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Abstract—The performance and operational characteristics of
the Domain Name System (DNS) protocol are of deep interest to
the research and network operations community. In this paper,
we present measurement results from a unique dataset containing
more than 26 billion DNS query–response pairs collected from
more than 600 globally distributed recursive DNS resolvers.
We use this dataset to reaffirm findings in published work and
notice some significant differences that could be attributed both
to the evolving nature of DNS traffic and to our differing per-
spective. For example, we find that although characteristics of
DNS traffic vary greatly across networks, the resolvers within an
organization tend to exhibit similar behavior. We further find
that more than 50% of DNS queries issued to root servers do not
return successful answers, and that the primary cause of lookup
failures at root servers is malformed queries with invalid top-level
domains (TLDs). Furthermore, we propose a novel approach that
detects malicious domain groups using temporal correlation in
DNS queries. Our approach requires no comprehensive labeled
training set, which can be difficult to build in practice. Instead, it
uses a known malicious domain as anchor and identifies the set
of previously unknown malicious domains that are related to the
anchor domain. Experimental results illustrate the viability of this
approach, i.e., we attain a true positive rate of more than 96%,
and each malicious anchor domain results in a malware domain
group with more than 53 previously unknown malicious domains
on average.
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I. INTRODUCTION

T HE DOMAIN Name System (DNS) protocol plays a
cardinal role in the operation of the Internet by en-

abling the bidirectional association of domain names with IP
addresses. It is implemented as a hierarchical system with
a few trusted root servers that distribute the responsibility
of updating the name-to-IP-address mapping to hundreds of
millions of authoritative nameservers that correspond to each
domain. DNS as a protocol has steadily evolved since its initial
specification [33]–[36], as has the mix of applications that
find new and innovative ways of using it. Most applications
today and future Internet architectures (such as Named Data
Networks and Software-Defined Networks) depend on DNS.
It is also increasingly abused by malware authors, both as an
effective redirection mechanism for obfuscating location of
their servers [22] and as a covert channel for command and
control [19], [37].
Given its crucial importance for the Internet’s functioning,

DNS has been the subject of many measurement studies during
the last decade. Prior measurement studies have scrutinized the
behavior of DNS caches [25], characterized global DNS ac-
tivity from the perspective of root servers [16], [17], and evalu-
ated the effectiveness of DNS in the context of content-delivery
networks [41]. The first study of global DNS activity was by
Danzig et al., which uncovered the prevalence of many bugs in
popular DNS implementations [18].More recently, this problem
was revisited by Brownlee et al., who measured the prevalence
of bogus DNS traffic at the F-root nameserver, finding that some
of the same problems persist: 60%–85% of observed queries
were repeated queries from the same host, and more than 14%
of requests involved queries that violated the DNS specification.
Jung et al. measured that a significant portion of DNS lookups
(more than 23%) receive no answer and that they account for
more than half of all DNS packets in the wide area due to per-
sistent retransmissions.
Several of these studies were conducted more than a decade

ago and often from a small number of vantage points. Collabo-
ration between the Internet research and operations community
has evolved significantly since these foundational studies, and
we now have access to a new and unique data source, the
Internet Systems Consortium (ISC)’s Secure Information Ex-
change (SIE) [20], which enables researchers to monitor DNS
activity from hundreds of operational networks in real time.
One of the driving forces behind such data sharing has been its
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untapped potential for rapidly identifying malware domains. In
particular, domain registrations and DNS access patterns could
be an effective means for tracking cyber-criminal behavior,
and several recent studies have explored the application of ma-
chine-learning techniques to automatically identify malicious
domains [8], [15], [45].
In this paper, we report on findings from a global and mul-

tidimensional analysis of DNS activity, as observed from a
large set of widely distributed and operational DNS resolvers.
Specifically, we analyze 2 weeks of data from more than
600 resolvers comprising more than 26 billion queries and
responses. First, we systematically dissect this data, present
high-level characteristics of observed traffic behavior, and
identify invariant characteristics across resolvers. Second, we
use this dataset to critically reexamine the validity of certain
prior measurement studies, in the context of this more global
perspective and modern traffic characteristics. Finally, we eval-
uate the feasibility of using this dataset to automatically extract
malicious domain groups. We make the following key findings.
• We find that resolvers from different /24 subnets have
different profiles, including query/response counts, unan-
swered query rates, unsolicited response rates, query type
distributions, and query success-to-failure ratios.

• In comparison to prior measurement results, A queries con-
tinue to dominate, AAAA queries have sharply increased,
and other query types depict a decrease in popularity.

• We find that although root servers are always available
(i.e., have no unanswered queries), more than 15.1% of the
queries sent by recursive DNS resolvers are unanswered.

• We explored the cause of DNS query with negative an-
swer (queries that do not return “NOERROR”). We iden-
tify DNSBL as having a much higher failure ratio than do
other query types.

• We find that invalid top-level domain (TLD) is the primary
cause of query with negative answer at root servers, and
that the percentage of invalid TLD has increased in com-
parison to the results from prior measurements. However,
A-for-A queries have decreased in popularity and almost
disappeared in our data.

• We find that 12.0% of traffic to root servers and 8.0% to
other servers are truly repeated queries. We further identify
the possible causes including concurrent query, CNAME
chain sanitization, premature retransmission, and imple-
mentation quirks.

• We find that the number of DNSSEC-enabled domains has
increased sharply compared to prior reports.

• We find that 24.1% of second-level domains (SLDs) have
IPv6 authoritative servers.

• We find that temporal correlation of domain queries is an
effective means to detect correlated domain groups. Based
on this finding, we develop a novel approach that detects
previously unknown malicious domains related to known
anchor malicious domains. The approach achieves 96.4%
detection precision and detects 53 more malicious domains
on average for each given anchor domain.

II. BACKGROUND AND DATASET

DNS Protocol: The DNS is a distributed, hierarchical naming
system that translates between domain names and IP addresses.
Client end hosts (also called stub resolvers) simply contact a

Fig. 1. Illustration of the DNS resolution process for www.example.com.

