. Even for Linux-based IoT de-

vices, the hardware interfaces and system configurations vary

among devices significantly. However, it is entirely in demand

to have a generic fuzzing solution for IoT devices, which has

to manage such diversities. Besides, compared to the x86 plat-

form, IoT devices are mostly resource-constrained in CPU, mem-

ory, and storage. Therefore, the security auditor must consider

a trade-off between accuracy and efficiency in designing and

implementing such analysis tools.

2) The intrinsic gap between greybox fuzzing and hardware re-

quirement. The COTS manufacturers installed proprietary pro-

grams on their IoT devices before shipping. As a result, all exist-

ing solutions require the emulator to fuzz those closed-source

programs. However, for IoT devices, many peripheral sensing

devices are not supported by emulators. This kind of conflict

leads to the dilemma of applying fuzzing techniques to closed-

source software on IoT devices.

3) Fuzzing daemon programs on IoT devices. Software on

network-enabled Linux-based IoT devices commonly waits for

remote network commands from other devices. Those network

programs often appear as daemon programs on the device,

which start just once with configured parameters. As a re-

sult, fuzzing daemon programs with standard input is infeasible

since no more parameters will be further taken as input.

None of the existing works can address all these challenges. Our

oal is to propose a novel approach to adapt the existing fuzzing

ool to work with binary programs on IoT devices for efficient and

omprehensive security analysis. In a recent survey (Pro, 0 0 0 0),

1.8% of the respondents chose to use Linux, including Android and

ndroid Things, demonstrating that Linux is still one of the most

opular operating systems even for IoT devices. To this end, we

esign and implement A flIo t , a coverage-guided greybox fuzzing

ramework for Linux-based IoT binary programs, which is generic,
2
eliable, accurate, and capable of fuzzing most programs directly

n devices. Because most Linux-based IoT devices use ARM instruc-

ion sets, we choose the ARMv7 devices to implement our frame-

ork.

For emulator-based approaches such as FIRMA-

YNE (Chen et al., 2016) and AFL (QEMU mode) (Zalewski, 0 0 0 0),

hey require a certain amount of manual work to re-hose pro-

rams on the x86 machine. In contrast, our A flIo t provides a

eneric and lightweight fuzzer, which instruments target binary

rograms statically and can be deployed directly on various

inux-based IoT devices. In this way, it becomes possible to fuzz

rogram on IoT devices directly and, therefore, address the first

hallenge.

As for the second challenge, our solution consists of two phases

or each target binary program in fuzzing: 1) the instrumentation

hase; 2) the fuzzing phase. As shown in Fig. 1 , A flIo t first com-

letes the instrumentation phase on an x86_64 server and then

eploys the instrumented program with the fuzzer on the IoT de-

ice. Our two-phase design significantly eases the burden on IoT

evices. Besides, A flIo t leverages AFL (Zalewski, 0 0 0 0), a well-

nown lightweight coverage-guided greybox fuzzer, and extends it

y implementing binary-level instrumentation. Hence, it can sup-

ort the native execution of target binary programs and reduce

he performance overhead dramatically. Also, there are many ex-

sting fuzzers (e.g., QSYM (Yun et al., 2018), Driller (Stephens et al.,

016), VUzzer (Rawat et al., 2017), Firm-AFL (Zheng et al., 2019))

hat claim better performance than AFL. However, they can hardly

e applied for closed-source binaries due to the peripheral require-

ent and limited resources.

Moreover, our design also provides solutions for fuzzing on net-

ork daemon programs. A flIo t can forward all inputs from a

uzzer to a specific network interface where the target daemon

rogram listens. We achieve such forwarding through hook oper-

tions on Linux socket APIs. Hence, A flIo t avoids expensive net-

ork operations, which makes it more efficient for fuzzing on net-

ork daemon programs.

To the best of our knowledge, we are the first to provide

 generic and practical greybox fuzzing solution to binary pro-

rams on Linux-based IoT devices. We evaluated A flIo t on bench-

arks and real-world binary programs on commercial IoT de-

ices. By fuzzing each program for 48 hours on real-world IoT

evices, A flIo t successfully detected 437 unique crashes among

3 binary programs on three devices, including 95 confirmed

rashes from the manufacturer. The experiments demonstrate

hat A flIo t achieves comparable performance on branches and

nique crashes detection compared to AFL when fuzzing closed-

ource programs. A flIo t is more efficient, effective, and capa-

le of detecting bugs for binary programs on Linux-based IoT

evices 3 .

In summary, our work makes the following contributions:

• We present the first generic and practical fuzzing solution for

binary programs on physical Linux-based IoT devices.

• We design and implement a reliable open-source fuzzing

framework called A flIo t by applying sophisticated binary-level

instrumentation techniques.

• We integrate a network input redirection with our binary in-

strumentation techniques to enable generic greybox fuzzing

for daemon programs on Linux-based IoT devices with limited

computation resources.

• We evaluate A flIo t on both benchmarks and real-world IoT

devices. Our experimental results prove its reliability and ef-

ficiency in finding potential vulnerabilities in binary programs

on Linux-based IoT devices.

https://www.github.com/SocietyMaster/AFLIoT.git

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

Fig. 1. Overview of A flIo t . Grey blocks represent unique components in A flIo t and white blocks represent the AFL’s components leveraged by A flIo t .

t

A

p

u

A

c

p

v

2

2

c

i

g

t

d

f

i

t

b

l

i

t

t

p

a

c

t

t

t

t

n

o

b

Q

d

a

r

e

s

p

b

A

m

n

c

p

t

f

i

p

f

t

d

f

2

i

x

l

t

c

t

Q

r

c

b

w

l

u

p

c

e

m

s

t

f

i

p

b

w

g

d

e

The outline of this paper is arranged as follows. We explain

he necessary background in Section 2 . We illustrate the design of

 flIo t and discuss the approach and algorithms in Section 3 . We

rovide technical details of implementation in Section 4 . We eval-

ate the reliability and correctness of A flIo t and compare it with

FL on fuzzing closed-source binary programs in Section 5 . We dis-

uss the limitations and possible improvements in Section 6 . We

resent the related works of A flIo t in Section 7 . Finally, we pro-

ide our conclusion in Section 8 .

. Background

.1. American fuzzy lop

American Fuzzing Lop (AFL) (Zalewski, 0 0 0 0) is a famous

overage-guided greybox fuzzer widely used to inspect software

ncorrectness in academia and industry. AFL instruments the tar-

et program, mutates the original input seed, and keeps tracking

he target program’s execution. The entire greybox fuzzing proce-

ure of AFL can be divided into the instrumentation phase and

uzzing phase .

The instrumentation phase aims to insert specific instructions

nto programs to track access to basic blocks when executing

he target program. The fuzzing phase pursues higher coverage

y leveraging the instrumentation information. A higher coverage

eads to more possibilities of triggering new internal states, which

ncreases the possibility of detecting new bugs.

In the instrumentation phase, AFL chooses different instrumen-

ation method to obtain instrumentation information depending on

he transparency of the source code. AFL instruments open-source

rograms while compiling source code into assembly code. AFL en-

bles itself to insert predefined instrumentation into the assembly

ode by patching the assembler. The patched assembler can scan

ransition characteristics of assembly code and determine the posi-

ion where to instrument. This type of compiling-time instrumen-

ation for open-source code is called assembly-level instrumenta-

ion .

Unfortunately, such instrumentation during compiling time is

ot available for closed-source programs. AFL uses the techniques

f QEMU binary translation and QEMU patching to achieve grey-

ox fuzzing. Since the basic block transition (such as block jump in

EMU emulator) requires the on-the-fly action between emulated

evices and host, AFL tracks them by hooking the block translation

nd saving transition information. Since the patched QEMU only

ecords instrumentation information when the basic block is ex-

cuting, this type of instrumentation is called emulator-level in-

trumentation .

In comparison, the assembly-level instrumentation has better

erformance than the emulator-level one, whereas the latter has
3
etter replaced[id = xcdu]support supports for devices based on the

RM instruction set architecture. The ARM instruction set is com-

only applied to Linux-based IoT devices.

In the fuzzing phase, the fuzzer first loads the initialized origi-

al seed into the queue and then obtains the next input. This pro-

edure is called seed scheduling. Later, the fuzzer performs an in-

ut pruning step to minimize the input on the premise of not in-

erfering with program behavior. AFL mutates the seed during the

uzzing process with predefined strategies after the input prun-

ng. AFL mutates the seed with predefined strategies after the in-

ut pruning during the fuzzing process. Then the mutated seed is

ed into the fuzzed program to trigger program functions and ob-

ain instrumentation information. If new basic block transitions are

etected, AFL will append the mutated seed to the next round of

uzzing queue.

.2. QEMU

QEMU (qem, 0 0 0 0) is a processor emulator that supports var-

ous instruction set architectures, including ARM, MIPS, x86, and

86-64. It also supports dynamic binary translation that can trans-

ate the emulated device’s instructions into those on the host on-

he-fly. QEMU can conduct such translation at the block level and

ache each translated block for reuse. If a direct jump from a

ranslated block is determined and the destination block is cached,

EMU will chain the translated block with its successor to avoid

e-translation. Otherwise, QEMU requires a jump to the QEMU

ore to calculate the destination address or translate the successor

lock. Then the emulation resumes. This kind of block transition

ill result in performance costs.

