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Abstract—Advanced Persistent Threat (APT) attacks have caused serious security threats and financial losses worldwide. Various
real-time detection mechanisms that combine context information and provenance graphs have been proposed to defend against APT
attacks. However, existing real-time APT detection mechanisms suffer from accuracy and efficiency issues due to inaccurate detection
models and the growing size of provenance graphs. To address the accuracy issue, we propose a novel and accurate APT detection
model that removes unnecessary phases and focuses on the remaining ones with improved definitions. To address the efficiency issue,
we propose a state-based framework in which events are consumed as streams and each entity is represented in an FSA-like structure
without storing historic data. Additionally, we reconstruct attack scenarios by storing just one in a thousand events in a database.
Finally, we implement our design, called CONAN, on Windows and conduct comprehensive experiments under real-world scenarios to
show that CONAN can accurately and efficiently detect all attacks within our evaluation. The memory usage and CPU efficiency of
CONAN remain constant over time (1-10 MB of memory and hundreds of times faster than data generation), making CONAN a practical
design for detecting both known and unknown APT attacks in real-world scenarios.
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1 INTRODUCTION

HOST security has been studied by researchers for
decades. The evolution of attacks has rendered exist-

ing approaches insufficient for modern sophisticated scenar-
ios. Advanced Persistent Threat (APT) attacks are used by
many experienced attackers to compromise victims’ hosts
due to the persistence, stealth, and clear goals of these
attacks. APT attacks are usually initiated by hacker groups
with a national or organizational background. Hence, these
groups are well-organized, well-targeted, highly skilled,
and highly invasive. The 2019 annual report from FireEye
showed that more than twenty active APT groups had
launched attacks against targets in dozens of domains,
including governments, financial companies and even the
Winter Olympics [1].

Traditional intrusion detection methods can be divided
into two categories: offline and online. One of the most
famous offline detection methods is the sandbox approach,
where the target program is deployed to an isolated en-
vironment for separate analysis [2]. In addition, several
logging and provenance tracking systems have been built to
monitor the activities of systems and then build provenance
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graphs to detect or analyze attacks [3–11]. Although these
methods allow a clear view of the attacks, considering the
hysteresis of offline detection, people have begun using on-
line detection methods to detect attacks in real-time. These
approaches include network traffic-based analysis [12–14],
software static feature detection [15, 16], and hook tech-
nology [17, 18], among others. However, existing research
has focused mainly on one specific stage of APTs and the
intrinsic mechanisms and attack vectors of APTs remain
poorly understood.

Context-based detection has been proven to be ef-
fective in recent works [19]. Real-time detection systems
with contextual methods have been proposed in recent
years. StreamSpot [20] analyzed streaming information flow
graphs to detect anomalous activities by extracting lo-
cal graph features and vectorizing them for classification.
Learning-based detection methods can only provide ma-
licious scores or classification results but cannot explain
these results. Furthermore, these detection systems cannot
detect attacks without false alarms. Therefore, in practice,
learning-based methods are unsuitable in enterprise scenar-
ios. Sleuth [21] subsequently proposed a tag-based detection
method based on provenance graphs, but this method fo-
cused mainly on suspicious access to confidential files and
reduced false positives by adding a domain white list. To
gain a better understanding of APT attacks, analysts have
decoupled the APT life cycle into multiple phases and then
used the corresponding features of each phase to match
the suspicious behavior. APT attacks were divided into
seven or eleven phases 1 [23–25]. The multiphase kill chain
model approaches were adopted by numerous researchers.

1. There is one more phase, Impact, added in ATT&CK model after
the publication of [22], it contains twelve phases now.
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Holmes [22] achieved substantial progress in phase-based
detection by building a model that detected each phase
based on simple rules and computed suspicious scores.
However, these phases are not all necessary in APT attacks
(e.g., Credential Access), and some of them (e.g., detecting
remote code execution vulnerability) are usually detected
via a priori knowledge and tend to change over time.

Additionally, real-time contextual work [21, 22, 24] usu-
ally preserves context information in a provenance graph [4].
However, the graph continues to grow over time, and APTs
can last for months or even years, making these approaches
inevitably suffer from efficiency and memory problems
when the system runs for long periods, especially for real-
time detection [26]. As a result, most detection methods rely
on short time windows [27–29].

To address these challenges, especially, accuracy and effi-
ciency, this paper presents a model for accurately detecting
APTs. Furthermore, it presents a novel state-based detection
framework in which each process and file is represented
as a fine-designed data structure for real-time, long-term
detection.

To detect unknown APTs with high accuracy, instead
of concentrating on unnecessary, undetectable and easy-to-
change phases in APT attacks, we utilize control flow (i.e.,
why a process or code is being executed) and data flow (i.e.,
how data are passed among objects) to explain contextual
behavior. We identify the following three essential attack
phases: 1) deploy and execute the attacker’s code, 2) collect
sensitive information or cause damage, and 3) communicate
with the C&C server or exfiltrate sensitive data. We focus
primarily on accurately detecting these phases and combin-
ing them to distinguish malicious behaviors from benign
ones. Compared to more complicated phase-based modules,
this approach is beneficial for accurately detecting unknown
APTs.

To conduct such contextual detection in real-time with
high efficiency, we propose a novel state-based tracking and
detection framework and a corresponding data structure
based on ideas from forensic analysis. In this design, all
semantics are stored as states, and the framework keeps
only the current states of all processes and files for detection.
States are updated by events and related states of other
entities, similar to finite state automata (FSA), which we
call it FSA-like structure. Consequently, the framework does
not need to store historic data, and memory usage remains
consistent. The states change over time. Once a process
changes into a malicious state, the attack is detected no
matter how long it lasts. Using this framework, we can
monitor the host over long periods of time to automatically
detect APTs with high accuracy and low overhead.

Moreover, our detection method based on this frame-
work can detect attacks and provide explanations. Specifi-
cally, the detection results are generated with reconstructed
attack graphs, which illustrates how these attacks happened
and benefits subsequent analysis.

Finally, we implement our design, called CONAN2. CO-
NAN collects data from Windows, extracts semantics, and
then uses an intelligent strategy for state transfer and to

2. CONAN for CONtext-based apt detection by Automatic prove-
nance aNalysis.

detect APTs in real-time. Moreover, it can automatically
reconstruct part of the attack chain once an attack is de-
tected. We evaluate CONAN under three scenarios: DARPA
engagement, our laboratory and three real-world compa-
nies. The results show that CONAN can detect all potential
APT attacks in our experiments rapidly with near zero false
positive rate and accurately reconstruct attack graphs. The
memory usage of CONAN remains constant (1-10 MB) over
time, unlike previous designs built on growing provenance
graphs [21, 22]. We summarize our contributions as follows:

• We propose a novel model for APT detection that
concentrates on three constant steps of APTs, and we
present a set of designs to accurately track and detect
these steps, including detecting memory-based attacks
and suspicious process behaviors.

• We present a novel and efficient state-based detection
framework, in which each process and file is repre-
sented as an FSA-like structure. This framework helps
to detect APTs with constant and limited memory usage
(1-10 MB) and high efficiency (hundreds of times faster
than data generation).

• We implement our design as an APT attack detec-
tion system that can detect unknown advanced attacks
in real-time with high accuracy and rapidly restore
the attack chain. We tested our system on real-world
datasets and determined that it performs better than
previous approaches, especially in terms of efficiency
and accuracy.

The atomic suspicious indicators (ASIs), transition rules
and malicious states in this paper are the same as those
used in evaluation. Although CONAN can detect all attacks
presented in DARPA Engagement, we do not aim to prove
that these definitions are enough for all attacks; instead, we
want to present our design to detect and reconstruct APTs
accurately and efficiently. Moreover, CONAN can easily be
extended by adding more data sources, because ASIs, rules
and malicious states are customizable in configuration files.