Fig. 2. Geolocation of the DNS resolvers that contribute to the data.

recursive resolver that implements the hierarchical resolution
process of iterating through nameservers to perform the transla-
tion. In the example shown in Fig. 1, the stub resolver queries the
local recursive resolver for the IP address of www.example.
com. The recursive resolver usually resides within the local net-
work of the client’s organization and is managed by the organi-
zation’s administrator. However, clients can also choose to con-
tact recursive resolvers located outside their local network (e.g.,
OpenDNS resolvers and Google public DNS resolvers). As-
suming an empty cache, the recursive resolver starts by querying
the root server for the IP address of www.example.com. The
root server responds with a referral to the .com TLD server.
The recursive resolver then queries the .com TLD server, and
in response is provided with a referral to the authoritative server
for example.com, which hosts the name-to-address mapping.
Finally, the recursive resolver contacts the authoritative server
of example.com to obtain the corresponding IP address.
Data: Our data are collected from a high-volume passive

DNS source at the SIE [20]. This provides a near-real-time data
feed from multiple hundreds of DNS recursive resolvers dis-
tributed over the Internet. These resolvers represent large ISPs,
universities, as well as public DNS service providers located in
North America and Europe, suggesting a wide diversity in the
user population behind these resolvers.We plot the geolocations
of the DNS resolvers in Fig. 2 using the MaxMind geolocation
database [32].
Due to privacy concerns, the data-collection sensor is de-

ployed “above” the recursive resolvers and records all DNS
queries and responses between the recursive resolvers and the
remote DNS servers. The sensor does not collect traffic between
client stub resolvers and recursive resolvers. As a result, the
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identities of client end-hosts that sit behind the recursive re-
solvers are not available.
Previous SIE data analysis has shown that 93% of the do-

main labels immediately under the .edu TLD have a resource
record in the SIE data in a 2-week observation period [46]. The
DNS servers that generate responses are dispersed in 70.7%
of the /8 CIDR blocks and 69.2% routable autonomous sys-
tems (ASs) [46]. We collected all DNS traffic in the raw SIE
channel for 2 weeks from December 9 to 22, 2012. In total, our
dataset contains about 26 billion DNS queries and responses.
Note that our dataset, although the most diverse to date, still

has a geographic bias because themonitored resolvers are exclu-
sively located in the US and Europe (Fig. 2). Hence, we focus
our study on macroscopic characteristics and temporal behav-
iors, which we believe do not have strong correlations with ge-
ographic location.
Local and Root Perspective: Since our data are collected

from local recursive DNS resolvers, it naturally enables
studying DNS behavior from the perspective of the local re-
solvers. On the other hand, 13 root servers of vital importance
sit atop the DNS hierarchy. Due to their importance, multiple
prior works have analyzed DNS protocol behavior from the
perspective of the root servers [16], [17], [48].
We attempt to analyze our DNS data from the root perspective

as well. As described in Section II, if a client-side nameserver
restarts with empty cache, or the time-to-live (TTL) expires for a
TLD nameserver entry, the recursive resolution process starts by
querying the root servers and obtaining a referral to an author-
itative TLD nameserver. Although our data are collected from
local recursive DNS resolvers, the availability of the response
nameserver’s IP address enables us to isolate the DNS traffic
to and from root servers. Given the volume and diversity of our
dataset, we believe that the subset of DNS queries and responses
is a representative sample of DNS traffic that root servers expe-
rience. In this paper, we analyze the DNS traffic characteris-
tics from both the local perspective (i.e., using the full dataset)
and the root perspective (i.e., using only traffic to and from root
servers), whenever applicable.

III. DNS TRAFFIC CHARACTERISTICS

In this section, we analyze the characteristics of the collected
DNS traffic from various perspectives.

A. High-Level Characteristics

Our data include traffic from 628 distinct DNS resolvers
including 10 IPv6 resolvers. Not surprisingly, we find signifi-
cant variance in the volume of DNS queries that they generate.
The most active resolver generates more than 70 M queries per
day, which translates to an average of more than 800 queries
per second. In contrast, 407 resolvers generate fewer than
10 000 queries during the 2-week measurement period.
This observed range shows that the query volume of DNS

resolvers has a heavily skewed distribution. A small frac-
tion of deployed DNS resolvers are serving the majority of
the DNS queries. This observation is consistent with that of
prior measurement studies by Pang et al. [41] in 2004 and
Osterweil et al. [38] in 2012. Interestingly, the vast majority of
inactive resolvers belong to a European educational institution

TABLE I
PERCENTAGE OF TRAFFIC GENERATED FROM THE TOP 20 /24 SUBNETS
WITH IPV4 RESOLVERS, AND THE AGGREGATE TRAFFIC GENERATED

BY IPV6 RESOLVERS

(354 resolvers) and a US educational institution (49 resolvers).
We subsequently learned that DNS experiments are conducted
at these institutions, and speculate that ongoing DNS experi-
ments may be the reason behind the large number of inactive
DNS resolvers. Nonetheless, the amount of traffic generated by
the inactive resolvers is negligible and should not remarkably
affect our measurement results.
We further agglomerate IP addresses into /24, /16, and /8 sub-

nets, respectively. We also put all resolvers with IPv6 addresses
into one group. Our monitored DNS resolvers span 71 distinct
/24 subnets, 33 distinct /16 subnets, and 22 distinct /8 subnets.
This further validates that our data are collected from vantage
points distributed widely across the IPv4 address space.
1) Organizations: We use /24 subnets to group DNS re-

solvers into organizations and bin all resolvers with IPv6 ad-
dresses into a special group. Although large organizations may
have /16 or /8 subnets, we find /24 subnets to be a good way to
group DNS resolvers as it provides sufficient abstraction and en-
ables capturing the difference between different subnets within
large organizations.
We identify the 20 top /24 subnets in our data with the highest

traffic volume. By using whois lookups to determine the or-
ganization of the /24 subnets, we identified six commercial US
ISPs, one US educational institute, two commercial European
ISPs, one European educational institute, and a public DNS
service provider. Many organizations deploy DNS resolvers in
multiple /24 subnets as shown in Table I. Due to privacy con-
cerns, we use the location (US or EU) and type (commercial,
EDU, or public) to denote the organizations. The bulk of the
data is collected from US ISP A, which serves a large popula-
tion and contributes a large number of resolvers.
2) DNS Data Type: In normal operation, each DNS query is

associated with a response. However, cases exist when a DNS
query is not answered or a DNS response is received without
a matching query, either due to misconfiguration, backscatter
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TABLE II
SERVER-SIDE DISTRIBUTION OF DNS TRAFFIC, AGGREGATED BY

ORGANIZATIONS

from attack traffic, or packet loss. Hence, we group DNS traffic
in our data into three categories: query–response pairs, unan-
swered queries, and unsolicited responses. More than 83.3% of
the entries in our data are query–response pairs, 14.9% are unan-
swered queries, and 1.8% are unsolicited responses. The per-
centage of abnormal cases, including both unanswered queries
and unsolicited responses, is 16.7%, which seems anomalous
and is worthy of deeper investigation. An obvious consideration
is packet loss in the data collection infrastructure. We find that
three subnets deviate significantly from others with drastically
lower percentage of query–response pairs and higher percentage
of unanswered queries. They belong to two organizations—the
public DNS service and the European educational institute. In
addition, the public DNS service is the only organization that
suffers from a high percentage of unsolicited answers (15.2%).
Finally, we recompute the numbers for the percentage of

query–response pairs, unanswered queries, and unsolicited
responses after excluding the two anomalous organizations.
We find these numbers to be 88.6%, 11.3%, and 0.03%, re-
spectively. The low percentage of unsolicited responses also
indicates that packet loss may not be a detrimental issue in
the SIE data collection infrastructure outside of these two
providers.
3) Server-Side Traffic Distribution: Besides the traffic dis-

tribution across monitored resolvers, we are also interested in
where the traffic goes. By counting the destination IPs of DNS
queries, we identify nearly 1.38 million distinct DNS authorita-
tive servers, including 17 874 (1.3%) IPv6 servers. The author-
itative servers span 30 129 distinct ASs, 229 distinct /8 subnets,
23 614 distinct /16 subnets, and 378 298 distinct /24 subnets.
The distribution of DNS traffic across the 1.38 million