Furthermore, QEMU has two operating modes: full system emu-

ation and user mode emulation (qem, 0 0 0 0). The full system em-

lation emulates the entire system, including the processor and its

eripheral devices. The user mode emulation can launch the pro-

ess of an emulated device on the host CPU. Generally, full system

mulation has better compatibility for various devices than user

ode emulation, while the user mode performs better than full

ystem emulation.

These characteristics provide QEMU itself a position with a par-

icular advantage in IoT program fuzzing, especially the greybox

uzzing. The dynamic binary translation lets the fuzzer obtain the

nstrumentation information when fuzzing closed-source binary

rograms. Note that the full system emulation provides a possi-

le method through its expensive interface to emulate IoT devices

ith inevitable performance downgrade. Such performance down-

rade mainly comes from QEMU fully emulating processors, hard

isk input and output, or other interrupts. However, due to the

normous number of various devices and peripherals, it is impos-

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

s

o

3

c

3

fl

c

p

i

s

t

t

n

t

a

p

t

r

g

l

f

p

t

b

d

3

A

1

1

1

i

t

i

o

(

c

s

s

t

r

i

q

p

t

v

t

t

b

t

t

t

b

p

b

t

t

i

i

t

b

a

d

A

d

p

q

W

3

f

B

p

t

t

i

m

f

a

d

i

c

c

ible to fuzz programs for IoT devices by the manual customization

f emulators.

. Design

This section illustrates our system design of A flIo t and dis-

usses the approaches, algorithms, and details in A flIo t .

.1. Overview of A FL Io T

As illustrated in Fig. 1 , there are two typical phases in the work-

ow of A flIo t : the Instrumentation Phase and the Fuzzing Phase .

In the instrumentation phase, A flIo t includes four necessary

omponents to instrument the target binary program:

File Reconstruction rearranges the file structure of the target

rogram. After the instrumentation, new instructions are necessar-

ly involved. A flIo t preallocates the space to store instrumented

tubs, functions, and other dependencies rather than overwriting

he original data. See Section 3.3 for details.

Basic Block Identification determines the address to instrument

he stubs. All entry addresses of basic blocks inside the target bi-

ary file are considered to be instrumented. See Section 3.4 for de-

ails.

Instructions Wrapping wraps the instructions on the addresses

lready placed with stubs to avoid disrupting offsets in the target

rogram. See Section 3.5 for details.

Dependencies Appending appends functions such as initializa-

ion, recorded branch information, libraries for network input redi-

ection, and other dependencies. See Section 3.6 for details.

We will first introduce the overall binary instrumentation al-

orithm in Section 3.2 and then discuss the complex components

isted above.

In the fuzzing phase, Input Redirection of A flIo t helps the

uzzer feed the program’s input during fuzzing. The non-daemon

rogram’s input is fed through standard inputs as usual, whereas

he input of the daemon program is fed into a predefined port

y redirections. We will illustrate the Network Input Redirection for

aemons in Section 3.7 .

.2. Binary instrumentation algorithm

Algorithm 1 explains the detailed procedures in the correspond-

lgorithm 1 Instrumentation Algorithm.

1: function DoInstrumentation (path el f)

2: f ile el f ← InputStream of path el f

3: ShiftAndAppendSections (f ile el f)

4: set instr ← LocateInstructionToStub (f ile el f)

5: for each instr ∈ set instr do

6: block w

← WrappedBlock (instr)

7: block stub ← block T + block w

8: v ad d r ← AllocStubBlockAddr (block stub)

9: ReplaceDestAddr (instr, v ad d r)

0: end for

11: AppendInitAndDependencies (f ile el f)

2: WriteChangesToFile (f ile el f)

3: end function

ng instrumentation phase. To differentiate from the word instruc-

ion , which also has an instr- prefix, we use the stub to represent

nstrumentation operation in Algorithm 1 . The instr denotes a line

f the instruction , which is the component of a basic block .

Algorithm 1 targets the Executable and Linkable Format

ELF) (Contributor, 0 0 0 0) binary programs because ELF is the most

ommon file structure in Linux-based systems. We describe the

tructure of a typical ELF file in Fig. 2 a.
4
When instrumenting at the binary level, directly inserting in-

tructions into basic blocks will lead to the offset error. To avoid

hat, at the beginning of the instrumentation phase, we need to

echeck the sections contained in the target program and reshape

ts structure.

Function ShiftAndAppendSections uniformly shifts the subse-

uent sections of the Program Header Table (PHT) and appends

atched code and data sections. As shown in Fig. 2 , PHT defines

he runtime information for the binary program.

Each of those sections in the target program holds a temporary

irtual address and will be finally applied when A flIo t calls Func-

ion WriteChangesToFile .

Function LocateInstructionToStub identifies all possible func-

ion entries and branch instructions. A flIo t takes the destination in

ranch instructions, the subsequent instructions after branch, and

he function entries into consideration to ensure the correctness of

he program functionality after instrumentation. This kind of en-

ry instruction of basic blocks is called boundary instruction of

asic blocks. A stub replaces a boundary instruction through Re-

laceDestAddr .

Each stub can redirect execution to a basic block called stub

lock , which manages to record branch information and execute

he replaced instruction. The term block denotes a code block

hat contains several lines of instructions. The block T is the trac-

ng block that can always trace branch information. The block w

s the wrapped block to execute the wrapped boundary instruc-

ion, which is abbreviated as wrapped instruction . Both block T and

lock w

are composed of the intact stub block block stub .

Function AllocStubBlockAddr is utilized to generate the pre-

llocated address for each stub, determining the destination ad-

ress in the replaced instruction after wrapping. Then, Function

ppendInitAndDependencies appends necessary initialization and

ependencies to the patched sections to make the program com-

atible with the AFL fuzzer. Finally, when no more changes are re-

uired, the entire modification is flushed into a file by Function

riteChangesToFile .

.3. Sections arrangement

As illustrated in Fig. 2 (a), ELF Header contains the necessary in-

ormation on the file, such as the instruction set and architecture.

esides, ELF Header also stores the position and size for both the

rogram and the Section Header Table (SHT) . SHT specifies each sec-

ion’s position and size within the ELF file, which is useful during

he linking process.

In an ELF file, sections only contain static information. So the

nstrumented data and instructions cannot be loaded into the

emory during execution unless we declare those entries in PHT

or each new section. ELF used the declared entries to specify the

ccess permission for each segment of data and the memory ad-

ress to load.

Unlike expanding SHT located at the end of the ELF file (shown

n Fig. 2 a), expanding PHT will inevitably erase the sections that

ome after it.

To cope with that situation, we separate the entire ELF modifi-

ation procedure into two different procedures:

1. ShiftAndAppendSections (Algorithm 1 Line). Each section as-

sumes a soft offset calculated when A flIo t writes changes to

the target file. When shifting the sections after PHT, we only

need to shift the soft offsets of each section. Similarly, when

appending new sections for the patched code (section .pcode)

and data (section .pdata), as illustrated in Fig. 2 b, A flIo t will

also create two new soft offsets for those two new sections, re-

spectively.

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

Fig. 2. ELF file instructions wrapping.

3

a

T

f

b

c

A

1

1

1

t

f

s

(

I

f

T

o

b

w

i

b

t

3

t

n

i

t

m

e

a

t

c

s

p

r

t

4 In fact, for the destination of PC-related transfer instructions, A flIo t will entrust

it to IDA Pro (ida, 2020) to analyze. Nevertheless, A flIo t can only find as many

destination addresses as possible that can be computed by the off-the-shelf static

analysis tool.
2. WriteChangesToFile (Algorithm 1 Line). When no further mod-

ification for sections is required, and the only remained task is

to write changes to the file, A flIo t will convert the soft offsets

to the practical addresses before saving. Moreover, A flIo t di-

rectly instruments the patched code and data in binary format

into the target program.

.4. Basic block identification

Coverage-guided greybox fuzzer improves the execution cover-

ge by detecting each execution path of the ELF binary program.

he fuzzer tracks basic blocks to obtain the execution path in-

ormation. A basic block is a straight-line code sequence without

ranches (Hennessy and Patterson, 2011). To this end, A flIo t ne-

essitates accurate identification and division of the basic blocks.

As described in Algorithm 2 , A flIo t first statically analyzes

lgorithm 2 Locate Instructions to Instrument.

1: function LocateInstructionToStub (f ile el f)

2: s instr ← new Set ()

3: s instr ← s instr ∪ FunctionEntryInstr (f ile el f)

4: for each instr ∈ Instructions (f ile el f) do

5: if inst r.operat ion ∈ operations BRANCH 4 pt then

6: s instr ← s instr ∪ NextInstr (instr)

7: s instr ← s instr ∪ DestInstr (instr)

8: else if instr ∈ instrs _ P C _ BRANCH 4 pt then

9: s instr ← s instr ∪ NextInstr (instr)

0: end if

11: end for

2: return set instr

3: end function

he target binary program, recording entry instructions for each

unction. Then, A flIo t searches for PC-independent transfer in-

tructions (Algorithm 2 Line) and PC-related transfer instructions
5

 Algorithm 2 Line). The PC is the abbreviation of Program Counter .

n the case of ARM, the PC-independent transfer instructions re-

er to jump instructions that do not include PC in their operands.

he PC-related transfer instructions include PC-write instructions

r jump instructions with PC in the operands.