The remainder of this article is organized as follows. We
first describe the threat model in Sec. 2. Then, we introduce
the detection model and a novel detection framework in
Sec. 3 and Sec. 4, respectively. We evaluate CONAN in Sec. 5.
The discussion, related work and conclusion are presented
in Sec. 6, Sec. 7 and Sec. 8, respectively.

2 A LIVING EXAMPLE AND THREAT MODEL
In this section, we give a simple example of APT attacks
to illustrate the disadvantages of existing work. This attack
begins with a phishing email because, as concluded by
PhishMe research [30], 91% of the time, phishing emails are
behind successful cyber-attacks.

Imagine you are working on your computer and receive
an email from a colleague asking you to fill a table in an at-
tachment. You download the attachment without receiving
alerts from anti-virus software, open it, fill it in, then reply
to the sender. You may forget about this email after a few
days, but months later, you find that some sensitive data
have been stolen by competitors.

Furthermore, the attack could be more sophisticated. For
example, the attacker first prepares a new Remote Access
Trojan (RAT) that is never discovered by anti-virus vendors.
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Then, he collects information about your company so that
he can emulate the way employees send you emails. The
attachment contains an obfuscated macro script executed
when the file is opened. It executes PowerShell commands
to download and run the prepared RAT in memory, provid-
ing access to your machine without leaving malicious files
on hard disks. The attacker can lurk for a long time until he
gets what he wants, such as a sensitive file or the password
to your accounts.

Here, network traffic-based analysis can be invalid due
to camouflage and encryption. Sandbox-based detection
may be passed by anti-sandbox techniques. Static malware
analysis cannot work because there is no malware left on
the disk and even the malware in memory is completely
new with no static features recorded.

In our threat model, an attacker knows his target well
and prepares a new attack including zero-day vulnerabili-
ties, self-developed malware and a new DNS. He first makes
his malicious code run on the victims’ machines and then
performs some malicious actions to collect information or
cause damage, automatically or by accepting commands
from the network. Finally, if he wants to obtain sensitive
information, these stolen data should be sent via network.
Although we deploy this system to detect APT attacks, it
can also detect general attacks with similar goals. However,
we cannot detect side-channel attacks and insider attacks,
in which the attack has legal ways to access the machines.
Another attack CONAN cannot detect is the return-oriented
programming (ROP) attack [31]. With this technique, an
attacker gains control of the call stack to hijack program
control flow and then carefully executes chosen machine
instruction sequences that are already present in the ma-
chine’s memory. Thus, there is no malicious code deployed
on the victims’ machines. However, this attack can already
be avoided or detected by existing methods [32–36].

In this paper, we assume that the event logs and digital
signatures are credible. All attacks used in the evaluation
cannot be detected by traditional anti-virus systems. In con-
trast, we do not need to assume the whole attack happens
after the installation of our system. As a result, pre-installed
malware and malicious code can be detected.

3 DETECTION MODEL

In this section, we first provide an overview of our design
as shown in Fig. 1. We develop a fast and stable multiple-
level data collector on the host to collect audit traces, call
stacks and additional data. Then, these data are sent to
a detection server, extracted as high-level semantics and
stored in an in-memory structure as process and file states.
Meanwhile, all event logs are processed to change the states
of processes and files based on predefined rules. These
events and states are stored in a database for later attack
reconstruction. Whenever a process enters a malicious state,
an alert is triggered along with a reconstructed attack graph.

The detection model we present here makes the sys-
tem accurately detect APTs, and the state-based framework
makes it possible to efficiently detect APTs. We will intro-
duce these two parts in Sec. 3 and Sec. 4, respectively.

3.1 Motivation
The letter A in APT stands for the advanced techniques
used in these attacks. Traditional detection systems includ-
ing malware detection, vulnerability detection and threat
intelligence, focus on only a single phase of the APT attack
chain, and the attack techniques used in these phases can be
changed easily; thus, it is easy for APT attackers to evade
these traditional detection methods. MITRE ATT&CK [23]
introduces an eleven-phase APT attack model to describe
the tactics, techniques and procedures (TTPs) [37] used in
APT attacks.

However, an overly complicated multiphase model can
be used only to better understand APTs, not to detect them.
For example, the authors of [22] developed a system for
detecting techniques in each tactic (phase) and connected
these phases by information flows (including data flows
and control flows) as attack chains. In each attack chain, the
more phases detected, the greater possibility of an attack.
However, there are three main problems. First, there are
hundreds of techniques used in each phase. This system
must detect hundreds of techniques, which is hard to im-
plement and can cause high detection overhead. Second,
the detection points of traditional methods, e.g., vulnera-
bilities, are still considered. To detect these phases, prior
knowledge is required. Furthermore, the techniques used
by attacks are prone to change; thus, it is hard to detect
unknown attacks. Finally, the authors believe that although
they cannot detect all phases accurately, as a subset of all
phases, the detected ones are enough to distinguish attacks
from benign activities. In other words, it is not necessary to
detect all phases. Moreover, introducing some common and
unnecessary phases would increase the false alarm rate.

More phases cannot indicate an attack, and less phases
cannot prove its legality. For example, a new installing
browser can trigger 6 phases in the MITRE ATT&CK eleven-
phase model (Initial Access, Execution, Persistence, Creden-
tial Access, Discovery and Exfiltration), and will trigger a
false alert by [22]. Meanwhile, an advanced attacker accesses
the machine by a zero-day vulnerability and downloads
malware. Then, it achieves persistence using an unknown
method (or it does not want persistence in some scenar-
ios, for example, on a never-shutdown server). It records
keystrokes and exfiltrates the data over a command and
control channel, which is probably hard to detect. In the
end, the only stages that can be detected in this attack are
Execution and Collection, so they cannot be considered as
an attack by [22].

3.2 Three-phase Detection Model
To detect unknown APT attacks, we first find their invari-
ant parts. In other words, we try to answer the follow-
ing question: what makes these activities ”attacks”. After
researching hundreds of APT attacks [38], it can first be
observed that attackers must first deploy their code to
victims. The difference is that malware may be customized
or executed only in memory to evade traditional static file-
based detection systems. The second observation is that the
final targets of attackers remain the same over the years.
APT1 [39] introduced attacks to steal hundreds of terabytes
of data from at least 141 organizations since 2006. Today,
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Fig. 1. Overview of CONAN. The data collector is deployed on the client side, and it tries to collect traces from multi-layers with low overhead. These
traces are preprocessed on the client side to reduce the data size, and then sent to the detector on the server side. The detector constructs a
main-memory structure to maintain the states of processes and files by predefined rules. States and necessary events are synchronized to the
database. Once an alert is raised, the attack chain can be reconstructed from the database.

APT38 [40] also focuses on similar tasks. These behaviors are
analogous to the permissions [41] in Android that may lead
to privacy leakage or damage. The final observation is that
attackers will communicate with C&C servers and exfiltrate
confidential data, and the malicious program should always
have the ability to access the network.

To this end, we propose a three-phase model to detect
APTs:

• Deploy and execute the attacker’s code. Any process
behaviors are the outcome of code execution. The at-
tacker must first deploy code to the victim to achieve his
goal. To detect this phase, we monitor data flows from
outside, including the network and portable devices,
which we call Untrusted Data Flows. Having Untrusted
Data Flows is the necessary condition for launching
attacks, regardless any vulnerabilities or techniques the
attacker uses to deploy his code. This design may lead
to more false alarms, but the technique introduced in
subsequent sections will help to resolve this problem. In
another scenario, an attacker may use a legitimate pro-
cess to achieve his purpose. For example, the attacker
can capture screens by using the pre-installed Windows
SnappingTool. Here, Untrusted Control Flows can help. If
a process or thread is started by a suspicious thread, the
process or thread is also marked as suspicious. Code
deployment is always necessary unless the attacker can
gain authorized access to the victim in some other
ways(e.g., by logging in remotely with a password).
This type of attack can be prevented by an IP white list
and detected by anomaly detection, and it is outside the
scope of our research.