DNS servers follows a heavy-tailed distribution. While the
500 busiest servers attracted nearly half (49.9%) of all DNS
queries; 94.1% of DNS servers received less than 10 000 queries
during the 2-week measurement period.
We further group the DNS servers into organizations, for

which we first correlate the addresses with DNS records in our
dataset to identify their domain names, then empirically label
the domain names with organizations (e.g., we label addresses
with *.apple.com and *.mac.com domain names as
apple). Table II presents the 10 organizations that received
highest DNS traffic volume in our dataset, which together
absorbed 39.7% of all DNS queries.

TABLE III
DISTRIBUTION OF DNS LOOKUPS BY POPULAR QUERY TYPES. THE TABLE
OMITS THE PERCENTAGE OF OTHER QUERY TYPES. THE PERCENTAGES FOR
YEARS 2001, 2002, AND 2008 ARE FROM [25], [48], AND [17], RESPECTIVELY

B. Query Type Breakdown

The DNS protocol supports a variety of query types for
different purposes. To summarize the most popular types, an A
query translates a domain name into IPv4 addresses, an AAAA
query translates a domain name into IPv6 addresses, an MX
query translates a domain name into mail exchange hostnames,
and a PTR query translates an IP address back to domain
names. We examine how popular each query type is in the
real world and measure how this distribution has changed over
time. Table III shows the distribution of the four popular types
of DNS queries in real-world traffic. Because we do not have
access to legacy DNS traffic, we quote the numbers reported
by Jung et al. [25], Wessels et al. [48], and Castro et al. [17] in
the row of year 2001, 2002, and 2008, respectively. Jung et al.
collected their data from local resolvers at MIT and KAIST.
On the other hand, Wessels et al. and Castro et al. reported the
distribution observed from only root servers.
From the Perspective of Local DNS Resolvers: After more

than 10 years, the A query remains the most dominant DNS
query type in the US and Europe, accounting for about 66.2%
of total queries. This percentage remains stable with a slight
increase after 10 years. With wider deployment of IPv6 pro-
tocol, the volume of AAAA queries (13.4%) has risen sharply.
This query type did not exist 10 years ago. Meanwhile, the
percentage of PTR queries has decreased from 24%–31% to
11.1%, and MX queries have decreased from 2.7%–6.8% to
2.3%. While the absolute number of queries has also grown sig-
nificantly in the past 10 years, the growth of other query types
is not comparable to that of AAAA queries.
From the Perspective of Root DNS Servers: We observe a

similar trend with local perspective. The percentage of A query
remains steadily high at root servers. The percentage of AAAA
query has increased with time, while the percentage of PTR and
MX query has decreased. However, the change is more drastic
from the root perspective than from the local perspective. At
root, the percentage of AAAA queries has increased by 466%
from 2002 to 2012. In contrast, the percentages of PTR query
and MX queries have shrunk by 76% and 94%, respectively, in
the same time period.
Query Types in Different Organizations: Figs. 3 and 4 plot the

distribution of query types across different organizations. Fig. 3
analyzes all the traffic at local resolvers, whereas Fig. 4 only
analyzes queries at root servers. We observe that different orga-
nizations have different characteristics. In addition, the organ-
ization profiles from local perspective are highly diverse. The
organization profiles from root perspective are more consistent.
We find several organizations that exhibit drastically different
patterns in comparison to others.
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Fig. 3. Query type breakdown in different organizations from local
perspective.

Fig. 4. Query type breakdown in different organizations from root perspective.

1) The US EDU subnet issues 75.5% of all PTR queries.
However, the same US EDU subnet almost exclusively is-
sues A queries (98.7%) to root servers.

2) The EU ISP A subnet issues almost exclusively A queries
(97.1%). The same EU ISP A subnet issues almost only A
queries (95.1%) to root servers as well.

C. DNS Query Success Rates

Next, we study the question of how many modern DNS
queries return successful answers. We reuse the categorization
method adopted by Jung et al. in [25]. In particular, DNS
queries with successful answers are those having “NOERROR”
as the return code in the response. We further divide the re-
maining queries into two categories: queries without response,
and queries returning negative answers. Our definition of neg-
ative answer broadly includes all responses whose return code
is not “NOERROR.”
From the local perspective, the aggregated ratios of DNS

queries with successful answers, negative answers, and no an-
swers are 66.9%, 18.0%, and 15.1%, respectively. The overall
ratios are similar to the result from 10 years ago, when Jung

TABLE IV
FOUR QUERY TYPES CAUSING THE LARGEST NUMBER OF NEGATIVE ANSWERS

FROM THE ROOT AND LOCAL PERSPECTIVE, RESPECTIVELY

et al. reported that the percentages of answers with successful,
negative answer, and unanswered queries were 64.3%, 11.1%,
and 23.5%, respectively, in their MIT trace [25]. This suggests
that many of the contributors to DNS queries with negative an-
swers and no answers persist from a decade ago. From the root
perspective, the ratio of unanswered query is 0, meaning that
every query issued to the root servers is answered. It implies
that root servers were always available during the measurement
period. However, the percentage of successful answers returned
by root servers, (i.e., referrals to nameservers that should know
the queried hostnames) is significantly lower than that of other
servers. Negative answers are returned by 54.0% of the queries
issued to root servers. In comparison, in 2000 only about 2%
of lookups to root return negative answers [25]. The sharply
increased percentage of query with negative response at root
servers may result from the high ratio of invalid traffic reaching
them, as reported by multiple previous measurement studies at
root servers [16], [17]. We further investigate the cause of failed
query in Section III-D.