For the PC-independent transfer instruction, it is the exit of a

asic block, i.e., its next instruction and the destination instruction

ill be the entry of the other basic blocks. For PC-related transfer

nstruction, since in most cased its transfer destination can only

e determined at runtime, A flIo t only considers its next address

o be entry point of other basic blocks. 4

.5. Instructions wrapping

To instrument a closed-source ELF program, the naive idea is

o insert a function call to the beginning of basic blocks. Unfortu-

ately, because an ELF binary program has already been compiled,

t remains no extra space to instrument the stub codes directly in

he .text section. Moreover, moving part of instructions or data to

ake room for instrumentation will disrupt the target program’s

xecution due to potential wrong address offsets. As a result, such

 straight-forward idea is not feasible in practice.

Note that most IoT devices are built upon RISC architec-

ures (e.g., ARM, MIPS) with a fixed instruction length. Hence, we

an leverage the so-called instruction wrapping methodology to in-

trument code stubs without considering the alignment issue, re-

lacing the instruction where we need to instrument with a redi-

ection jump to our codes, as long as we can ensure the following

hings:

1. A flIo t can correctly record the current register states when it

is about to execute the original boundary instruction.

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

t

t

t

i

a

j

i

b

p

w

t

s

i

b

b

t

o

u

o

p

c

b

t

l

o

c

b

f

i

m

T

o

w

r

g

b

b

u

s

c

c

W

P

t

p

o

t

a

c

i

t

t

p

E

s

t

w

n

i

s

t

i

r

p

r

w

s

t

c

t

r

v

w

b

s

p

l

c

v

o

t

b

A

f

f

E

i

t

2. A flIo t can recover the register states from the original execu-

tion location when the wrapped block is executed.

3. A flIo t does not modify any other data related to the target

program except for the general-purpose registers and the stack

pointer.

4. The original stack data that is not used by the stub block should

not be modified.

The save-and-restore instrumentation method does not affect

he jump calculation of the ELF program, so it can also support

he instrumentation of the Position-Independent Code (PIC).

Wrapping Workflow . We can identify the boundary instruc-

ions of basic blocks as instructions to wrap, shown as instr 3 and

nstr 5 in Fig. 2 (b) and 2 (c). As to instr 3 , we replace the bound-

ry instruction with the stub instruction. The stub instruction

umps to the entry of the tracing block block tracing , and the trac-

ng block makes tracks for branch information. The code block

lock wrapped _ instr3 that executes the boundary instruction after re-

lacement follows the block tracing . At the end of block wrapped _ instr3 ,

e append a return to the next instruction of boundary instruc-

ion (i.e., instr 4) to resume the execution. The instr 5 applies the

ame wrapping workflow as what instr 3 does. Such wrapping and

nstrumentation can be applied to other boundary instructions in

asic block identification .

We instrument the stub instruction at the position of the

oundary instruction, whereas we append the implementation of

he instrumentation in another section (i.e., .pcode section). The

ffsets of the tracing block and wrapped block are not determined

nless we finish appending the stub block. Finally, the destination

f the stub instruction will be calculated when we combine the

re-arranged offset of .pcode and the offset of the stub block.

Type of Wrapping . In the instruction wrapping stage, the major

hallenge is that we should guarantee the equivalent execution of

oundary instructions such as instr 3 and instr 5 in Fig. 2 b.

According to (ARM, 0 0 0 0), the typical ARM instruction includes

he following necessary information:

(loc)
︸ ︷︷ ︸

ocation

op{ cond}
︸ ︷︷ ︸

operation

r d , r n { , operand2 }
︸ ︷︷ ︸

operands

An instruction is composed of an operation and one or more

perands. The operation consists of the operation code op and the

ondition code cond that can conditionally execute the operation

ased on flags in Application Program Status Register (APSR) . The

ormat of operands depends on the type of operation. The operands

nclude the destination register r d and the source register r n in

ost cases. Sometimes it also includes an extra operand operand2 .

he location loc is the hidden information deduced from the offset

f instruction, which is the essential information in the instruction

rapping.

Briefly, what we need to do is to maintain the values in all

egisters or memory addresses that are used in the target pro-

ram. That is, when redirecting to our stub block, we need to

ack up all registers before using them and recover their values

efore return. In any case, we should only write to those un-

sed addresses and registers to avoid potential conflicts. However,

uch wrapping is quite complicated when considering the practi-

al facts. For instance, ARM instructions support conditional exe-

ution, which controls whether to execute the current instruction.

hat’s more, some boundary instructions refer to or modify the

C’s value. Since PC indicates the current address of the instruc-

ion being executed, its value varies at different places during the

rogram execution. Wrapping those PC-related instructions in an-

ther section may break the original program’s execution and lead

o errors. Besides, the boundary instruction and the stub block may

lso involve stack manipulation. If not handled properly, it may in-
6
orrectly modify existing values in the stack. In more serious cases,

t can lead to fatal errors.

To counteract those effects, we categorize all kinds of instruc-

ions into four types based on their operation code and the rela-

ionship between PC and operands, as illustrated in Fig. 3 .

1) PC irrelevant instruction (type ir): This type of instruction in-

cludes instructions where PC does not occur in operands .

2) PC read-only instruction without push operation (type rnp):

This type of instruction reads the value of PC in r n or operand2

but does not update the value of PC after execution. The oper-

ation of this type of instruction should not be the push opera-

tion.

3) PC read-only instruction with push operation (type rp): This

type of instruction only includes the push operation with read-

ing the value of PC in r n or operand2 . The value of the PC

should not be updated by this type of instruction.

4) PC write instruction (type w

): This type includes instructions

that the value of PC will be updated after the instruction is ex-

ecuted.

As illustrated in Fig. 3 b- 3 e, each replaced stub instruction is

resented on top of their replaced instruction in each subfigure.

ach boundary instruction with the strikeout line is followed by a

tub instruction redirected to the tracing block. In Fig. 3 a, for each

ype of boundary instructions to wrap, A flIo t provides different

rap solutions.

In general, we replace the boundary instruction and jump to a

ew copy of the tracing block. As shown in Fig. 3 (b)- 3 (e), the trac-

ng block is followed by a wrapped block. Apart from the type ir in-

truction, we leverage available memory addresses that are lower

han the current stack pointer (SP) to temporarily back up the reg-

sters that we are using in the wrapped block. We also utilize a

egister that is not involved in boundary instructions, called the

ivot , as a substitute for PC, which can constantly store the cor-

ect value of PC and avoid being influenced by PC changing. After

e back up all registers, A flIo t will place a copy of boundary in-

truction (i.e., wrapped instruction) in the stub code and replace

he PC with pivot inside the wrapped instruction. All registers ex-

ept the PC will be restored before jumping back to the next des-

ination of boundary instruction, and the PC will be automatically

ecovered after the jump back. Besides, we should keep the same

alue of SP as what it is before wrapping to fetch its value in the

rapped instruction.

For type ir , we can execute boundary instruction inside the stub

lock and then jump back, as shown in Fig. 3 b. For type rp , we

hould separately push pivot and other registers due to pivot re-

lacing, as shown in Figure 3 d. For type w

, the PC should be the

ast register to be restored, as shown in Fig., considering that the

hange of PC will lead to a direct jump.

In the ARM instruction set, most instructions have their variant

ersions for conditions. For a boundary instruction cond, we insert

ne line of code between tracing and wrapped block, allowing it

o jump to its origin conditionally, as shown below:

{ cond} loc boundary _ instr + 4

︸ ︷︷ ︸

dest inat ion location

s illustrated at loc 41030 in Fig. 3 c, if the condition of instruction

ails, the instrumented target program will record the branch in-

ormation and directly jump out of the stub block.

Our instrumentation can be applied to various target binary

LF files on many different Linux-based IoT devices. Moreover, our

nstruction wrapping methodology also has the following advan-

ages:

• When we replace the boundary instruction to redirect to stub

block, we will not disrupt other branch instructions since their

offsets will not change.

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

Fig. 3. Workflows for each type and contrastive examples for each step in workflows.

3

q

o

e

a

3

g

t

m

o

s

f

a

i

e

e

p

c

r

r

s

d

r

t

i

t

t

t

3

h

a

s

w

d

3

t

I

t

r

t

a

A

p

d

f

m

• By avoiding instruction moving or insertion separately, we can

shift all sections together with a unified offset to make room

for updating PHT.

• Our strategy of appended sections is also compatible with other

dependent functions, such as the AFL fork server’s initialization.

• Since we focus the wrapping on the binary level, we can handle

the stripped binaries.

• The save-and-restore strategy for wrapped instructions makes

A flIo t capable of PIC instrumentation.

.6. Appending dependencies

In addition to instrument tracing and wrap blocks, A flIo t re-

uires to append dependencies for other essential functions. More-

ver, A flIo t should also update PHT and other critical sections to

nsure that those appended dependencies will be loaded appropri-

tely.