• Collect sensitive information or cause damage. An
attacker usually attempts to steal confidential data or
to damage the victim’s data or machines, which is the
reason why the attacker implements the attack and why
victims want to avoid such results. We do not consider
intrusions that gain access to the victim but result in
no harmful behaviors as real attacks. Stealing confi-
dential data from files can be detected by monitoring

data flows from confidential targets as Confidential Data
Flows. Other suspicious behaviors are detected by our
predefined signatures, as discussed in Sec. 4.1.

• Communicate with the C&C server or exfiltrate sensi-
tive data. Both operations are necessary in APT. With-
out these operations, an attack cannot be accomplished.
Although there are many ways to achieve this (e.g., re-
movable disks), the typical real-world attack approach
is through network connections.

These three phases are straightforward and necessary for
most APT attacks. Thus, we try to detect the processes that
execute suspicious code to do malicious behaviors. Moreover, we
present additional features to illustrate different attack sce-
narios. Unlike previous work [21], we do not assign scores
or simple tags; instead, we use more detailed descriptions
to depict the components of attacks for better understanding
and further analysis without additional overhead.

3.3 Tracking Suspicious Code Execution
Memory-based attacks, including injection and fileless at-
tacks, which can help attackers execute their code in
the memory of benign applications, are increasingly used
because traditional detection systems are blind to them
[42, 43]. While existing studies [20–22] regard a process
as an entity for storing contextual information, they are
vulnerable to memory-based attacks. Detecting techniques
used in memory-based attacks could be helpful, but there
are multiple ways to implement these attacks [44–46], which
makes detection difficult. Thus, in this section, we propose a
method for detecting suspicious code execution by tracking
suspicious data flows and checking the execution call stacks
ignoring the techniques attacks use.

If an attacker wants to execute malicious behaviors, he
must 1) execute malicious code directly or 2) achieve it
with the help of benign processes. The main challenges for
detection are to determine 1) which code is executed, 2)
where it comes from and 3) how it is executed. Although
taint tracking helps a lot when tracking fine-grained data
flows, this method cannot be used in real-time due to its
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high overhead. To address the first challenge, we adopt
call stacks. A call stack is a stack data structure that stores
information about the active subroutine when an event is
generated. The addresses in a call stack are return addresses
belonging to different code blocks (e.g., images). If all ad-
dresses in one call stack come from trusted code blocks, we
call this thread executes trusted code. Since benign processes
can be easily forced to execute external code, we separate
a process into multiple subunits (threads) based on code
execution. As shown in Fig. 2, these threads that execute
unknown or suspicious codes are separated from those that
are totally benign. We consider the following scenarios:

Image Load and Memory Execution. Image load is a basic
operation in which a process loads an executable file into
its memory. An attacker can replace benign image files
with malicious ones or force a benign application to load
a malicious image and then conduct the attack under the
guise of the benign process. Moreover, an attacker can
write malicious code directly into another process’s memory
space or load an image from the memory instead of from
the disk without triggering system events. The former is
known as process injection, which is commonly used in
attacks, and the latter is a technique, called reflective loading
[45], which has been used in recent advanced attacks. Our
system monitors the dynamic events for loading images
and stores the base addresses and sizes of the allocated
memory for each process. When the memory addresses of
unsigned images or allocated memory appear in a call stack,
it means that some unknown codes have been executed
in that thread; thus, this thread should be separated from
others. To reduce the overhead when parsing full call stacks,
we conduct a sample inspection with a low frequency for
each thread.

Script Execution. Script-based attacks have become com-
mon in recent years because the host processes are totally
benign and the process reads the execution code, such as
PowerShell and VBscript, instead of loading it. Detecting
such attacks is challenging. Our system enumerates most of
the common script hosts and treats them separately from
normal processes.

To address the second challenge, we track the suspicious
data by inference based on coarse-grained data flows. For
example, if a process has a network connection, then any
files written by this process could contain data from the
network. These inference rules will be introduced in Sec. 4.3.
Coarse-grained data flows may lead to a high false-positive
rate, but the true-positive rate remains the same. The result
in Sec. 5 shows that, even with coarse-grained data flows,
our system can detect APTs with a low false-positive rate.

To address the third challenge, we track control flows
(specifically, the processes created by suspicious threads).
Although they may be benign processes, they can be used
to achieve the attacker’s goals, such as grabbing screens and
exfiltrate sensitive data.

4 STATE-BASED FRAMEWORK
The letter P in APT stands for Persistence, which means
the attacker can lurk for a long time until he gets what he
wants. This is different from the same word introduced in
attack chain models[23], which represents the techniques
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Fig. 2. A suspicious thread (red) that executes unsigned codes (red)
is separated from the totally benign ones. This feature is important for
detecting suspicious code execution, including unsigned images and in-
memory attacks.

to make malware automatically start after the operating
system restarts. Detecting the techniques of persistence is
not practical. On the one hand, there are 59 known per-
sistence techniques [23] and detecting them all could be
expensive. On the other hand, even if a process is detected
to be persistent, it cannot be considered malware. Attackers
can lurk for a long time without any suspicious behavior.
Furthermore, a malicious file could be opened a few days
after it was downloaded. Therefore, it is difficult to detect
attacks based on contextual information.

To detect such attacks, system event logs should be
stored for long term, which requires GBs of hard disk space
each day. Several studies [47–49] have aimed to reduce the
log size, but such measures can only mitigate this prob-
lem because an attack can last for years and data should
be stored for a long time. Additionally, it takes time to
identify related events by going through these logs. Thus,
provenance graphs, also known as dependency graphs or
information graphs, are commonly used to traverse logs
faster [3, 4, 49]. Real-time detection systems [21, 22] based on
provenance graphs usually store them in memory for better
performance in terms of computing and graph matching,
but the graph keeps growing over time. Because APTs can
lie dormant for a long time without suspicious behaviors,
these methods suffer from memory problems related to
storing the growing graphs and from efficiency problems
related to tracking a long-term attack. As shown in Fig. 3(a),
it is nearly impossible to perform this type of detection in
real-time and for long-term attacks.

In this section, we present a state-based framework.
In this framework, each instance of processes and files is
analogous to a set of automata, which allows us to detect
different attack scenarios in real-time with low overhead by
aggregating all the contextual information used to aid detec-
tion in every process shown in Fig. 3(b). We first formulate
the notions of semantic recognition, data structure, state
transition condition and malicious state. Next, we explain
the method of reconstructing attacks based our framework.

4.1 Semantic Recognition
Our semantic state definition is inspired by forensic anal-
ysis; we automatically recognize the high-level semantics
of data flows, control flows and process behaviors. These
semantics represent fundamental evidence to be used in
context-based detection. We call such semantics atomic sus-
picious indicators (ASIs).
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An ASI includes one of the following types of semantics,
and is detected or inferred by corresponding traces:

1) The behaviors an attacker performs to achieve its target.
Often detected by APIs or inferred by confidential data
flows.

2) The source of suspicious codes, in other words, the reasons
why a process can execute such behaviors; inferred by
untrusted data flows.

3) The ability to conduct external communications, inferred
by network activities.

4) The reasons why a process is executed inferred by
untrusted control flows.

5) Additional features that describe the attack.
Each ASI can be described as a triad: 〈No, Ty, De〉. Each

ASI is assigned a unique number, No, which represents
its position in a bitmap to record states. Ty represents the
categories, which include the following: 1) suspicious code
source, to track potential untrusted code execution; 2) sus-
picious behaviors; 3) network connections; and 4) features,
which are additional features that illustrate different attack
scenarios. De represents the descriptions used to explain the
detection results in human-readable semantics.