D. Causes of Queries With Negative Answers

We first identify which query types cause the most negative
answers. Table IV shows the top four types with their respec-
tive percentages. We find that A queries cause the vast majority
of negative answers, in viewing from both the root and the local
perspective. In comparison, in 2000 the dominant query type re-
sulting in negative answers was the PTR query type [25]. Due to
the shrinking percentage of PTR queries in our traffic, A queries
have now become the dominant contributor to negative query
responses. At the root servers, negative answers caused by PTR
queries and DNSBL are much less common when compared to
the local perspective.
Different query types also have differing ratios of negative

answers. The ratio of DNSBL query with negative answers to
the total number of DNSBL queries is 73.9%, which is signif-
icantly higher than any other query types due to the nature of
blacklist lookup: Most lookups do not hit the blacklist, in which
case an “NXDomain” response is returned. We further analyze
DNSBL in Section III-D.5. Among the other three types, the
ratio of PTR query with negative answers to the total number
of PTR queries is 46.5%, which is higher than corresponding
ratios for the A (14.8%) and AAAA (6.5%) query types.
Independent from query types, prior research has iden-

tified problematic query names that evoke negative an-
swers [16], [17], [25], [48], including invalid TLDs, A-for-A,
nonprintable characters, and private IP address in “PTR” query.
We investigate them in detail in Sections III-D.1–III-D.4 and
present their respective percentage in Table V. Note that the
columns are not mutually exclusive.
1) Invalid TLD: Invalid TLD denotes the case when the

queried hostname does not have a valid TLD. This may be



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE V
PERCENTAGE OF INVALID TLD, A-FOR-A, PRIVATE IP IN PTR QUERY, AND
NONPRINTABLE CHARACTERS FROM THE ROOT AND LOCAL PERSPECTIVE,

RESPECTIVELY

caused by either user typos or client-side application imple-
mentation bugs. Because the queried names do not exist, such
queries will result in NXDomain as the response. Table V
presents that 1.2% of the traffic from the local perspective
contain an invalid TLD. However, 53.5% of the queries seen by
root servers contain invalid TLDs. This observation, although
highly skewed, seems reasonable because queries with invalid
TLDs terminate the recursive resolution process at root servers,
in the absence of valid TLD servers. Recall that from the
root perspective, the total percentage of queries with negative
answers is 54.0% (Section III-C). It means that invalid TLD
has become the primary contributor to negative answers at root
servers.
Multiple prior studies have investigated the prevalence of in-

valid TLD domains at root servers [16], [17], [48]. The percent-
ages of invalid TLD domains reported in 2001, 2003, and 2008
were 20%, 19.53%, and 22.0%, respectively, which is stable.
Surprisingly, it has sharply increased to 53.5% in 2012, from
the perspective of our dataset. In addition, the resolvers issuing
invalid TLD queries were widespread in all the major organi-
zations that we monitor. Note that the above comparison only
applies to root servers. The percentage of invalid TLD is low
from the local perspective.
We summarize the most common invalid TLDs in Table VI.

For each TLD, the table shows its count in million as well
as its percentage among all invalid TLDs. We observe that a
large number of invalid domains do not contain any dot. We
put such domains in a special “no_dot” group, which is the
second most popular form of invalid TLDs. Together with
“local” and “belkin,” these three invalid TLDs are far more
popular than the other ones. “.local” is a pseudo-TLD that
a computer running Mac OS X uses to identify itself if it is
not assigned a domain name. Similarly, queries with “.lan,”
“.home,” “.localdomain,” “.loc,” and “.internal” are likely used
by other programs under certain circumstances. Nevertheless,
these queries are meant to stay local and should not leak out
to the Internet. “Belkin” is a famous brand that manufactures
electronic devices. We suspect that queries with “.belkin” are
generated by the device under the same brand due to miscon-
figuration. These are likely good candidates to be suppressed
by local implementations. Although we have identified several
likely causes of frequently appearing invalid TLDs, user typos
can also result in invalid TLDs. In our data, the count of invalid
TLDs exhibit a long-tailed distribution. More than 500 000
other invalid TLDs are used much less frequently.
2) A-for-A Query: A-for-A query denotes the case that the

queried “hostname” is already an IP address. Because an IP ad-
dress is also represented as a dot-separated string, the IP ad-
dress A.B.C.D will be interpreted as having the TLD “D.” Thus,
A-for-A queries are a special case of invalid TLD queries.

TABLE VI
LIST OF 10 MOST FREQUENTLY QUERIED INVALID TLDS WITH COUNTS IN

MILLIONS AND PERCENTAGE

In comparison to multiple prior works [16], [17], [48], we ob-
serve an interesting trend. The percentages of A-for-A seen by
root servers reported in 2001, 2003, and 2008 was 12%–18%,
7.03%, and 2.7%, respectively. The decreasing trend continues
in our data collected in 2012, where A-for-A only contributes
0.4% of the traffic. It indicates that most buggy implementations
that caused this problem have been fixed. From the local per-
spective, the percentage of A-for-A is also negligible % .
3) Private IP Address in PTR: RFC 1918 defines several

networks that can be used internally but cannot be routed on
the Internet: 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. In
theory, PTR queries to these IP addresses should be handled
by the DNS administrators locally without leaking to the global
Internet.
However, this is not the case in the real-world deployment.

Previous studies revealed that at root servers, 7% and 1.61% of
the queries are PTR queries with private IP addresses in a 2001
trace [16] and a 2002 trace [48], respectively. In our 2012 trace,
only 0.1% of the queries issued to root servers have private IP
addresses. This decreasing trend shows that more DNS admin-
istrators handle PTR queries with private IP addresses properly
now. Viewing from the local perspective, 0.8% of the queries
are PTR queries with private IP address.
4) Nonprintable Characters in Query Name: According to

RFC 1035, domain names should only contain alphanumeric
characters and hyphens, separated by dots. We follow the name
in [17], [48] and refer to characters outside this scope as non-
printable characters. From the root perspective, 3.2% of the
query names contain nonprintable characters. In comparison,
this number in 2002 [48] and 2008 [17] is 1.94% and 0.1%,
respectively.
Viewing from the local perspective, 0.2% of the queries con-

tain nonprintable characters, and 0.9% of the failed queries con-
tain nonprintable characters.
5) DNS Blacklists: DNS blacklist (DNSBL) is a popular

method used by site administrators to vet domains for spam,
malware, etc. Although DNSBL utilizes the DNS protocol, it
does not translate between hostnames and IP addresses. Rather,
site administrators use it to determine whether the target host-
name is blacklisted by crafting the target hostname into a spe-
cial URL under the blacklist provider’s domain and issuing an
A query. When the query reaches the blacklist provider’s au-
thoritative nameserver, the nameserver will send a response ac-
cording to its own format. In popular DNSBL designs, the return
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TABLE VII
FOUR TYPES WITH LARGEST NUMBER OF UNANSWERED QUERIES. THE FIRST
ROW SHOWS THE PERCENTAGE IN UNANSWERED QUERIES. THE SECOND
ROW SHOWS THE PERCENTAGE OF UNANSWERED QUERY WITHIN THE

CORRESPONDING TYPE

code will be NXDomain (domain not exist) if the target host-
name does not hit the blacklist. In particular, 73.9% of DNSBL
queries return NXDomains, which gives DNSBL queries sig-
nificantly higher failure odds than other query types.
The usage of DNS blacklists has been reported in [24]. DNS

blacklists lookups accounted for 0.4% and 14% of lookups
in their December 2000 trace and February 2004 trace, re-
spectively. In 2012, DNSBL queries account for 1.7% of the
lookups. The percentage is lower than year 2004, but higher
than year 2000.