.6.1. Initialize fuzzer

For coverage-guided fuzzing, the initialization of the target pro-

ram will launch a proxy called fork server to enable communica-

ion between fuzzer and target program through mapping shared

emory address. The fork server is also responsible for continu-

usly forking the target program to improve the coverage.

Generally, the initialization should be instrumented before the

tart of the target program, but sometimes locating the entry point

or instrumentation is quite complicated. For robustness, we lever-

ge the .init_array section in an ELF file to execute initialization

nstructions in the target program. The .init_array is where each

lement specifies a function to be executed at the beginning of the

xecution. However, moving the .init_array somewhere else or ap-

ending entries to its end is not that simple. Its length is the hard-

oded in caller function. Thus changing such length will require

eassembling.
7

A flIo t uses a different approach to initialize the fuzzer. We

eplace one entry already in added[id = xcdu]the .init_array with a

tub redirecting to a function that performs the same as the caller

oes, except that it will pick initialization entries from another ar-

ay. Both the new entries added to initialize the fork server and

he old entries replaced are included in that array. This solution

s adaptive to the ELF executables and shared libraries. Such ini-

ialization may not be limited only to the fork sever. It can be ex-

ended to other applications, such as network input redirection for

he daemon.

.6.2. Update program header table

PHT will be updated at last because A flIo t should know

ow much those subsequent sections should be shifted. Since we

lready wrapped boundary instructions at this moment, A flIo t

hould first update all the address holders used in instruction

rapping before and then the PHT, ensuring all essential depen-

encies can be loaded during fuzzing.

.7. Network input redirection

In traditional x86 devices, most closed-source binary programs

hat need to be fuzzed will receive either a local file or a standard

/O stream. However, since IoT devices pervasively require connec-

ivity to other COTS devices, it is not feasible to fuzz network-

equired daemon binary programs by feeding inputs through such

wo manners. Binary daemons listen on specific ports and inter-

ct with clients from other devices. To fuzz on IoT devices directly,

 flIo t needs to appropriately treat those network-required binary

rograms appropriately.

As illustrated in Fig. 4 , A flIo t leverages redirection from stan-

ard input to network socket to forward inputs generated by

uzzer. The network input redirection comprises fuzzer, instru-

ented daemon program, and input redirection. The fuzzer is the

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

Fig. 4. Daemon program lifecycle and network input redirection.

n

n

s

t

p

c

h

r

s

A

b

4

i

4

v

r

b

a

fi

b

c

a

p

c

r

f

F

v

a

t

w

f

c

s

fi

t

c

s

a

s

i

r

4

t

i

i

i

i

4

p

m

h

m

s

m

e

s

j

ormal AFL fuzzer without any modification. The critical compo-

ent is the input redirection on the left side of Fig. 4 . It hijacks

tandard input from the fuzzer. When the fuzzer generates mu-

ated input, the input redirection will continuously forward the in-

ut to a predefined port, which means the target program fuzzed

an reach deeper branches without hanging up. In Fig. 4 , A flIo t

ooks three types of network-related API.

• Basic socket APIs, including socket, bind, listen , and accept , cre-

ate pthread to receive incoming contents from the network.

• I/O multiplexing APIs, including select, poll , and epoll . When

daemon programs call those APIs, A flIo t will forward the stan-

dard input into a predefined network port.

• Finalizer API, i.e., close , terminates the pthread that forwards

the content to a network port.

Figure 4 also shows the entire lifecycle of network input redi-

ection and fuzzed program, which starts with the network event

imultaneously and ends when the network event is closed. Since

 flIo t redirects standard inputs, it intrinsically inherits the capa-

ility of mutation from those coverage-guided fuzzers.

. Implementation

In this section, we describe the technical details of implement-

ng A flIo t .

.1. Device setup

The programs are closed-source on most Linux-based IoT de-

ices, and the devices are not accessible by default for security

easons. We ensured the following to enable the on-device grey-

ox fuzzing through A flIo t .

Access devices externally . Most Linux-based IoT devices oper-

te with the firmware that contains secure shell and telnet, or the

rmware is somehow compatible with them. For example, Rasp-

erry Pi4 and Xiaomi Router provide remote access interfaces offi-

ially. Hence, we can enable our privilege of secure shell and lever-

ge it to access the target program.

Some IoT devices support remote access but do not provide ex-

licit interfaces to enable it. Manufacturers may embed remote ac-

ess in devices for debugging, which should not be accessed by

egular users and can only be activated by secret backdoors. There-

ore, it is in demand to explore such backdoors to access the shell.
8
or instance, by sending a specially crafted packet, the telnet ser-

ice of Netgear Routers will be enabled.

Some firmware shipped with devices provides neither remote

ccess service nor the interface to enable such service. However,

he capability of flashing is still enabled. Thus, we can flash them

ith specifically modified versions of firmware with remote access

eatures for those kinds of devices.

Otherwise, we have to use other physical methods to establish a

onnection. For instance, in an ASUS router, we leveraged its UART

erial port to access the console and enable secure shell service.

Once the remote access interface is enabled, the console and

le system accesses are also available. We can transfer the fuzzer,

he instrumented target programs, and other necessary dependen-

ies to devices and start the fuzzing process.

Privilege to write data . We have to store our fuzzer and in-

trumented program on the device. However, sometimes the stor-

ge on devices may not be writable. In this situation, both external

torage and internal memory are good options for storage. Specif-

cally, we used external storage on the Raspberry Pi4 and those

outers to perform our fuzzing.

.2. Toolchain

In the instrumentation phase, we leverage the FlowChart func-

ion of IDA Pro (ida, 2020) to identify the functions and basic block

nformation of target programs, as aforementioned in Section 3.4 .

Then we leverage Capstone (Quynh, 0 0 0 0) to disassemble entry

nstructions of each basic block. Finally, when writing back changes

nto the file, we utilize Keystone (key, 0 0 0 0) to assemble modified

nstructions and data into the original binary file.

.3. Fuzzer integration

Classical AFL retrieves the execution information of a target

rogram by shared memory. Specifically, AFL sets up a shared

emory before forking the target program and then maps it into

is own memory space. As the program executes, those instru-

ented codes will be responsible for recording basic block tran-

ition. AFL then analyzes the transition information in the shared

emory to assess the value of this test case.

The target binary should map the shared memory before ex-

cuting the other parts. So we implemented a shared object for

hared memory mapping. During instrumentation, the shared ob-

ect dependency is injected into the dynamic section of the target

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

b

f

b

s

i

l

a

t

4

E

(

A

o

i

f

s

4

a

L

c

m

w

o

b

i

q

a

t

p

r

t

p

p

5

d

m

p

A

e

f

d

5

e

p

T

t

v

o

i

t

Table 1

Basic block address records summary.

Program White ∗ Green ∗ Red ∗ Yellow

∗ Total

gzip 11,654 877 9 1 12,541

bunzip2 7420 462 51 2 7935

bzcat 7409 461 51 2 7923

lzcat 9729 1864 0 0 11,593

unlzma 9763 1863 0 0 11,626

Total 45,975 5527 111 5 51,618

∗ White : it represents the aligned and same basic block address records. Green :

address is recorded by A flIo t only. Red : address is recorded by AFL only. Yellow :

the context of this address can be aligned but A flIo t and AFL record two conflict

addresses.

Fig. 5. gzip basic block address records comparison.

Fig. 6. Sample to trigger A flIo t exclusive record in gzip .

b

r

t

t

b

m

y

s

i

i

s

f

1

o

b

w

s

p

i

c

e

t

t

0

t

a

t

inary and will be called at the very beginning by an initialization

unction that we inserted.

We adopt AFL’s approach to identify the basic block and trace

asic block transitions in terms of tracing. Each basic block is as-

igned with a random magic number as block ID, hardcoded in its

nstrumentation. Moreover, the basic block transition ID is calcu-

ated as the same as the native AFL. Each instrumentation resides

t the entry of a basic block, taking the responsibility of storing

he basic block transition information into the shared memory.

.4. Shared library

Both executable programs and shared object libraries follow the

LF format in the Linux-based system. Furthermore, thanks to IDA

 ida, 2020), Capstone (Quynh, 0 0 0 0), and Keystone (key, 0 0 0 0),

 flIo t ’s binary-level instrumentation algorithm can also function

n the shared libraries.

For instance, the shared library libthrift is leveraged by plug-

ncenter in Section 5.2 . We can extract the shared library libthrift

rom the firmware, then instrument it and reload the instrumented

hared library through the LD_PRELOAD (lds, 0 0 0 0) mechanism.

.5. Input redirection

We implement a simple input redirection mechanism between

 fuzzer and a target network daemon program.