These ASIs are recognized by direct extraction from
source data or inferred through rules (Sec. 4.3). A new ASI
that can aid in the detection of APTs should be declared if
1) it has different semantics than those of existing ASIs or
2) there are multiple ways to recognize the same semantics
with different accuracy. Tab. 1 lists a selective set of ASIs.
The combinations of different ASIs can ultimately describe
different attack scenarios. The following detection steps are
based on these ASIs, data flows and control flows.

Some ASIs can be detected easily or generated by infer-
ences based on system event logs. Although the behaviors
that are usually performed by attackers are among the most
important ASIs, there is no mature method for detecting
them.

To address this challenge, we conduct the largest scale
study [50] of real-world malware with such ASIs, called
remote access trojan (RAT), involving more than 500 white
papers [38] and more than 50 RAT families active in the last
decade. The result shows that RATs are commonly equipped
with tens of ASIs and the implementations of these ASIs are
basically the same. We developed methods to detect them on
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Fig. 4. A simple example of a screengrab signature. The APIs in the
same frame are alternatives that implement similar functions. The signa-
ture is generated based on its code implementation, and the sequence
is based on the data flows between APIs.

data sources from different layers. To balance the accuracy
and efficiency, we manually generated a set of topology
API signatures to recognize these behaviors based on their
code implementations following the ideas of [51] (e.g., as
shown in Fig. 4; the arrows represent the data flows between
APIs, and thus, the behavior must be implemented in such
a sequence). The coverage and true positive rate of API
signatures are high (90%), but they may be ambiguous. For
example, the APIs used to take screen shots are also used to
draw pictures in windows; even the sequences remain the
same (for both use, these APIs are used to copy the content
of a device-context from one to another). To address this
challenge, we adopt some external information to improve
the accuracy (e.g., we find that the API sequence of screen
grab can be also used to draw windows, our solution is:
when a process is grabbing screens while it has no visible
window at that time, we can consider it as a screenshot
operation but not a drawing operation). To match these
topology API signatures in real-time with high efficiency,
we convert these topographies to FSAs to match signatures
with streaming data, and these APIs should be matched in
a window to reduce the false alarms. In practice, we adopt
a time window with 6 seconds. We do not use system calls
because they are too low level to reflect the semantics.

API calls are usually recorded by API hooking using
sandbox, which cannot be used in real-time detection sys-
tems because of its poor performance and stability. We
use ETW kernel call stack traces to recover the API calls.
ETW can capture a kernel event (including SysCallEnter
events, which represent a call to System Calls) along with
its call stack. We recover the APIs from call stacks efficiently.
However, this process is not our main contribution, we do
not describe it in detail here[50].
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TABLE 1
A selective list of ASIs. The first column is the ASI number of a process

(P) or a file (F). ASIs are categorized by types: code source (CS),
behavior (Beh.), feature (Fea.), and network (Net.).

Number Type Description
P1 Net. Network traffic.
P2 Beh. Access sensitive files.
P3 Beh. Audio recorder.
P4 Beh. Keylogger.
P5 Beh. Execute sensitive commands.
P6 Beh. Grab screens.
P7 Beh. Steal Windows credentials from memory.
P8 CS Injected by untrusted code.
P9 CS Load unsigned images.
P10 CS Load unsigned images from the network.
P11 CS Execute scripts from the network.
P12 CS Find unknown code in call stacks.
P13 CS Executed by suspicious threads.
P14 Fea. No human interactions.
P15 Fea. Ancestor process has network connections.
P16 Fea. The process has visible windows.
P17 Fea. Access data from the network.
F1 - The file contains data from the network.
F2 - The binary file does not have a certificate.
F3 - Contain data from malicious behaviors.
F4 - The file is sensitive.

Process Name
Process ID
Unique ID
Command Line

File Path
Unique ID

F2
2.Process Create (R1)

Parent Process

Child Process

P1

P15

Process Name
Process ID
Unique ID
Command Line

1.File Write (R4)

3.Image Load (R6)

P10

F1

Fig. 5. Data structure and operations. The labels, P1, P10, P15, F1 and
F2 are states described in Tab. 1. R1, R2, and R15 are rules described in
Tab. 2. This example records the process of a drive-by-download attack.

4.2 Data Structure

To support real-time analysis and long-term monitoring, we
propose a main memory FSA-like structure to record the
states of each process and file that may be involved in an
attack. Please note that we do not need to store any historical
events to perform detection, but with the additional goal to
reconstruct attacks, we retain only a small set of events that
make the states change to a database.

As shown in Fig. 5, we preserve the basic information
and states of each process and file in memory when they
are in specific states. Each process instance can be described
as a quintuple:〈Na, Pi, Cl, Ui, St〉, which contains the basic
information of a process. Na is the process name, Pi is the
process ID and Cl is the command line. As Na and Pi can
be duplicated, we assign a unique ID (Ui) for each instance.
St represents the state of this process.

Each file instance is a triad: 〈Na, Ui, St〉. Na stands for
file path, Ui is the unique ID and St is the state. States
are predefined, as discussed in Sec. 4.1. Once an instance

contains a specific state, the corresponding bit is set as true.
All inactive processes and files are removed from mem-

ory to the database to ensure the memory is constant. Files
will be recovered only if they are operated by another
process.

4.3 State Transition
Our approach is based on the insight that the same types
of events have different high-level semantics depending
on differences between the subjects and objects involved.
For example, reading a downloaded file is different from
reading a file existing in a personal directory. The former
involves access to an unknown data source and may lead to
untrusted code execution, while the latter involves access
to personal data and may eventually result in user data
leakage. The purpose of this part is to track confidential data
flows, untrusted data flows and untrusted control flows.
Such analyses are usually performed by forensic analyzers;
however, our system performs this analysis automatically.

To automatically distinguish between these events and
record the semantics, we created a group of predefined rules
to assign more detailed semantics to the events. There are a
selective set of rules in Tab. 2.

Each rule is a six-tuple: 〈No, Ss, Ev, So, Di, De〉. No is
the serial number of the rule, which is used in an edge to
represent how this operation is generated. Ss stands for a
specific state of a subject. A subject is always a process in
our design. So stands for a specific state of an object. An
object is a process, a file or an IP. Ev is the event performed
by the subject on the object. Di, forward or backward,
indicates the direction in which one entity influences the
other. When the subject is in a certain state and performs an
event on an object, the state of the object changes in what
we call the forward direction, where the subject and object
are the source and destination, respectively. By contrast, if
the subject is influenced by the object, we call it backward;
in this case, the subject is the destination. Note that both Ss

and So can be one or more states when they are the source.
De is the description of the purpose of the rule, and it is
used to explain the reconstructed attack chain.

Each entity (i.e., subject or object) in our system is like
an FSA and can be described as a quintuple:〈S,Σ, δ, S0, F 〉.

S: the set of states. The combinations of the bits in St,
which represent the current states of processes and files.

Σ: the input alphabet. Consists of the system events Ev .
δ: the state-transition function.

δ : Sf × Σ→ Sl (1)

Unlike the traditional original FSA, the state Sf already
exists in an entity, and the state Sl is newly generated in
another entity involved in this Ev .

S0: the initial state. Once a new process or file appears in
our system, we create a corresponding instance in memory.
All bits in St are set as false. Only files that may contain
confidential data are initialized with a state F5.

F : the set of final states. Once a process enters one of
the states, it will trigger an alert. These malicious states will
be discussed in Sec. 4.4.

As shown in Fig. 5, a file is inferred to be downloaded
from the network because a process with a network con-
nection writes data to it. Then, a new process loads this
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TABLE 2
A selective list of rules. [Beh.] and [CS.] means any ASI of this type.