E. Unanswered Queries

As described in Section III-C, root servers do not incur any
unanswered queries from our networks. Every query issued to
the root servers is answered. All the unanswered queries are
caused by other servers. In addition, the ratio of unanswered
queries differs drastically across different organizations.
We further measure the correlation between unanswered

query with different query types and show the results in
Table VII. Due to the dominance of the A query, it also rep-
resents the largest portion of unanswered queries (42.3%).
However, the probability of an A query without an answer is
the lowest among the four listed types (9.5%). Interestingly,
87.6% of SOA queries do not get an answer.

F. TTL Distribution

The TTL field in the DNS responses informs the resolver how
long it should cache the results. Fig. 5 shows the cumulative
distribution of TTL values of three distinct record types in our
DNS data: A, AAAA, and NS. Root servers very rarely reply
with A or AAAA records in answer section, so we only plot
NS record TTLs returned by root servers. In particular, A and
AAAA records provide a direct mapping from a hostname to
an IPv4 address and an IPv6 address, respectively, and the NS
record provides a reference to the authoritative nameserver that
should know the queried hostname when the nameserver being
queried does not know the IP address of the queried hostname.
We observe that NS records have much larger TTL values than
A and AAAA records. This result is consistent with the result re-
ported by Jung et al. from 10 years ago [25], except that AAAA
record did not exist back then. Given that AAAA and A records
play a similar role, which is to translate domain names to IP ad-
dresses, it is reasonable to observe that AAAA records and A
records share similar TTL distributions. On the other hand, the
longer TTL value of NS records is the key reason that keeps the
load of DNS servers residing higher in the hierarchy manage-
able. Only 1.8% of the queries are issued to root servers in our
trace because, in most cases, the client-side nameserver knows
the authoritative nameserver using the cached NS records. If NS
records have a much shorter TTL, the client-side nameserver

Fig. 5. Cumulative distribution of TTLs of NS record returned by root servers
and three record types—A, AAAA, and NS—returned by other servers.

will need to query the root servers much more frequently. We
also observe that the TTL of NS records returned by root servers
is extremely regular: Almost all records have TTL of 2 days.
We further compare the TTL of A and NS records in 2012

and that in 2000 as reported in [25]. The TTL of NS records
roughly remains stable. However, the TTL of A records in 2012
is much smaller. In 2000, only about 20% of A records have
TTL less than 1 h. About 20% of A records have TTL larger
than 1 day. In 2012, about 90% of A records have TTL less than
1 h, and almost 0% of A records have TTL larger than 1 day.
This difference shows the wide deployment of CDN and other
services that leverage short TTLs, which inevitably poses more
pressure on the DNS infrastructure.

G. DNS Hosting

In DNS, a domain has one or more NS records indicating its
delegation names, i.e., the names of its authoritative servers. A
common practice for domain owners is to outsource name res-
olution to DNS hosting service providers such as Godaddy by
pointing the NS records to names under corresponding hosting
domains (e.g., Godaddy uses domaincontrol.com as its
hosting domain).
In our dataset, we observe nearly 35.3 million distinct SLDs.

Only a small fraction (2.1%) of these domains has in-domain
NS names. The rest either host on different yet self-operated
hosting domains, or most likely outsource name resolution to
DNS hosting service providers. Most domains have NS names
under 1 (85.0%) or 2 (10.2%) hosting domains. The market
share of hosting domains also follows a heavy-tailed distribu-
tion; the top 100 hosting domains serve name resolution for
50.0% of the domains. Table VIII lists 10 of the most popular
hosting domains observed in our dataset.

H. DNSSEC Deployment

The original design of DNS did not include data integrity
protection. Attackers can fool end-users by forging DNS re-
sponses in a number of ways [13], [26]. The Domain Name
System Security Extensions (DNSSEC) attempts to integrate
Public Key Infrastructure (PKI) into DNS by assigning hier-
archically delegated public keys to DNS domains and using
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TABLE VIII
LIST OF 10 MOST POPULAR DNS HOSTING DOMAINS

digital signatures to provide data integrity and origin authen-
tication. DNSSEC is backwards-compatible with the existing
DNS. It is implemented by adding more DNS data types such as
DNSKEY, DS, RRSIG, NSEC, and NSEC3 and a few flag bits
in DNS packets [10]–[12]. The Internet coordination organiza-
tion ICANN is now promoting the DNSSEC deployment. As of
the last day of our dataset, 107 out of 317 TLDs have deployed
DNSSEC [23].
In our dataset, we observe 151 179 domains with

DNSSEC-related records, including 107 TLDs (all signed
TLDs at that time), 135 924 SLDs, and 15 148 lower-level
domains. In comparing with measurements by Osterweil et al.
from 2005 to 2008 [39], who observed 871 signed “production”
domains, the number of signed domains has increased by nearly
170 times.1 The enormous increase demonstrates great progress
of DNSSEC deployment in recent years.
Fig. 6 breaks down the number of signed domains in TLDs,

which again shows a highly skewed distribution. The top 10
TLDs in Fig. 6 contribute 92.1% of all signed domains in our
dataset. Some country code TLDs (notably .nl, .cz, .se,
and .br) contribute significantly more signed domains than
others, demonstrating their extraordinary efforts in deploying
DNSSEC.

I. IPv6 Deployment

Besides DNSSEC, IPv6 is another major change currently
happening in DNS. We have seen in Section III-A that the
volume of IPv6 DNS traffic and the number of IPv6 resolvers
are quite small. However, the deployment of IPv6 could still be
considered progressful from the server-side perspective. From
our dataset, we observe nearly a quarter of (24.1%, 8.5 million
out of 35.3 million) of SLDs having IPv6 authoritative servers,
an astonishing percentage compared to the numbers reported
in Section III-A. This is mainly because popular DNS hosting
providers are positive with adopting IPv6. Twenty-eight out of
the top 100 hosting domains in our dataset have IPv6 author-
itative servers, which make their customers resolvable from
IPv6. The high percentage of IPv6 enabled domains suggests
that ISPs and other DNS resolution service providers such as
GoogleDNS and OpenDNS should support IPv6 in the iterative
process of DNS resolution.

1Osterweil et al. empirically excluded signed domains that were likely to be
deployed only for testing. We do not apply such division as only few domains
are seemingly testing domains from our empirical inspection.

Fig. 6. Number of signed domains breakdown in TLDs.

Fig. 7. Repeated query ratio and average number of queries per resolver for
major organizations.