We rewrite a shared library that includes all of the standard

inux socket APIs (See Section 3.7). Through LD_PRELOAD , we suc-

essfully hook all these socket APIs to execute the network dae-

on programs and perform the parameter checks. That determines

hether to intercept or forward network traffic. As shown in Fig. 4 ,

ur implementation does not require integrating our hooked li-

rary into the target program with other dependencies such as

nitialization and branch tracing. No further modifications are re-

uired to the target program. In this way, expensive network oper-

tions at the OS level are successfully avoided, and input redirec-

ion efficiency is improved significantly. We also want to claim that

reeny (pre, 0 0 0 0) is a more powerful framework, and it can also

ealize the network input hooking functionality. It can also hook

he modified APIs through the LD_PRELOAD . However, A flIo t ’s im-

lementation is sufficient to cover all the Daemon lifecycle APIs as

reeny does. So we still use our version of the implementation.

. Evaluation

We performed plenty of greybox fuzzing experiments to vali-

ate A flIo t on benchmarks and real-world IoT devices. Our pri-

ary focus is to prove the reliability and correctness of our pro-

osal. Therefore, in this section, we mainly compare A flIo t with

FL, which is the basis for many other fuzzer, such as (Böhme

t al., 2017a; 2017b; Lemieux and Sen, 2018). Further enhancement

rom fuzzers to AFL might also be adopted to A flIo t , which will be

iscussed in Section 6 .

.1. Instrumentation validation

To validate the correctness of the A flIo t instrumentation strat-

gy, we recorded the sequential basic block addresses of several

rograms fuzzed by A flIo t and AFL QEMU mode, respectively.

hen, as listed in Table 1 , we compared the address records be-

ween A flIo t and AFL QEMU mode. Furthermore, we manually re-

iewed and confirmed the difference according to the control flow

f those target programs.

We visualize the difference gathered from the gzip program to

llustrate the correctness of A flIo t . As illustrated in Fig. 5 , the en-

ire Bar 0 represents the joint basic block address records from
9
oth A flIo t and AFL. Each vertical line with different colors rep-

esents an address record of a basic block. The lines in white mean

hat the basic block address records from both A flIo t and AFL are

he same and well-aligned. The green and red lines represent the

asic block addresses recorded by either A flIo t or AFL (in QEMU

ode). If a green and a red line are adjacent, they will be colored

ellow.

If many red and yellow lines appear somewhere, critical in-

trumentation errors have occurred in that places. Due to the lim-

ted resolution in Fig. 5 , those continuous regions marked as 1,2,3

n the Bar 0 are discrete basic block address records, enlarged as

hown in Bar 1 to 3 correspondingly.

Table 1 summarizes the records differences between the two

uzzers. There are 12,541 basic block address records, including

1,654 white records, 877 green records, nine red records, and

ne yellow record. As to all the green records, the failure can

e attributed to the disadvantage of the dynamic instrumentation,

hich relies on the execution of branch instructions to identify ba-

ic blocks.

In Fig. 6 , we take one piece of instruction from gzip as the sam-

le to illustrate what happened in the green lines’ position. The

nstructions in Line 2 to 5 (from 0x4cdb0 to 0x4cdc4) should be

onsidered one basic block because they start with a label and

nd with a branch instruction. However, the dynamic instrumenta-

ion in the QEMU emulator cannot determine whether the instruc-

ion in Line 2 is an entrance of a basic block when it executes to

x4cdb0. Only when the QEMU emulator hits the branch instruc-

ion at Line 7 or Line 9 can it realize that the address 0x4cdb0

t Line 2 is the entry of the basic block. This characteristic causes

he AFL QEMU mode to record basic block addresses incompletely,

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

Table 2

Greybox fuzzing results between A flIo t on real-world linux-based IoT Devices and AFL on QEMU.

No. Program Type A FL Io T Device

Fuzzing

Time(H)

Branch Coverage Unique Crashes

AFL A FL Io T AFL A FL Io T

1 base64 LAVA-M Raspberry Pi 4 48 666 733 � 67 (+10.06%) 0 1 � 1

2 md5sum LAVA-M Raspberry Pi 4 48 889 1116 � 227 (+25.53%) 0 0

3 uniq LAVA-M Raspberry Pi 4 48 415 480 � 65 (+15.66%) 1 12 � 11 (+110.00%)

4 who LAVA-M Raspberry Pi 4 48 5035 5781 � 746 (+14.82%) 0 5 � 5

5 gunzip Command Line Raspberry Pi 4 48 746 768 � 22 (+2.95%) 51 54 � 3 (+5.88%)

6 gzip Command Line Raspberry Pi 4 48 752 780 � 28 (+3.72%) 51 61 � 10 (+19.61%)

7 lzcat Command Line Raspberry Pi 4 48 421 423 � 2 (+0.48%) 20 21 � 1 (+5.00%)

8 unlzma Command Line Raspberry Pi 4 48 424 427 � 3 (+0.71%) 21 22 � 1 (+4.76%)

9 unzip Command Line Raspberry Pi 4 48 1857 2016 � 159 (+8.56%) 5 112 � 107 (+2140.00%)

10 zcat Command Line Raspberry Pi 4 48 740 764 � 24 (+3.24%) 50 54 � 4 (+8.00%)

11 dropbear Daemon ASUS ACRH17 48 275 1788 � 1513 (+550.18%) 0 0

12 plugincenter Daemon Xiaomi R1D 48 / 4851 � 4851 / 95 � 95

13 himan Daemon Xiaomi R1D 48 / 517 � 517 / 0

Total Crash 199 437 � 238 (+119.60%)

w

t

t

b

t

t

n

e

B

b

t

a

t

fi

i

c

t

Q

c

s

5

f

s

R

d

L

(

fi

Q

(

L

m

i

f

t

s

w

p

c

a

M

t

c

a

u

t

M

t

T

a

s

s

t

m

s

d

b

s

L

w

o

t

s

n

t

e

M

o

b

o

c

c

t

t

1

p

A

v

a

t

hich will further lead to many differences in the branch informa-

ion. In contrast, the binary instrumentation of A flIo t will not miss

hose records.

The red records originate from the variance between the basic

lock and QEMU Translation Block. The QEMU mechanism restricts

he QEMU Translation Block transition. The restrictions include: (1)

he number of translated opcodes in the translation buffer and the

umber of instructions in a QEMU Translation Block should not

xceed a certain limit; (2) all instructions in a QEMU Translation

lock should stay in a single memory page. However, the basic

lock may not follow those restrictions. If a block is too large to be

ranslated by QEMU at once, QEMU will stop translating the block

nd split it into smaller ones. The extra split blocks are not the ac-

ual basic blocks, and they will result in the red records since the

rst address is not an entry. In comparison, our instrumentation

mplementation can track the control flow more accurately.

We note that all the yellow records listed in Table 1 are the

ombinations of the red and the green ones. It also explains why

here are much fewer yellow records than other types.

In summary, instrumentation of the A flIo t outperforms AFL

EMU mode in terms of the accuracy and correctness of the

losed-source binary program instrumentation, which can be con-

idered a reliable instrumentation methodology for fuzzing.

.2. Evaluation on real-world IoT devices

To illustrate the correctness of A flIo t , we performed greybox

uzzing on real-world devices, including Raspberry Pi4 and routers

uch as Xiaomi R1D and ASUS ACRH17. The Raspbian Buster on

aspberry Pi4 is with 4.19.57-v7l+ Linux kernel. Xiaomi R1D has

eployed the official MiWiFi firmware (v2.25.213) with a 2.6.36

inux kernel. ASUS ACRH17 has deployed the official firmware

v3.0.0.4.382_11812) with a 3.14.77 Linux kernel. All devices and

rmware support the ARMv7l instruction set.

In comparison, we also performed greybox fuzzing through AFL

EMU user mode on a server with 256GB memory and 48 cores

Intel Xeon E5-2650 v4 2.20GHz CPU). On that server, we emulate

inux-based firmware with ARMv7l instruction set in QEMU user

ode.

We need to run A flIo t on a dataset as the ground truth to val-

date if it can correctly fuzz a program and find more bugs. There-

ore, we choose AFL as the counterpart and the two most impor-

ant metrics for comparison. One is the number of Basic Block Tran-

itions covered (also called branch coverage for on-device fuzzing),

hich indicates the proportion of branches executed in the fuzzing

rocess. The other is the number of unique crashes, which indi-

ates the possible bugs to be identified.
10
Table 2 lists the test suites, including the LAVA-M dataset

nd several non-daemon and daemon binary programs. LAVA-

 (Dolan-Gavitt et al., 2016) is a widely-used fuzzer benchmark

hat automatically injects a large number of bugs into four GNU

ore utilities programs. However, since the programs in LAVA-M

re too simple, we have added several programs for further eval-

ation. Those non-daemon and daemon programs are deployed in

he real-world COTS IoT devices.

Besides, we performed ten rounds of fuzzing on each LAVA-

 program, non-daemon program, and daemon program, respec-

ively. All of the programs were fuzzed for 48 hours in each round.

he average number of basic block transitions (branch) coverage

nd unique crashes are shown in Table 2 .

We should note that the plugincenter and himan are closed-

ourced and extracted directly from Xiaomi R1D. All the open-

ourced binary programs are used to compare the validity and

he correctness between A flIo t and AFL. We also fuzzed the dae-

on program to evaluate the robustness of fuzzing various closed-

ource programs on the network-enabled and the peripheral-

ependent devices in the real world. We use the same seeds for

oth A flIo t and AFL to ensure they have the same input when we

tart fuzzing.