No. Subject ASI Event Object ASI Direction Description
1 P1/P15 start P15 forward This process is executed by a process with network connections.
2 [Beh.] write F3 forward A process writes data acquired through malicious behaviors to a file.
3 P17 read F1 backward A process accesses data from the network.
4 P1/P17 write F1 forward A process writes data from the network to a file.
5 P2 read F3/F4 backward A process accesses a sensitive file.
6 P10 load F1&F2 backward A process loads a downloaded image with no valid certificate.
7 [CS.] start P13 forward One process is executed by a suspicious process.

downloaded file, and as a result, the process changes into
a state that represents this semantic. In other words, the
states include the semantics from both the previous object
state and this event. Consequently, in our system, we do not
need to store any historical events and can detect attacks
efficiently.

However, to reconstruct attacks for better understand-
ing and further analysis, we store the events that cause
state changes to a database. An event is stored with four
attributes: rule number, time stamp, source and destina-
tion. The rule number represents the reason why states are
changed. The event is like an edge in provenance graphs,
but the source and destination of the operation are the bits
in the bitmap to record states, not a process or a file. We will
discuss this design in Sec. 4.5.

The results in Sec. 5.8 show that existing rules have
covered more than 95% of the original events, and less 1%
of them are stored in a database for attack reconstruction.

Note that, although we can obtain the offset and length
of reading and writing a file, we regard the file as a whole.
This simplification can significantly reduce overhead.

4.4 Malicious States

Malicious states are various combinations of individual
states that indicate the contextual information needed for
detection. As discussed in Sec. 3.2 and Sec. 4.1, ASIs can be
categorized into 4 different types: suspicious code sources,
network connections, suspicious behaviors and features. If
a process contains at least one ASI from each of the first
three categories (excluding features), we say it enters a mali-
cious state. Each malicious state illustrates a different attack
scenario. For example, if a process loaded an unsigned
image downloaded from the network, executed malicious
behavior and connected to the network, we recognize it as a
”download & execution” attack, and we know the attacker’s
target based on the malicious behavior it executed. If the
unsigned image already exists in the host, it can be recog-
nized as ”existing malware”. Therefore, we do not need to
assume that all phases of an attack happen after CONAN
started monitoring the system, which we believe is one
improvement of CONAN over existing works.

Once a process enters one of the malicious states, our
system will raise an alert. In other words, all detection
progresses can be performed by simply checking the state of
one process. For example, such a check can reveal whether
a process is executing unsigned codes from the network. We
do not need to know the exact source of the code because
that information provides little assistance for detection. In
addition, because our system checks only process states,

it has much lower overhead than graph-based detection
mechanisms [22] but achieves almost the same effects.

We also utilize multiple general features to identify
different attack scenarios. For example, the ”human interac-
tion” feature reflects whether a process is run automatically,
and the ”no visible windows” feature indicates whether the
user could visibly recognize the existence of this process. If
there are more features, there is a higher confidence score
of malicious behavior, which is representative of different
attack scenarios. The use of more features will help system
administrators analyze attacks and reduce false positives.
Note that we do not use any white lists of files, processes
or domains, except code certification. The malware installed
before the deployment of our system can also be detected as
a special attack scenario.

4.5 Attack Reconstruction
Provenance analysis greatly aids the understanding and
detection of attacks. Consequently, we not only detect these
malicious attacks but also try to reconstruct these attacks
with semantics, similar to the way provenance analysis
functions. Such reconstructions help considerably benefit
attack analysis, further reducing false positives and helping
protect hosts from future attacks.

These tasks can be performed efficiently due to the
specificity of our data structure. Because we aggregate all
evidence from the target process as states, the basic idea
in reconstructing the attack is to explain why the process
is classified as malicious, specifically, by backtracking the
provenance of ASIs in the process. Because our system
preserves the source of every ASI in a database as edges
between states (see Sec. 4.2), finding the provenance of the
attack can be accomplished in linear time by back tracking
through edges. For forward analysis, because our system
can detect a malicious process immediately, nearly no ad-
ditional impact can be inflicted by the suspicious process;
thus, there is no dependency explosion for forward tracking.

In practice, a reconstructed graph with dependency ex-
plosion contributes less to further analysis. To obtain the
graph, we reconstruct only enough evidences to prove that
it is an attack instead of trying to reconstruct the whole
attack, as tracking attacks with coarse-grained data flows
is an unsolved research problem that has been studied for
years [4, 5].

5 EVALUATION
We evaluate CONAN on Windows using three different
environments with long time running. The results show
that CONAN can detect multiple types of attacks with high
accuracy and low overhead.
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(a) Provenance graphs with a single host. (b) CONAN with a single host. (c) CONAN with different numbers of hosts
(L-1).

Fig. 6. Memory footprint vs. % of records consumed. Provenance graph (left) vs CONAN (middle) and CONAN with different numbers of hosts (right).

TABLE 3
Dataset for each campaign with the duration and distribution of different events and the total number of events and call stacks. DARPA (D) and

Laboratory (L).

Dataset Duration File Read File Read File Write File Create Process Loadlib Network Other Total # of Call
(hh-mm-ss) (Original) (Optimization) /Delete/Rename /Thread Events Stack

D-1 8:50:25 45.63% 0.63% 29.60% 15.10% 0.91% 0.64% 7.99% 0.14% 10.66M 107M
D-2 8:48:10 43.33% 0.60% 27.43% 17.00% 0.93% 0.63% 10.65% 0.02% 9.96M 136M
D-3 6:53:40 46.92% 0.38% 25.18% 18.20% 0.87% 0.54% 8.27% 0.02% 6.13M 175M

L-1 3:27:48 20.00% 0.56% 21.62% 24.27% 0.61% 2.65% 30.6% 0.17% 102.5M 201M
L-2 284:36:05 34.40% 0.18% 2.41% 1.73% 0.51% 2.15% 58.75% 0.04% 100M 10B

5.1 Implementation

We adopt Event Tracing for Windows (ETW) as the primary
data provider. ETW is a built-in audit system on Windows,
and it can provide more than 1000 types of audit logs,
including system calls, call stacks, and application-level
logs. We extend ETW by adding data sources, such as cer-
tificates of binary files, human interactions, and clipboards.
The data collector is implemented in C++ and consists
of approximately 9.2-thousand lines of code (KLoC). The
remaining components are implemented in Java and consist
of approximately 6.2 KLoC. All states, rules and malicious
states are customizable and specified in configuration files
of approximately 112 lines.

5.2 Datasets

We examine our system in three environments: our research
lab, DARPA Engagement and with several real-world enter-
prises. Tab. 3 summarizes the dataset used in the first two
environments, and we will discuss the large-scale evaluation
in the real-world separately.

The first 3 rows correspond to the attack campaigns
carried out by a red team as part of the DARPA Transparent
Computing (TC) program. This set spans a period of 23
hours and includes approximately 30 M events and 400 M
call stacks. The second two rows of the table correspond
to the attack and the benign data collected in our research
laboratory, respectively.

These data were collected by our collectors on Windows.
The ”duration” column in Tab. 3 refers to the length of
time that the collector was running on the target machine.
Note that the duration covers both benign activities and
attack-related activities on a host. The next several columns
provide a breakdown of events into different types of oper-
ations. File read and write include not only file reads/writes
but also some additional data flows, such as clipboards. The

number of original file read events is nearly 40% in each
dataset, but with the following optimization, the number
decreases approximately 100-fold: when a file is read by a
process, the collector ignores duplicate read events between
two adjacent write events because the states of this file can-
not be changed until it is written, and thus, the process will
not be influenced by these read events. The process/thread
column includes process and thread starts/ends events. The
network includes only TCP and UDP packages because
ETW cannot provide low-level network events. The ”Oth-
ers” column includes features we collect to better under-
stand attacks, including image certificate, visible windows
and human interactions. The number of network events in
L-2 is significant because the user watched many movies
during testing.