J. Repeated DNS Queries

Multiple previous studies of root DNS servers have revealed
that over 56%–85% of queries observed at root servers are re-
peated [17], [48]. These studies further identified that miscon-
figured or abusive clients mainly caused these astonishingly
high numbers. Ideally, a “normal” resolver should not issue
many, if any, repeated queries to authoritative servers because of
the effect of caching. However, our dataset shows that this is not
the case—a considerable portion of DNS queries from “normal”
resolvers could still be considered repeated. In this section, we
analyze the prevalence and explore potential reasons behind the
repeated query behavior of resolvers in more detail.
1) Simulation Methodology: For our analysis, we simulate

an infinite resolver cache while replaying the captured DNS
traffic. If the query returns an A, AAAA, or PTR record, the
resolver knows the IP address of the queried domain or the do-
main for the queried IP address. It should not issue a query for
the same domain or IP address before the TTL expires. If it is-
sues such a query, we count it as a repeated query.
We find that from the perspective of our resolvers, the per-

centage of repeated queries that is issued to the root servers and
other authoritative servers is 12.0% and 8.8%, respectively. The
ratio of repeated query varies significantly across different orga-
nizations. We plot the hourly repeated query ratio in addition to
the overall query volume for major organizations in Fig. 7. Al-
though some organizational subnets have a repeated query rate
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Fig. 8. Hourly repeated query ratio and overall DNS query volume for typical resolvers. (a) US ISP A (subnet 3). (b) EU EDU (subnet 1). (c) Public DNS Service.

of 20% or higher, their traffic volume is low. The repeated query
rates for the largest subnets lie between 10% and 15%.
2) Hourly Plot of Repeated Query Ratio: The three resolvers

shown in Fig. 8 exhibit very different characteristics. The uni-
versity resolver [Fig. 8(b)] has the highest repeated query rate.
Meanwhile, it also exhibits a strong positive correlation (p-value

) between the repeated query rate and the query volume
(i.e., the repeated query rate rises when the query volume rises).
In addition, its overall query volume shows a clear diurnal pat-
tern and weekly pattern. The traffic peaks appear during busi-
ness hours of each day. Much more DNS traffic occurs during
weekdays and less traffic during weekends.
The commercial ISP resolver [Fig. 8(a)] has a repeated query

rate that varies between 5% and 10% during most of the days.
The overall query traffic also exhibits a strong diurnal pattern,
i.e., the traffic volume rises during nighttime and falls during
daytime. It reflects the typical network usage of a residential net-
work. However, we do not observe strong weekly pattern. In ad-
dition, a strong positive correlation (p-value ) between
the overall query volume and the repeated query rate exists.
The public DNS resolver [Fig. 8(c)] has fluctuating repeated

query rate ranging from 5% to 15%. Because its users span dif-
ferent time zones, we naturally observe neither diurnal patterns
nor weekly patterns from its overall query volume. Although
hard to observe from the plot, statistical tests also indicate a
strong positive correlation (p-value ) between its overall
query volume and its repeated query rate.
While many resolvers exhibit strong positive correlation be-

tween the query volume and the repeated query rate, it is not al-
ways the case. The former suggests that cache eviction plays an
important role in the volume of repeated queries. The higher the
query volume is, the higher the repeated query rate will be. We
further observe that resolvers within a /24 subnet show high ho-
mogeneity (i.e., either all of them or none of them exhibit strong
correlation, with very few exceptions). We omit these graphs
due to space considerations. This reflects on the administrative
policies within /24 subnets, the choice and configuration of net-
work and DNS software.
3) Possible Causes: To further understand the cause of

these repeated queries, we perform additional analysis to
separate repeated queries that were issued in close proximity
(the remainder could be attributed to cache eviction). We find
that over 75% of repeated queries (across all resolvers) are
due to related queries issued in close temporal proximity, and

the remainder are likely due to cache evictions at the resolver.
We investigate two popular resolver implementations BIND
(9.9.2-P1) and Unbound (1.4.16), as well as the behaviors
of OpenDNS and GoogleDNS, from which we distill a few
possible implementation-related factors that cause repeated
queries in close temporal proximity.
• CNAME chain sanitization: When a response includes
multiple records forming a CNAME chain, both BIND and
Unbound issue extra queries to verify the trustworthiness
of the chain. This is an intentional security enhancement
to counter the Kaminsky attack [26], which could cause
repeated queries and increased response times. Nearly
20% of A and AAAA queries in our dataset were even-
tually responded to with CNAME answers, which makes
CNAME chain sanitization contribute to about 40% of all
repeated queries in our simulation.

• Concurrent overlapping queries: A resolver could issue
repeated queries if it receives two overlapping queries in
close proximity. Two queries are considered overlapping
if they belong to either of the two cases: 1) they request
identical name; or 2) some parts of their delegation chain
or CNAME chain are identical. If the identical segment is
missing in the cache, the resolver will send two identical
requests, which will be counted as repeated query. Imple-
menting birthday attack protection [47] can help mitigate
this effect. We observe that both BIND and Unbound have
implemented birthday attack protection, but interestingly
GoogleDNS and OpenDNS do not strictly suppress iden-
tical queries. When probing GoogleDNS and OpenDNS
with identical queries, we observed repeated queries from
same resolver instances (IP addresses), although the num-
bers of repeated queries are less than our identical probes.
One possible explanation is that Google and OpenDNS
implement birthday attack protection per thread, therefore
identical queries processed by mutiple threads on same in-
stance could still trigger repeated queries.

• Premature retransmissions: We found that Unbound takes
an arguably aggressive retransmission strategy, waiting for
only one round-trip time before it retransmits the request.
BIND is more conservative and has a minimum retrans-
mission timeout of 800 ms. In our local experiments, we
observed that Unbound issued several times more repeated
queries than did BIND due to its premature retransmission
timer.
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• Resolver quirks: Resolvers might also have some imple-
mentation quirks (or bugs) that could trigger repeated
queries in some cases. We have found that, in certain
cases, BIND will resolve expired NS names twice before
replying to client queries, resulting in repeated queries
and increased response times. Given the complexity of
the name resolution process, we suspect similar vagaries
could lurk in resolver implementations.

IV. MALWARE DOMAIN GROUP DETECTION

In this section, we present our approach to detect previously
unknown malicious domains by simply using temporal corre-
lation in DNS queries. The key intuition is that DNS queries
are not isolated from each other. For any DNS query, the un-
derlying process that generates it is likely to generate other re-
lated queries. For example, when a browser loads a Web page,
it starts by querying the page’s domain name, assuming it is not
cached already. After the browser starts to render the page, it
will generate additional DNS queries for other domain names
whose content is embedded or linked in this page. This applies
to malware as well. For example, drive-by exploits typically in-
volve a long redirection chain before the occurrence of an ex-
ploit. Malware frequently uses domain generation algorithms
(DGAs) as a rendezvous technique to search for command and
control updates. Hence, we propose to detect malicious domain
groups by using the temporal correlation among DNS queries,
given some well-known seed malicious domains (also known as
anchor points).
One of the key differentiators between our work and recent

malicious domain detection work using DNS traffic [7], [8], [15]
is the ability to detect malicious domains groups. We also only
need only a small number of malware domains as seeds in-
stead of a large training set. In addition, our intuition of DNS
query correlation is general, so that our approach can detect
different types of correlated domain groups, including but not
limited to phishing, spam and scam campaigns, DGA-gen-
erated domains, redirection links, and so on. The ability to
detect malicious domains in general also differentiates our
work from existing work targeting specific types of correlated
domains [9], [28], [43], [51].
Detecting correlated malicious domain groups using the