LAVA-M Programs . We selected four classical test cases in

AVA-M for our experiment. They are base64, md5sum, uniq , and

ho . Each case is executed with two instances: either with A flIo t

r with AFL for comparison. Each instance repeats 10 times to get

he average.

In the experiment, we first compiled the programs from the

ource codes and then considered the outputs as closed-source bi-

ary programs. A flIo t performed binary-level instrumentation to

he compiled binary program. In comparison, AFL performed an

mulator level instrumentation during the fuzzing process.

The results in Table 2 indicate that among programs of LAVA-

, A flIo t has covered more branches than AFL within 48 hours

f fuzzing. For example, as for base64 , our A flIo t covers 733

ranches, while AFL only covers 6 6 6, indicating an improvement

f 10.06% percentage. More attention should be paid to unique

rashes. For two cases (md5sum and who), AFL can not find any

rash. However, our A flIo t can find one and five crashes, respec-

ively. This fact shows that A flIo t can reach some code regions

hat AFL never touches. For uniq , the number of unique crashes is

1 times more than that in AFL.

Daemon Programs . In Table 2 , we select daemon program

lugincenter, himan , and dropbear for both Xiaomi X1D and ASUS

CRH17. Specifically, plugincenter and himan require peripheral de-

ices, but dropbear does not. Since we cannot deploy plugincenter

nd himan into QEMU emulated host, we do not have the result of

hose two programs for AFL.

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

r

9

p

t

v

m

s

h

l

d

i

a

b

n

i

c

g

f

2

A

o

f

2

o

t

6

L

a

c

o

s

i

t

I

i

i

t

t

l

f

f

I

t

v

f

o

T

s

t

I

A

s

f

h

b

t

2

f

l

w

c

c

i

b

a

i

s

t

d

P

b

d

n

t

c

R

s

v

s

2

o

m

t

p

fi

7

e

C

f

f

d

u

t

H

d

s

V

l

t

w

H

r

m

c

t

fi

s

a

v

m

a

Z

b

I

e

Table 2 shows that A flIo t successfully finds unique crashes on

eal-world IoT devices. For the case of plugincenter on Xiaomi R1D,

5 crashes are found. Because we can not access the source code of

lugincenter , those crashes were reported to Xiaomi Security Cen-

er as potential denial of service attacks, and they confirmed those

ulnerabilities.

The plugincenter requires initialization to confirm that it com-

unicates properly with the manufacturer and its components,

uch as the WiFi and Bluetooth modules. In our experiments, we

ave tried to fuzz plugincenter using AFL, but due to the above

imitations for those closed-source binaries, we could not fuzz it

irectly using only the native AFL framework.

Regarding branch coverage for dropbear , the branch number is

ncreased to 1788 for A flIo t compared to 275 for AFL, which is

bout a 5.5 times increase. It indicates A flIo t can access more

ranches by network input redirection used.

In summary, considering the LAVA-M dataset, non-daemon bi-

ary programs, and daemon binary programs, the fuzzing results

ndicate that A flIo t is comparable to AFL on branch coverage and

rashes detection. We can also conclude that A flIo t provides a

eneric, reliable, accurate greybox fuzzing solution on IoT devices.

Note that, in this paper, we do not compare A flIo t with other

uzzers such as (Böhme et al., 2017a; 2017b; Lemieux and Sen,

018). The reason behind this can be explained as follows. First,

 flIo t does not involve any modification to the fuzzing strategy

f the original fuzzer of AFL. Both A flIo t and AFL have the same

uzzing strategy. Second, the fuzzers leveraged by (Böhme et al.,

017a; 2017b; Lemieux and Sen, 2018) have some improvements

n the fuzzing strategy. The fuzzing strategy improvement is not

he focus of our paper.

. Limitations and improvements

Although A flIo t has been proved a generic fuzzing tool for

inux-based IoT devices with good efficiency and accuracy, we still

cknowledge the following limitations:

Variant Fuzzing Efficiency on IoT devices. Because the exe-

ution speed of the fuzzer depends on CPU frequency, fuzzing

n low-performance devices could be effectively slow. Moreover,

ome crashes or ill-formed codes can lead to the device’s instabil-

ty, which makes the on-device fuzzing progress interrupted. As to

hat matter, this is a disadvantage of on-device fuzzing for many

oT devices. The solution to that situation includes: (1) Leverag-

ng the persistent mode to accelerate fuzzing. The persistent mode

s a singleton mode to avoid fuzzed program re-initialization by

he fork server. It significantly reduces CPU and memory consump-

ion in the forking procedure. However, we find it may occasionally

ead to instability in path reproduction. (2) Leveraging distributed

uzzing. By the distributed master-slave mode of fuzzer, we can

uzz the same binary program on multiple devices simultaneously.

t can accelerate the fuzzing progress at the cost of more computa-

ional resources. (3) Attempting the re-hosting approaches. The de-

ice instability caused by the fuzzed program is a critical problem

or on-device fuzzing. For x86 platforms, we can manually hook

r rewrite the relevant function to continue the fuzzing progress.

hus, re-hosting can be a more generic diagnosis manner for this

ituation.

Lack of Strategy Improvement in Fuzzing Phase. Our focus is

o provide a generic solution for greybox fuzzing on Linux-based

oT devices. Thus, we construct our greybox fuzzing based on the

FL. The current version of A flIo t does not involve any other

trategy improvement in the fuzzing phase. If we integrate more

uzzing strategies into our solution, there should be a certain en-

ancement. Fortunately, the state-of-the-art improvements in grey-

ox fuzzing enhance the efficiency of the seed scheduling and mu-

ation. Most of those improvements, such as (Böhme et al., 2017a;
11
017b; Gan et al., 2018; Lemieux and Sen, 2018), are based on AFL

uzzer. What they have improved is not conflict with the binary

evel instrumentation and the network input redirection of A flIo t ,

hich means A flIo t can adopt those improvements further.

Incompleteness for Static Binary Instrumentation. A flIo t en-

ounters challenges such as anti-disassembly sequences, dynami-

ally generated code, indirect branches, and shared libraries when

nstrumenting at the binary level (D’Elia et al., 2019). For indirect

ranches, as we discussed in Section 3.4 , A flIo t attempts to cover

s many accurate indirect branch entries as possible based on the

nstruction type. However, the identification is still limited by the

tate-of-the-art disassembly techniques and static analysis. So does

he identification of the basic blocks. For shared libraries, as we

iscussed in Section 3.5 , A flIo t supports the instrumentation of

IC sequence. However, the number of tested cased of shared li-

raries is still limited. Finally, for anti-disassembly sequences and

ynamically generated code, A flIo t leverages state-of-the-art tech-

iques to analyze and disassemble the ELF files; A flIo t will meet

he same challenges as other works from those two factors.

Memory Limitation for On-Device Address Sanitizer. Techni-

ally, A flIo t ’s toolchain implementation can be compatible with

etroWrite’s (Dinesh et al., 2020) methodology to integrate address

anitizer. However, in practice, the memory capacity of the IoT de-

ice cannot afford the memory requirement by both the address

anitizer and AFL fuzzing framework. The QASan (Fioraldi et al.,

020) presents heap memory sanitization for binary fuzzing based

n QEMU. It relies on in-emulator shadow memory to reduce the

emory pressure. The QASan does not solve the memory limita-

ion issue for on-device fuzzing, but it provides an alternative ap-

roach to sanitize binary programs if the emulator can rehost the

rmware.

. Related works

To improve seed selection for mutation-based fuzzers, Böhme

t al. present the AFLFast (Böhme et al., 2017b). It uses Markov

hain to identify low-frequency paths and focuses most of its ef-

orts on these paths because it is more likely to trigger bugs when

uzzing on these paths. Besides, Böhme et al. also introduce the

irected greybox fuzzing, AFLGo (Böhme et al., 2017a), with a sim-

lated annealing-based power schedule that assigns more energy

o those seeds closer to the target location. Similar to AFLGo,

awkeye (Chen et al., 2018a) also emphasizes the challenge of

irected fuzzing, prioritizing seeds, and mutating based on the

tatic analysis and execution trace to achieve better assistance.

Uzzer (Rawat et al., 2017) leverages the control-flow graph to se-

ect input. FairFuzz (Lemieux and Sen, 2018) biases the mutation

o generate inputs that can hit those branches rarely visited. Those

orks aim to improve seed mutation and scheduling based on AFL.

owever, they do not provide a solution for closed-source or pe-

ipheral devices required programs on IoT devices, which are com-

only hard to migrate or be executed on QEMU.

Several works have made efforts to perform the automated se-

urity assessment on IoT devices to mitigate the risk of various at-

acks against IoT devices.

Costin et al. (2014) present the first large-scale analysis of

rmware images with static analysis techniques. They build a

ystem to collect much firmware from various device vendors

nd unpack all firmware images into millions of files. They re-

eal a lot of vulnerabilities, some of which are even shared by

any different devices. However, their analysis still suffers from

 limitation of accuracy due to their static analysis approach.

addach et al. (2014) propose a hybrid approach by leveraging

oth emulator and physical devices to perform dynamic analysis.

n their approach, firmware instructions are executed inside the

mulator, but all I/O operations are channeled to physical devices.