5.3 Environments and Experimental Setups
Our experiments contain three scenarios.

Laboratory Setup. We deployed CONAN on two hosts
in our laboratory and implemented the attack described in
Fig. 3(a) on one host (L-1), in addition to downloading and
installing a set of benign applications with similar behav-
iors, including IMs (e.g., Skype), remote-access tools (e.g.,
TeamViewer), image editors (e.g., Photoshop) and others
(e.g., PuTTY). Meanwhile, we run our system for weeks on
another host to ensure its long-term stability and low false-
positive rates (L-2).

DARPA Engagement Setup. The attack scenarios in
our evaluation are configured as follows. Three individual
hosts installed Windows 10. Because the setup involved
an adversarial engagement, we had no prior knowledge
about the attack prepared by the red team: we did not
know when the attack would occur or what the attack
target would be. It is worth noting that, while the red team
was attacking the target host, benign background activities
were also being carried out on the hosts. These activities
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included browsing websites, downloading binary files and
executing them, reading and writing emails and documents.
In general, nearly 99.9% of the events were related to benign
activities. Therefore, the task was to automatically identify
attacks amid a large number of benign events in real-time.

In this engagement, we detected all attacks with no false
positives. Because in these scenarios, the test team tried to
simulate a strict business or government environment, those
behaviors that may generate false positives, e.g., unsigned
application installation, were not implemented. The recon-
struction results do not cover all the activities generated
by the attacks. We present part of our results compared to
the ground truth data released by the red team in the next
section.

Real-world Enterprise Setup We were allowed to de-
ploy our system in three real-world companies for long-term
running to verify the stability and efficiency of CONAN. All
deployed machines are in their office network instead of
their business network for security. All machines can access
the Internet and they are operated by employees during
office time. The network and machines are also protected
by other security productions, such as anti-virus software
and firewalls. Accuracy, stability and efficiency can all be
examined in such scenarios.

5.4 Attack Scenarios and Reconstruction
In this section, we introduce the detailed detection result
of one campaign to illustrate how CONAN works to detect
these attacks. The other results will be discussed in Ap-
pendix. All detection results with specific states are listed
in Tab. 4.

As shown in Fig. 7(a), the attacker redirects the website
to another IP address.

1) When the user tries to browse this site, the firefox.exe
process will navigate to the fake IP address 138.113.2.43.
At this time, firefox is labeled P1, which means this
process has outside network traffic.

2) Then, the attacker can successfully execute the code
remotely using Firefox’s vulnerability. When it executes
unknown code, CONAN detects it with dynamic call
stacks, separates this thread from trusted ones and
labels it P12.

3) After firefox is compromised, the attacker first executes
hostname and tasklist and reads Deafult.rdp to collect in-
formation about the host. CONAN records the separated
entity executes sensitive commands and accesses sensitive
files.

4) At this time, an alert is triggered as this entity enters a
malicious state. This entity includes the states listed in
Tab. 4 (D-1 firefox). The feature of having visible win-
dows and interacting with users means that it should be
perceived by users. As it has both network connections
and executes unknown code, it can be inferred that
the executed unknown code may be downloaded from
the network. Therefore, this attack is recognized as ”an
exploitation of a benign application”.

5) Then, a binary file, cloud.exe, is downloaded by Firefox.
This file is labeled F1, which means it is download from
the network.

6) Firefox creates a process, cloud, and it loads the un-
signed image, cloud.exe. It makes this process executed

TABLE 4
Malicious processes with ASIs.

DataSet Process Code Behavior Network FeatureSource

D-1 cloud 10,13 16 1 -
firefox 12 2,5 1 14,16

D-2 dll loader x64 10,12,13 7 1 15
D-3 telnet 13 2 1 -
L-1 notepad 8 2,5 1 -
E-1 firefox 9 6 1 14,16

by a suspicious process and executes untrusted code from the
network.

7) Finally, the suspicious process takes screenshots, exe-
cutes whoami, and sends the screenshots to a new IP
address, 78.184.214.212. This attack is recognized as
”download and execute malware”, which is one of the
most common attack scenarios in real-world situations.

The reconstructed attack chains are shown in 7(b) and
7(c). CONAN automatically explains why these processes
are malicious by tracking the provenance of each ASI. The
reconstructed attack chains are similar to the original ones.

5.5 Large-Scale Real-World Deployment
To study the efficiency and stability of CONAN, we deployed
it in three real-world companies: a financial company, a
communication company and an energy company. We de-
veloped our collector on Windows 7/8/10. All of them are
64-bit. Collectors were deployed on 226 office machines in
total. These collectors have been running for more than
three months, and the result shows that CONAN can run
efficiently and stably in real-world scenarios for a long time
as we expected.

Meanwhile, we examined the accuracy of our method.
There were 422 alarms among 36 million processes, includ-
ing 14,524 programs, as shown in Tab. 5. As we claimed in
Sec. 4.4, we do not assume that machines are clean before the
installation of CONAN, and we suppose existing programs
on machines can also be malicious. The results are shown
in Tab. 5, in which C represents attacks with complete
attack chains, and I represents attacks with incomplete
attack chains, in which no initial access phase is detected.
Unfortunately, we check all these alarms by using Threat
Intelligence[52] and Sandbox[53]. To date, none of them
have been classified as malicious. We will discuss the false
alarms in the following section.

5.6 False Alarms
To study CONAN’s effectiveness in benign environments,
we deployed it on the hosts in our laboratory and in three
real-word companies.

In the laboratory: Because our detection system focuses
primarily on remote-access and suspicious behaviors, we
downloaded, installed and ran a set of benign applications
with similar abilities and behaviors. We also selected a
set of common applications including system applications
and other popular applications. We downloaded each ap-
plication from the network, installed it with the default
configuration, and then executed it manually to trigger
additional program behaviors (L-1). In addition, we invited
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Fig. 7. Attack D-1 with reconstruction. The arrows in (b) and (c) represent how to track the provenance of the attacks, instead of the direction of the
events.

TABLE 5
The false alarms in the real-world evaluations. In the column Alarm Type, C represents attacks with complete attack chains, and I represents

attacks with incomplete attack chains, especially no Initial Access phase. I means the detected suspicious programs were already there before
CONAN was installed, while C means CONAN captured the whole attack chain, including the Initial Access phase.

Company Total Total Total Alarm Alarms FPR(Alarm/Process) Program FPR(Program)
Machine Process Program Type (10−5) (10−2)

Financial 61 9,014,881 4,664 C 15 0.17 9 0.19
I 98 1.09 68 1.46

Communication 85 16,512,358 7,152 C 17 0.10 8 0.11
I 124 0.75 73 1.02

Energy 80 11,251,325 5,215 C 22 0.20 11 0.21
I 142 1.26 91 1.75

Total 226 36,778,564 14,524 C 54 0.15 22 0.16
I 364 0.99 172 1.28

a volunteer without any understanding of our system to use
another host (L-2) for long-term testing. The results show
that CONAN can accurately identify benign applications, as
no false-positives occurred.

In the real-world scenarios: We deployed CONAN in
three companies from different fields, and it has been run-
ning for more than three months. Nearly 80% Untrusted
data flows come from internal network. Most of the pro-
grams (more than 70%) which trigger alarms are customized
programs in their fields, and the remain ones are common
programs, such as firefox(browser) and PuTTY(SSH client).
The worst thing is that there are some cracked programs
and re-packed ones. It is hard to determine whether they
are malicious or gray. We selected one of the false positives
for a detailed analysis (shown in Tab. 4, E-1, firefox).