DNS traffic collected from recursive resolvers is a challenging
task. The difficulty rises from two major factors. First, the
DNS queries are quite noisy in the sense that we observe a
mixture of queries belonging to many different groups. We will
also frequently fail to observe some queries that should have
been in the group because of DNS caching. Second, the traffic
volume is high. With about 80 million DNS queries per hour,
conventional approaches that are able to discover correlated
groups like clustering will not scale.
In order to make the problem tractable, we introduce the no-

tion of “anchor malicious domains.” Instead of searching in the
entire DNS corpus, we only target domains that are correlated
with the anchor domains. Given one anchor domain, we dis-
cover a group of additional malicious domains that are related
with it. The processing of different anchor domains is mutu-
ally independent. This design benefits our detection approach

with high applicability. It can work as long as at least one an-
chor domain is available. Thus, the bar to apply our approach
is much lower than those systems that require a comprehensive
labeled training set. In addition, parallelizing our approach for
large-scale computation is straightforward.
In particular, we devise a multistep approach to discover

correlated domain groups for each anchor domain. We de-
scribe the steps in detail in Sections IV-A, IV-B.1, and IV-B.2,
respectively.

A. Coarse Identification of Related Domains

We represent the notion of correlation with co-appearance
(i.e., a domain is considered to be correlated with the anchor
domain if it is frequently queried together with the anchor from
the same recursive resolver). We set a time window threshold
to restrict the search scope. Given an anchor domain, we ex-

tract the domain segment with the anchor domain in the middle
according to the window size. All domains in the segment are
considered as related domain candidates.
We quantify how closely the candidate domain is related with

the anchor domain using two metrics derived from the idea of
TF-IDF [31], a metric used widely in information retrieval to
measure the importance of a term in a document, given a collec-
tion of documents. Let us consider the set of anchor domains to
be . Given a query domain , a segment corresponding to an
anchor domain (note that there can be multiple segments cor-
responding to an anchor domain), and a total set of segments
, the TF-IDF-based metric has two components: 1) the term
frequency , where is a function indicating how
many times the domain occurs in the segment ; and 2) the
inverse document frequency ,
which measures how rare the domain is across the set of seg-
ments by computing the ratio of the total number of segments
to the number of segments in which the domain occurs. The final
TF-IDF score is the product of and .
Note that if the candidate domain is popularly queried in the

DNS traffic, its value is expected to be large no matter
whether it is related with the anchor domain or not—this will
be counteracted by in the score, which down-weights pop-
ular domains. For the domains truly correlated with the anchor
domain, we expect both its and values to be large.
We set two thresholds— is the minimum value of , and

is the minimum value of . Given an anchor domain,
we extract all domain segments containing it, and then compute
the and values for all domains that appear in the seg-
ments—we keep the domains with both values passing the cor-
responding thresholds to get a coarse identification of the group
of domains related to the anchor domain.

B. Finer Identification of Related Domains

To get a more precise identification of domains related to the
anchor domains, we first cluster domains according to their pat-
tern of co-occurrence with the anchor domain.
1) Domain Clustering: Let us consider the set of domain

segments that have anchor domain at their center point (note
that there can be multiple such domain segments for any anchor
domain). Let denote the number of times occurs in
. Each domain in is represented as a Boolean vector
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of dimension , where is set to 1 if co-occurs
close (within a small window) to the th occurrence of the
anchor domain in , and 0 otherwise. We then cluster the
vectors corresponding to each domain in using XMeans [42]
clustering, with squared Euclidean distance as the clustering
distance metric. Note that XMeans is a partitional clustering
algorithm like KMeans, which additionally selects the number
of clusters automatically. In clustering models, it is possible
to increase the likelihood by adding parameters, but that may
overfit the data. We use XMeans with Bayesian Information
Criteria (BIC) as the model complexity cost, which gives a
penalty term proportional to the number of parameters in the
model—XMeans finds the number of clusters that trade off
the increased data likelihood with the increased penalty term.
Each cluster in the output of XMeans groups together domains
that share a common pattern of co-occurrence with (e.g., a
cluster may have domains that co-occur with only the first and
second occurrence of the anchor point , but not with other
occurrences of in ).
2) Domain Group Extraction: After clustering the domains

related to an anchor domain, we further process the domain seg-
ments surrounding the anchor domain. We break each domain
segment into multiple subsegments according to the cluster re-
sult, where each subsegment is created from the domains in a
particular cluster. Note that the subsegment size is smaller than
or equal to the cluster size because part of the cluster may not
appear in that particular segment.
We use two filters to further refine subsegments—the first

filter is based on domain frequency, while the second filter
is based on the size of the subsegment. Small subsegments

with infrequent domains are more likely to have benign domains
that pass the co-occurrence-based relatedness checks but actu-
ally share little commonality with the anchor domain.
The subsegments corresponding to the anchor domains form

the refined domain groups (i.e., related domains) for the anchor
domains—they are considered to be potentially malicious, and
hence prime candidates for further analysis.

C. Evaluation

We use one day’s worth of the DNS traffic to evaluate the
malicious domain group detection technique. The data were col-
lected on Dececember 16, 2012, and contain 1.82 billion DNS
query–response pairs.
1) Evaluation Methodology: The module needs known ma-

licious domains as anchors as input. We visit three blacklists:
Malware Domain Block List [1], Malware Domain List [30],
and Phishtank [3]. We choose these three blacklists instead of
other popular ones because they provide their blacklisted do-
main database including timestamp for download. We select all
domains that are blacklisted on the same days of the data used
for the experiment as anchor domains.We obtain 129 anchor do-
mains using this method. Note that although we use these three
blacklists to obtain the anchor malicious domains, our approach
is not limited to these three blacklists. Rather, this method can
be used as long as some initial anchor domains are available.
Next, we need to label the detected domains as either mali-

cious or legitimate to measure the detection accuracy. Labeling
all domains in our dataset is impractical due to the huge

TABLE IX
NUMBER OF IDENTIFIED DOMAINS AFTER THE COARSE RELATED DOMAIN
IDENTIFICATION STEP, AND THE NUMBER OF LABELED MALICIOUS AND

BENIGN DOMAINS

volume. Hence, we only label the domains that are identified
in the coarse identification of related domains (according to
Section IV-A).
We conduct a two-step process to label the domains as

follows.
1) Blacklist matching:Wematch the detected domains against
five popular external blacklists, including Malware Do-
main Block List [1], Malware Domain List [30], Phish-
tank [3], WOT (Web of Trust) [4], and McAfee SiteAd-
visor [2]. If a domain is listed as malicious by any one
blacklist, we will confirm it as malicious.