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

T

e

i

m

t

a

v

p

c

p

a

o

h

i

q

C

t

b

T

A

A

l

g

g

c

P

t

a

s

p

b

s

i

v

i

d

n

m

D

i

i

T

f

c

a

I

i

u

s

v

t

f

f

a

s

t

o

m

d

c

d

a

n

8

f

e

p

m

a

t

b

t

d

p

f

p

D

c

i

C

a

e

s

F

P

R

A

A

B

B

B

C

C

C

C

C

C

C

D

D

D

D

his approach enables the full emulation of the target device. How-

ver, its execution switching between emulator and physical device

s quite expensive and thus lacks scalability. Besides, their imple-

entation is specific to certain devices, so it is not easy to adopt

heir method to many different devices. Chen et al. (2016) present

 dynamic security analysis framework for Linux-based IoT de-

ices. First, it collects firmware from various vendors. Then, it un-

acks and configures the firmware to run in an emulator automati-

ally. Finally, it performs large-scale blackbox testing with web ex-

loitation on the emulator. However, it is impossible to perform

 comprehensive security analysis with web exploitation. More-

ver, it is a non-trivial task to resolve software dependence and

ardware configuration issues to prevent the kernel panic dur-

ng the emulation. Their approach does not address these issues

uite well, making it not applicable to the firmware. Moreover,

hen et al. (2018b) also provide IoTFuzzer, a blackbox fuzzer on

he real device. It manages to perform fuzzing aimed at IoT devices

y analyzing its companion mobile app to figure out the protocol.

hen generate the test cases and feed them through the network.

s a result of that, the throughput is slow.

Zheng et al. (2019) provide a more efficient solution, FIRM-

FL, f or fuzzing IoT programs by combining system-mode emu-

ation and user-mode emulation. They used multiple server pro-

rams as IoT programs for evaluation. However, regarding the pro-

rams on IoT devices that require peripheral devices data, they still

an not provide a general solution. Gustafson et al. (2019) present

retender , a system to automatically build hardware models. Pre-

ender leverage MMIO to gather communication, interruptions,

nd peripheral states. It also uses a machine learning model to

imulate interactions. It provides a proven method for modeling

eripheral devices in re-hosting, but it can only simulate the model

ased on existing data and cannot fully interact and evaluate the

ecurity of a real peripheral device.

Song et al. (2019) present PeriScope , a Linux kernel-based prob-

ng and fuzzing framework to analyze interactions between de-

ices and drivers. It uses MMIO and DMA mechanisms to mon-

tor traffic between device drivers and corresponding hardware

evices. Based on the PeriScope system, they found several vul-

erabilities on Wi-Fi drivers. They do not improve on the instru-

entation algorithm itself, but their approach of using MMIO and

MA to obtain the necessary information and implement fuzzing

s enlightening. Dinesh et al. (2020) present RetroWrite, leverag-

ng static instrumentation to fuzz and sanitize the COTS binaries.

hey used the symbolization to solve the instrumentation problem

or x86_64 binaries and enable fuzzing and sanitization for those

losed-source binaries. However, the RetroWrite requires symbols

nd can not handle the stripped binaries, which always exist in

oT devices. Unfortunately, the state-of-the-art method to symbol-

ze stripped binaries is mostly heuristic, and plenty of fragmented

nsymbolized basic blocks still exist in our experiments. Therefore,

ymbolization is not an appropriate solution for fuzzing IoT de-

ices. Nagy et al. (2021) discuss the quality of binary instrumenta-

ion and present Zafl. It leverages binary rewriting to binary-only

uzzing with compiler-level instrumentation’s capability and per-

ormance. It requires intermediate representation (IR) for rewriting

nd further optimization. The Zafl reaches remarkable fuzzing re-

ults and performance on x86-64 C/C++ binaries. However, due to

he prevalent hard-coded offset and captious runtime environment

f COTS binary programs, the IR and Zafl’s optimization cause too

uch perturbation to binary programs and are not suitable for on-

evice fuzzing.

Overall, none of the existing work provides comprehensive se-

urity analysis capability with fuzzing techniques directly on IoT

evices. To the best of our knowledge, we are the first to provide

 practical on-device fuzzing solution to find more bugs that have

ot been covered or exploited previously.
12
. Conclusion

In this article, we present A flIo t , a coverage-guided greybox

uzzing framework for Linux-based IoT devices. To our best knowl-

dge, A flIo t provides the first practical fuzzing solution for binary

rograms on the Linux-based IoT device. With binary-level instru-

entation, A flIo t supports native execution of the target program

nd, therefore, intrinsically supports fuzzing IoT binary programs

hat require access to peripherals. We evaluate A flIo t on both

enchmarks and real-world IoT devices. Overall, A flIo t can iden-

ify 437 unique crashes in 13 binary programs on three kinds of

evices, and the manufacturer confirmed all the 95 crashes from

lugincenter . Our evaluation shows that A flIo t is efficient and ef-

ective in finding vulnerabilities and bugs in closed-source binary

rograms on Linux-based IoT devices.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Xuechao Du: Conceptualization, Methodology, Software, Formal

nalysis, Investigation, Writing – original draft, Writing – review &

diting. Andong Chen: Data curation, Writing – original draft, Vi-

ualization. Boyuan He: Conceptualization. Hao Chen: Supervision.

an Zhang: Supervision, Writing – review & editing. Yan Chen:

roject administration, Supervision.

eferences

lves, P.,. Building GDB and GDBserver for cross debugging. https://sourceware.org/

gdb/wiki/BuildingCrossGDBandGDBserver .
RM,. ARM Instruction Set Version 1.0 Reference Guide. https://static.docs.arm.com/

10 0 076/010 0/arm _ instruction _ set _ reference _ guide _ 10 0 076 _ 010 0 _ 0 0 _ en.pdf .
astani, O., Sharma, R., Aiken, A., Liang, P., 2017. Synthesizing program input gram-

mars. In: ACM SIGPLAN Notices, Vol. 52. ACM, pp. 95–110 .
öhme, M., Pham, V.-T., Nguyen, M.-D., Roychoudhury, A., 2017. Directed greybox

fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. ACM, pp. 2329–2344 .
öhme, M., Pham, V.-T., Roychoudhury, A., 2017. Coverage-based greybox fuzzing as

Markov chain. IEEE Trans. Software Eng. .
adar, C., Dunbar, D., Engler, D.R., et al., 2008. KLEE: unassisted and automatic gen-

eration of high-coverage tests for complex systems programs. In: OSDI, Vol. 8,
pp. 209–224 .

ha, S.K., Woo, M., Brumley, D., 2015. Program-adaptive mutational fuzzing. In: Se-

curity and Privacy (SP), 2015 IEEE Symposium on. IEEE, pp. 725–741 .
hen, D.D., Woo, M., Brumley, D., Egele, M., 2016. Towards automated dynamic anal-

ysis for linux-based embedded firmware. NDSS .
hen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., Liu, Y., 2018. Hawkeye: Towards a

desired directed grey-box fuzzer. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. Association for Computing

Machinery, New York, NY, USA, pp. 2095–2108. doi: 10.1145/3243734.3243849 .

hen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang, X., Lau, W.C., Sun, M., Yang, R.,
Zhang, K., 2018. IOTFUZZER: discovering memory corruptions in IoT through ap-

p-based fuzzing. NDSS 2018, Network and Distributed Systems Security Sympo-
sium, 18–21 February 2018, San Diego, CA, USA .

ontributor, W.,. Executable and Linkable Format. https://en.wikipedia.org/wiki/
Executable _ and _ Linkable _ Format .

ostin, A., Zaddach, J., Francillon, A., Balzarotti, D., Antipolis, S., 2014. A large-scale

analysis of the security of embedded firmwares. In: USENIX Security Sympo-
sium, pp. 95–110 .

ef con 24 - jmaxxz - backdooring the frontdoor. http://www.co.tt/files/defcon24/
DEFCON- 24- Program.pdf .

’Elia, D.C., Coppa, E., Nicchi, S., Palmaro, F., Cavallaro, L., 2019. SoK: using dynamic
binary instrumentation for security (and how you may get caught red handed).

In: Proceedings of the 2019 ACM Asia Conference on Computer and Communi-
cations Security, pp. 15–27 .

inesh, S., Burow, N., Xu, D., Payer, M., 2020. Retrowrite: Statically instrumenting

cots binaries for fuzzing and sanitization. In: 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, pp. 1497–1511 .

olan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A., Robertson, W., Ulrich, F.,
Whelan, R., 2016. Lava: Large-scale automated vulnerability addition. In: Secu-

rity and Privacy (SP), 2016 IEEE Symposium on. IEEE, pp. 110–121 .

https://sourceware.org/gdb/wiki/BuildingCrossGDBandGDBserver
https://static.docs.arm.com/100076/0100/arm_instruction_set_reference_guide_100076_0100_00_en.pdf
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0008
https://doi.org/10.1145/3243734.3243849
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0010
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0012
http://www.co.tt/files/defcon24/DEFCON-24-Program.pdf
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0016

X. Du, A. Chen, B. He et al. Computers & Security 122 (2022) 102889

F

G

G

G

G

G

G

H

H

I
l

L

L

K
rk .