This application already existed when CONAN was de-
ployed, but it could still be a malware instance. Because
Firefox is an open source application, we found that it
contains 11 blocks of code that implement screen capture;
therefore, it may take screen shots for legitimate reasons.
For certification purposes, the binary file of firefox.exe was
downloaded before CONAN was installed; thus, we were
unable to track the Firefox download source. In truth, CO-
NAN cannot separate this scenario from one in which the
attacker creates fake applications with normal functions but
containing malicious code. For example, an attacker could
insert malicious code into an open-source project, recompile
it, and upload the malware to induce people to download
it.

Tab. 6 shows some important ASIs generated in each
dataset excluding true-positive attacks and false positives.
Each of them is suspicious and can be part of an attack; for
example, P2 is the number of processes that access some

sensitive files. However, with these contextual methods
and the proposed detection model, there are no more false
positives.

5.7 Runtime Overhead and Memory Usage
Our detection system can be separated into two main parts:
the collector and the detector. On the client side, the over-
head of the collector is negligible: it can run on a host
with Intel i5-7500 CPU (4 cores and 3.40 GHz) with less
than 10 MB memory and 5% CPU usage. Specifically, Tab. 8
shows the average efficiency of events parsing and signature
matching in the collector. Since 100ns is the minimum time
granularity on Windows, the result shows that the collector
can handle events and APIs efficiently.The bandwidth usage
is approximately 1-10 KB/s depending on the workload on
the host.

We measure the detection overhead on servers, and the
results are listed in Tab. 7. We set up the experiments on a
server with an Intel Xeon Silver 4116 CPU (with 12 cores and
2.1 GHz of speed each) and 256 GB of memory running on
Ubuntu 18.04. Memory: Each detector has constant memory,
approximately 2.1 MB of memory on average. Compared to
the growing provenance graphs (100 MB at the beginning
and 600 MB at the end of a 5-day dataset [22]), CONAN is
the only practical system to monitor hosts for long periods.
Efficiency: The detector uses a single core for one data
stream. On average, CONAN can analyze the data 200 to
1500 times faster than the data are generated, as shown in
the ”Speed-up” column. In other words, CONAN with one
core can process many data streams in real time, if CPU was
the only constraint. Fig. 6(c) shows the CPU and memory
usage when CONAN monitors different numbers of hosts.
We confirmed this result by simulating the simultaneous



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, MONTH 2019 12

TABLE 6
A selective list of ASIs generated in each dataset (excluding attacks).

Data set P1 P2 P3 P4 P5 P6 P10 P11 P15 P16 F1 F2 F3 F4
D-1 2588 26 16 119 10 164 85 5 207 42 8161 17 2 15
D-2 3874 17 7 78 7 99 122 9 171 17 7411 12 7 9
D-3 22 8 47 9 6 25 40 18 26 6 3697 10 2 6
L-1 177 10 7 14 2 20 5 48 463 43 36723 114 19749 11
L-2 2438 12 10 15 5 126350 573 1 5681 126 145161 53 106350 5

TABLE 7
Memory usage and runtime for detection and reconstruction. The

numbers in the Speed-up column show that CONAN can consume the
data 200 to 1500 times faster than the data are generated.

Dataset Duration Max
Memory

Avg.
Memory Runtime Speed-

(hh:mm:ss) (MB) (MB) (s) up
D-1 8:50:25 5.40 1.53 51.1 622
D-2 8:48:10 2.29 1.38 47.0 670
D-3 6:53:40 3.55 1.23 30.1 824
L-1 3:27:48 10.46 2.74 45.2 276
L-2 284:36:5 5.68 3.51 659 1555

TABLE 8
The average efficiency of events parsing and signature matching in the

collector. (100ns is the minimum time granularity on Windows.)

Event Type Process Time Per Event (ns)
Process 661
FileIO <100

Network <100
API Matching <100

transmission of different numbers of data streams (L-1) to
CONAN in real-time. The results show that CONAN can
monitor hundreds of hosts with linear CPU and memory
usage.

5.8 Benefit of Semantic Recognition of Events
Since nearly 99.9% of system events are related to benign
activities, it is very important to reduce irrelevant data
to maintain the efficiency and accuracy of CONAN. As
described, we use predefined rules to recognize the high-
level semantics of system events. Tab. 9 shows the number
of events among different process steps: original events (O),
matched by rules (M) and those that cause the state to
change and to be stored in a database (R). The numbers
in column M are similar to those in column O, which means
CONAN tracks most of the original events. The numbers in
column M mean that less than 1% are stored for reconstruc-
tion. Duplicated Read events are prefiltered.

6 DISCUSSION
In this section, we discuss how an attacker aware of the de-
sign of CONAN might try to evade the detection mechanism.

In-memory attacks. The addresses in a call stack are the
entrance of the next commands. To avoid the suspicious
addresses in a call stack, the malicious code cannot call any
APIs that will result in kernel events (such as read/write
files, system calls and memory operations). But in our ex-
perience, the attacker cannot achieve his goal without these
APIs. Another possible way is to hook or insert malicious
code to benign images; these attacks will also be logged at

the beginning because of memory operations. Moreover, it
describes a research problem called memory authentication
[54]. Another attack CONAN cannot detect is the ROP attack
[31], as discussed in Sec. 2.

System Extension. There is more than one way to im-
plement a suspicious behavior, which means we should
develop corresponding signatures for each implementation.
For example, existing research [55] introduces three meth-
ods of taking screen captures on Windows, and there are still
some other methods. However, the total number of imple-
mentations is limited based on the operating system itself,
and it is far less than the number of attacks. Consequently, it
is feasible and worthwhile to monitor additional behaviors
and their implementations. In addition, our system mainly
depends on tracking the information flows to determine
why a code is executed and where the sensitive information
goes. It is easy to extend our system by adding more data
sources and corresponding rules to cover more information
flows.

System Recovery. Because our detection method is
based on the states, it is important to recover the states
when the system crashes or restarts. As all states are stored
into a database, they can be recovered from it once crashed.
When the state of an entity is changed, it is synchronized
to the database. And when an entity is removed, it is
marked as out of data in the database. Therefore, when our
system restarts, it will recover the in-memory states from
the database, and the system is able to continue its work.

White Listing. Our white-listing mechanism based on
code certification works well on DARPA engagement and
our laboratory, i.e., zero false alarm. However, we get a few
false alarms in real-world scenarios. To further reduce these
false alarms, we can combine with existing white-listing
mechanism with process and/or IP white-listing mecha-
nisms, which are proved to be effective in the literature [21].

Graph Reconstruction. As CONAN retains only the first
events that make the states change, it would miss the later
events, which have the same effect on an entity. Thus, the
reconstructed graph may not be complete. We argue that
this method because the main purpose of our system is
to detect attacks accurately and efficiently, and the recon-
structed graph is only used to understand why a detection
signal is raised. Another choice is to delete duplicate events
when inserting them into the database. In this case, duplicate
means the sources and destinations of the events, and the
matched rules are all the same. To determine whether one
event is duplicate, we must store and search for it, which
take both memory storage and CPU computation. In our
approach, we only need to check the states of one entity to
decide whether to store this event. It is much more light-
weight.
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TABLE 9
Reduction of events among different process steps: original events (O), events matched by rules (M) and those cause the state changed and to be

stored in a database (R).

Data set Read Write Start Load
O M R O M R O M R O M R

D-1 66989 64725 19232 3071K 2925k 13K 1429 224 224 2931 5 5
D-2 60064 54544 2513 2652K 2573K 13K 1263 179 179 1924 12 12
D-3 23196 21677 810 1479K 1468K 4K 728 31 31 1383 7 7
L-1 57821 26413 17452 2210K 2203K 37k 976 541 541 10928 171 138
L-2 560K 317K 48175 7415K 7311K 113K 19750 4807 0 54187 1 1

Average Reduction 14.2x 1007x 9.8x 332x

7 RELATED WORK
In this section, we investigate relevant studies and compare
them to our approach to highlight the novelty of our meth-
ods.

Host intrusion detection techniques can be classified
into three detector types: misuse, anomaly or hybrid. Misuse
detection [56, 57] mainly relies on known attack patterns;
the collected raw data are converted into an established
format before being passed to the detection module, and
the detection module will make a decision. Unfortunately,
misuse detection techniques have difficulty detecting un-
known attacks (i.e., zero-day attacks). We can see that the
knowledge-based approaches [58, 59] rely on a database
of attack signatures that requires regular updates, while
machine learning-based approaches [60, 61] often lack the
ability to generalize. Anomaly detection [62–68] is used to
detect unknown attacks. The behavior profiles of benign
programs are stored and updated frequently. Any deviation
from the profile is flagged as a potential attack. Forrest et al.
[62] proposed an anomaly detection system that used fixed-
length sequences of system calls to define normal behavior
for UNIX processes. Shu et al. [68] presented a formal
framework that surveyed host-based anomaly detection and
discussed various dynamic and static approaches in detail.
The advantage of anomaly-based techniques is that they
can detect zero-day attacks. However, these approaches will
cause many false positives because misuse detection and
anomaly detection cannot consider both false negatives and
false positives. Considering the weakness of the above two
methods, hybrid techniques have been presented. In addition
to combining misuse detection and anomaly detection tech-
niques, hybrid techniques involve specific policies. Policy-
based approaches have been well-designed and are exempli-
fied by SLEUTH [21] and HOLMES [22]. SLEUTH leverages
trustworthiness tags and confidentiality tags to define the
code and data. HOLMES constructs customized policies to
exploit the semantic meaning from each step in the APT
attack chain. The above works rarely discussed about the
essential intention for attacking life-cycle, rendering some
false alerts or false negatives still exist (we have listed these
weakness in Sec. 3).

CONAN is rather different than previous work. We pro-
pose a detection model that summarizes the three essential
phases that exist in an APT attack. Through the model, we
can disclose the whole attack chain and accurately detect
potential danger.

Provenance tracking aims to discover the complete
attack paths in a complex context. Backtracking is a common
solution used in previous work [21, 47] inspired by the
pioneering work BackTracker [4]. Thereafter, PriorTracker

[69] optimizes the process proposed in [4] and enables
a forward-tracking capability for timely attack causality
analysis. During forward/backward searching, provenance
graphs are built to record system object/subject dependen-
cies. Studies [8, 10, 21, 70–72] utilize system call data to track
information flows. To improve precision, fine-grained data
are collected by the authors of [73–75], but blindly increas-
ing the amount of data leads to an increase in overhead.
SLEUTH [21] innovates by using tags for efficient event
storage and analysis, but the proposed polices have inherent
limitations. While SLEUTH maintains a whitelist of internal
IP addresses (DNS lookup, etc.) that are not tagged with
untrusted origins, which needs to be maintained frequently
to reduce false positives, the tag-based approach is essen-
tially a graph-based storage method, and it is difficult to
deal with the long-time APT attacks. Because SLEUTH takes
long to process the dependencies of large amounts of data, it
is difficult to guarantee real-time performance. The amount
of data is proportional to the memory consumption, and
growing data will cause a memory explosion.

Unlike previous work, CONAN makes good use of the
concept of provenance graph for real-time detection. CO-
NAN employs a novel state-based framework with constant
memory usage and low overhead. Our system is context-
sensitive and introduces FSM-like structures to automati-
cally transfer the status. Moreover, we can analyze audit
data, perform state transition and generate alarms in real
time regardless of how long the APT attack will last.

8 CONCLUSION

In this paper, we present CONAN, which provides efficient
and accurate APT attack detection using an FSA-like state
transition approach. We identify the three most essential
components of APT attacks to reduce false positives and
false negatives, along with some designs to better recognize
semantics. Unlike related studies, we utilize states instead of
a provenance graph to record semantics, which ensures con-
stant memory usage over time. During evaluation, with a
well-designed detection model, CONAN detected all attacks
rapidly with only one false alarm. With the help of our state-
based framework, CONAN maintains constant memory us-
age (1-10 MB) over time, unlike previous methods built on
growing provenance graphs.
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APPENDIX

The attack in D-2 is shown in Fig. 8.
1) SFTP connects an external IP, and downloads three

files. All these three files are labeled F1. Thus, the
detector has known that these files contain data from
the network.

2) Then the attacker accesses this machine remotely via
VNC server from another IP. In this step, the detector
only knows that the VNC has external network connec-
tions.

3) The attacker launches a command line to execute the
download script. At this time, the detector finds that
cmd is a script host, and it reads a file which contains
data from the network. So the process cmd is labeled
with P11, and the execution is suspicious.

4) A new process is created by suspicious cmd,
and loads a downloaded and unsigned image file,
Dll loader x64.exe. This process is created via a un-
trusted control flow (P13), and the source of its code
is also untrusted (P10).

5) The attacker hides the malicious code in a
Dll lib x64.dll. And this process executes the malicious
code in this downloaded and unsigned image file
by reading it, instead of loading it, implemented by
Reflective Loading [45]. But CONAN concentrates on
the code executed by this process, and finds that there
are unknown addresses in call stacks (P12). Thus, this
process is really suspicious.

6) Finally, the process steals Windows credentials from
memory (P7), saves the stolen data into logs (F3), and
sends them back to the attacker. At this time, this pro-
cess is created by untrusted thread (P13, code source),
executes untrusted code (P10, P12, code source), steal
Windows credentials (P7, behavior) and has network
connections (P1, network). Thus, it enters a malicious
state and will trigger an alert.

The attack in D-3 is shown in Fig. 9
1) The user downloads a Microsoft Office document with

macro from ibm.com (F1).
2) The file is opened by WinWord, and the macro con-

tained in it is executed (P12).
3) A PowerShell process is created by WinWord (P13).

It executes keylogger (P4) and save the stolen data
into a file (F3). Because PowerShell does not have any
network connections, it does not enter a malicious state.

4) PowerShell creates a new process Telnet (P13). It reads
the stolen data from the file (P2), and sends it back
to the attacker. At this time, this Telnet process is
created by untrusted tread (P13, code source), reads
sensitive data from file (P2, behavior), and has network
connections (P1, network). Thus, it enters a malicious
state and will trigger an alert.

The attack in L-1 is shown in Fig. 10. The attack is
similar to the one in D-3, while this Powershell downloads a
malware instead of doing the malicious behaviors by itself.
We cannot automatically reconstruct the whole attack in this
scenario as shown in Fig. 10(b). Because we are trying to
avoid dependency explosion, and the reconstructed part is
already a complete attack.
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Fig. 8. Attack scenario vs. reconstructed attack of D-2.
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Fig. 9. Attack scenario vs. reconstructed attack in D-3.

6. Launch
5. Read

winword

8. Write
9. Launch

7. Connect powershell

10. Load

11. Inject

unknown
process

unknown binary 

3. Write2. Connect

firefox

x.doc 

1. Launch
4. Launch

explorer

unknown
domain

12. Execute
13. Execute 14. Execute

15. Execute

16. Connect

notepad

ipconfig

tasklist netstat

whoami

(a) Attack scenario in L-1.

at 
 

confidential file 

Execute Execute Execute Execute

notepad.exe

ipconfig tasklist netstat whoami 

Read
unknown
domain 

TCP send

unknown process

powershell.exe
Write

unknown binary 

Load Load

Load

TCP recv

(b) Reconstructed attack in L-1.

Fig. 10. Attack scenario vs. reconstructed attack in L-1.
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