N

N

P

p

Q

Q
Q

R

S

S

S

W

W

Y

Z

Z
Z

Z
ioraldi, A., D’Elia, D.C., Querzoni, L., 2020. Fuzzing binaries for memory safety er-
rors with QASan. In: 2020 IEEE Secure Development (SecDev). IEEE, pp. 23–30 .

an, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., Chen, Z., 2018. CollAFL: path sen-
sitive fuzzing. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE,

pp. 679–696 .
anesh, V., Leek, T., Rinard, M., 2009. Taint-based directed whitebox fuzzing. In:

Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, pp. 474–484 .

odefroid, P., Klarlund, N., Sen, K., 2005. DART: directed automated random testing.

In: ACM Sigplan Notices, Vol. 40. ACM, pp. 213–223 .
odefroid, P., Levin, M.Y., Molnar, D., 2012. SAGE: whitebox fuzzing for security test-

ing. Queue 10 (1), 20 .
odefroid, P., Peleg, H., Singh, R., 2017. Learn&fuzz: machine learning for input

fuzzing. In: Proceedings of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering. IEEE Press, pp. 50–59 .

ustafson, E., Muench, M., Spensky, C., Redini, N., Machiry, A., Fratantonio, Y.,

Balzarotti, D., Francillon, A., Choe, Y.R., Kruegel, C., et al., 2019. Toward the
analysis of embedded firmware through automated re-hosting. In: 22nd Inter-

national Symposium on Research in Attacks, Intrusions and Defenses ({ RAID }
2019), pp. 135–150 .

aller, I., Slowinska, A., Neugschwandtner, M., Bos, H., 2013. Dowsing for overflows:
a guided fuzzer to find buffer boundary violations. In: USENIX Security Sympo-

sium, pp. 49–64 .

ennessy, J.L., Patterson, D.A., 2011. Computer Architecture: A Quantitative Ap-
proach. Elsevier .

DA Pro– Hex Rays. https://www.hex-rays.com/products/ida/ . 2020.
d.so(8) linux manual page. https://man7.org/linux/man-pages/man8/ld.so.8.html .

emieux, C., Sen, K., 2018. FairFuzz: a targeted mutation strategy for increasing grey-
box fuzz testing coverage. In: Proceedings of the 33rd ACM/IEEE International

Conference on Automated Software Engineering. ACM, pp. 475–485 .

iaw, J.,. QEMU Binary Translation. https://www.slideshare.net/RampantJeff/
qemu- binary- translation .

eystone Engine: Next Generation Assembler Framework. https://www.blackhat.
com/us- 16/briefings.html- keystone- engine- next- generation- assembler- framewo

agy, S., Nguyen-Tuong, A., Hiser, J.D., Davidson, J.W., Hicks, M., 2021. Break-
ing through binaries: compiler-quality instrumentation for better bina-

ry-only fuzzing. In: 30th USENIX Security Symposium (USENIX Security 21),

pp. 1683–1700 .
ie, S., Liu, L., Du, Y., 2017. Free-fall: hacking tesla from wireless to can bus. Briefing,

Black Hat USA .
ro, I.,. Survey Shows Linux the Top Operating System for Internet of Things De-

vices. https://www.linux.com/news/survey- shows- linux- top- operating- system

- internet- things- devices- 0 .

reeny. https://github.com/zardus/preeny .

EMU version 4.2.50 User Documentation: 1.1 Features. https://www.qemu.org/
docs/master/qemu- doc.html- intro _ 005ffeatures .

uynh, N. A.,. Capstone Engine. https://github.com/aquynh/capstone .
EMU: a generic and open source machine emulator and virtualizer. https://www.

qemu.org/ .
awat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H., 2017. VUzzer: applica-

tion-aware evolutionary fuzzing. In: Proceedings of the Network and Distributed
System Security Symposium (NDSS) .

en, K., Marinov, D., Agha, G., 2005. Cute: a concolic unit testing engine for c. In:

ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, pp. 263–272 .
ong, D., Hetzelt, F., Das, D., Spensky, C., Na, Y., Volckaert, S., Vigna, G., Kruegel, C.,

Seifert, J.-P., Franz, M., 2019. Periscope: An effective probing and fuzzing frame-
work for the hardware-os boundary. NDSS .

tephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y.,
Kruegel, C., Vigna, G., 2016. Driller: Augmenting fuzzing through selective sym-

bolic execution. In: NDSS, Vol. 16, pp. 1–16 .

ang, J., Chen, B., Wei, L., Liu, Y., 2017. Skyfire: data-driven seed generation
for fuzzing. In: Security and Privacy (SP), 2017 IEEE Symposium on. IEEE,

pp. 579–594 .
ang, T., Wei, T., Gu, G., Zou, W., 2010. Taintscope: a checksum-aware directed

fuzzing tool for automatic software vulnerability detection. In: Security and pri-
vacy (SP), 2010 IEEE symposium on. IEEE, pp. 497–512 .

un, I., Lee, S., Xu, M., Jang, Y., Kim, T., 2018. Qsym: A practical concolic execu-

tion engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium

(USENIX Security 18), pp. 745–761 .

addach, J., Bruno, L., Francillon, A., Balzarotti, D., et al., 2014. Avatar: A framework
to support dynamic security analysis of embedded systems’ firmwares. NDSS .

alewski, M., a. American Fuzzy Lop (2.52b). http://lcamtuf.coredump.cx/afl/ .
alewski, M., b. ReadMe for American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/

README.txt .

heng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., Sun, L., 2019. Firm-afl: high-
-throughput greybox fuzzing of IoT firmware via augmented process emulation.

In: 28th { USENIX } Security Symposium ({ USENIX } Security 19), pp. 1099–1114 .
13
Xuechao Du received his B.Eng. on computer science

from Xian Jiaotong University, Xian, China, in 2016. He
is currently a Ph.D. candidate in the college of Computer

Science, Zhejiang University, China. His research interests
include mobile security, Internet of Things security and

software security based on program analysis.

Andong Chen e received his B.Eng. on computer science
from Shandong University, China, in 2019. He is a Ph.D.

student in the college of Computer Science, Zhejiang Uni-
versity, China. His research interests include Internet of

Things security and system security.

Boyuan He is a postdoctoral research associate at De-
partment of Electrical Engineering and Computer Science,

Northwestern University. He earned his a Ph.D. in com-

puter science from Zhejiang University. His research inter-
ests lie in cybersecurity with the special focus on: logic

vulnerability detection, Android app security, blockchain
security, IoT device security, malware detection and foren-

sic analysis.

Hao Chen is a full professor in the Department of Com-
puter Science at the University of California, Davis. He re-

ceived his Ph.D. at the Computer Science Division at the

University of California, Berkeley, and his BS and MS from

Southeast University. His research interests are computer

security and machine learning.

Fan Zhang received his Ph.D. degree from the Depart-

ment of Computer Science and Engineering, University of

Connecticut, USA. He is currently an associate professor in
School of Cyber Science and Technology, College of Com-

puter Science and Technology, Zhejiang University, and
affiliated with Alibaba-Zhejiang University Joint Research

Institute of Frontier Technologise. His research interests
include hardware security, system security, cryptography,

and computer architecture.

Yan Chen received his Ph.D. in Computer Science from

University of California at Berkeley in 2003 and after that
he joined Northwestern University USA where he became

a Full Professor in 2014. His research interests are in secu-
rity and measurement for networking systems. Based on

Google Scholar, his papers have been cited over 14,0 0 0
times, and the h-index of his publications is 56. He is a

Fellow of IEEE.

http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0025
https://www.hex-rays.com/products/ida/
https://man7.org/linux/man-pages/man8/ld.so.8.html
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0028
https://www.slideshare.net/RampantJeff/qemu-binary-translation
https://www.blackhat.com/us-16/briefings.html-keystone-engine-next-generation-assembler-framework
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0032
https://www.linux.com/news/survey-shows-linux-top-operating-system-internet-things-devices-0
https://github.com/zardus/preeny
https://www.qemu.org/docs/master/qemu-doc.html-intro_005ffeatures
https://github.com/aquynh/capstone
https://www.qemu.org/
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0045
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/README.txt
http://refhub.elsevier.com/S0167-4048(22)00283-8/sbref0048

	AflIot: Fuzzing on linux-based IoT device with binary-level instrumentation
	1 Introduction
	2 Background
	2.1 American fuzzy lop
	2.2 QEMU

	3 Design
	3.1 Overview of AflIot
	3.2 Binary instrumentation algorithm
	3.3 Sections arrangement
	3.4 Basic block identification
	3.5 Instructions wrapping
	3.6 Appending dependencies
	3.6.1 Initialize fuzzer
	3.6.2 Update program header table

	3.7 Network input redirection

	4 Implementation
	4.1 Device setup
	4.2 Toolchain
	4.3 Fuzzer integration
	4.4 Shared library
	4.5 Input redirection

	5 Evaluation
	5.1 Instrumentation validation
	5.2 Evaluation on real-world IoT devices

	6 Limitations and improvements
	7 Related works
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