2) IP address comparison: If a domain resolved to the same IP
address with a known malicious domain confirmed in the
first two steps, we also confirm it as malicious. Because
DNS name resolutions may contain multiple steps (e.g., a
CNAME record that reveals the canonical name followed
by an A record that translates into IP addresses), we build
a directed graph to represent the name resolution results
for all the detected domains. Next, we use standard graph
traversal to find all detected domains that resolve to the
same IP address with known malicious domains.

We label a domain as malicious if any of the above steps con-
firms it. Any domain that cannot be confirmed is conservatively
labeled as benign, although some of them look very suspicious.
Our data labeling approach is strict. Hence, our evaluation may
overestimate the false positive rate. (Wemake this design choice
because the damage of false alarms on legitimate domains is
greater than missing malicious domains.)
Table IX presents the result of Step 1 (coarse related domain

identification), as well as the number of malicious domains that
we can label based on the identified domains. We observe that,
first, domain co-appearance is an effective way to discover more
malicious domains given anchor domains. On average, each an-
chor domain is expanded to 128 malicious domains. Second,
the coarse identification includes a large number of benign do-
mains as well. This is expected because the DNS traffic is noisy
in nature. However, this does notmean that our approach incurs
8772 false positive domains. This is only the intermediate re-
sult after the first step described in Section IV-A. Our approach
contains two more steps to further refine the detection result.
2) Detection Accuracy: In order to understand how the

values of different thresholds affect the detection accuracy, we
apply Step 2 (fine-grained identification of related domains),
systematically tune the thresholds, measure the system perfor-
mance with different values, and plot the result in Fig. 9. In
our experiment, we find that setting threshold , and

produces significantly better results than higher
values, so we only show the varying detection accuracy when
these two thresholds are fixed at such values. Due to space
constraint, we do not show the other cases. We vary from
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Fig. 9. Number of TPs and FPs in the detection result, varying the minimum
domain frequency and minimum segment size thresholds.

0 to 40, and from 0 to 40. We observe a steep drop in
true positive number when increases from 0 to 40. In the
mean time, the number of false positive domains also decreases
quickly. We observe a similar trend when we vary the
threshold value. A larger threshold causes both the number of
true positives and the number of false positives to decrease.
As detection modules are typically tuned toward a low false
positive rate, we find and to be a good
threshold choice. With this setting, this module detects 6890
previously unknown malicious domains (true positives), with
258 false positive domains. The detection precision achieves
96.4%. On average, each anchor domain is expanded to
53 previously unknown malicious domains. During real-world
deployment, the operator who runs the malware domain group
generation system will determine whether he prefers a tighter
or a looser threshold. A tight threshold produces fewer false
positives, but also discovers fewer malicious domains. A loose
threshold does the opposite.
3) Detection Speed: The most time-consuming step in the

malicious domain group detection process is to isolate the do-
main queries that are related with known anchor domains from
the raw DNS data, so that we do not need to process other un-
related domain queries. In our experiment on the December 16,
2012, data, this preprocessing takes 40 689 s. After the prepro-
cessing, the dataset that needs to be processed becomes much
smaller than the raw DNS data, so subsequent steps run much
faster. In particular, the coarse related group identification step
takes 224.5 s. The domain clustering step takes 345.7 s. The do-
main group extraction step takes 266.9 s.
4) Comparison to Blacklists: We compare our approach to

the five blacklists that we used in Section IV-C.1 to evaluate how
much faster our approach can detect malicious domains. Since
Web of Trust (WOT) [4] and McAfee SiteAdvisor [2] do not
list the time when a domain is blacklisted, this experiment re-
quires to repeatedly check detected domains with the blacklists
to obtain the approximate blacklisted time. Hence, we repeat
the detection process on January 20, 2013, data and compare
the detection result against blacklists. The result is that 63.6%
of the detected malicious domains are blacklisted on or before
January 22, 2013. We keep monitoring the blacklists for an ad-
ditional week, and find that 7.0% more detected domains are

blacklisted. The remaining 29.4% detected domains are never
blacklisted, but are confirmed as malicious by IP address com-
parison. The results demonstrate that our approach can detect
malicious domains significantly faster than existing blacklists.

V. RELATED WORK

DNS Measurement Studies: Many prior studies have mea-
sured the performance of the DNS infrastructure. Multiple mea-
surement studies conducted at root servers reported that a large
percentage of traffic at root servers is invalid [5], [16], [17], [48].
In particular, Brownlee et al. discovered that 60%–85% of
queries to the F-root server are repeated [16]. Castro et al. ana-
lyzed traffic collected from multiple root servers and reported
that 98% of the traffic is invalid [17]. Castro et al. confirmed in
a later study that a low fraction of busy clients (0.55%) generate
the most invalid traffic at root servers [5]. We cross-compare
some of these same results from the perspective of a globally
distributed resolver set to assess the persistence of such prob-
lems. Our vantage point provides a different perspective and
greater opportunity for understanding the root cause of certain
phenomena.
Jung et al. analyzed SMTP traffic with DNS blacklist

lookups [24]. In this work, we compare the DNS blacklist
usage in 2012 to their reported findings. Ager et al. used active
probing techniques to compare local DNS resolvers with public
DNS services like GoogleDNS and OpenDNS in terms of
latency, returned address, and so on, by actively issuing DNS
queries from more than 50 commercial ISPs [6]. Otto et al.
studied the impact of using public DNS resolvers instead
of local resolvers on the network latency of CDN content
fetching [40]. Liang et al. measured and compared the latency
of root and TLD servers from various vantage points [29]. Our
measurement study has a different goal from theirs. In partic-
ular, we study the performance of recursive DNS resolvers.
We do not cover the client-perceived DNS performance in our
study.
DNS Performance Studies: Jung et al. characterized the

DNS traffic obtained from two university sniffers and evaluated
the effect of different TTL values with trace driven simula-
tions [25]. Pang et al. measured DNS server responsiveness
from the vantage points inside a large content distribution net-
work [41], finding that a significant fraction of LDNS resolvers
do not honor TTLs. Wessels et al. measured how the cache
policy of different DNS software affects the number of DNS
queries by trace driven simulations [49]. Bhatti et al. conducted
experiments to reduce the TTL of A records on university DNS
resolvers and found a low increase in DNS traffic [14]. While
the focus of this paper is on the broad high-level characteristics
of DNS data such as the overall distribution of query types
and failures, prevalence of repeated queries, etc., revisiting the
implications of caching and DNS performance in greater depth
in the context of the SIE dataset is future work.
DNS Malware Studies: Researchers have recently pro-

posed using DNS traffic statistics to identify malicious
domains [7], [8], [15]. Notos [7] and EXPOSURE [15] build
models of known legitimate domains and malicious domains
and use these models to compute a reputation score for a new
domain that indicates whether the domain is malicious or
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TABLE X
SUMMARY OF COMPARISONS TO PRIOR MEASUREMENT STUDIES

legitimate. Their objective is to compute reputation scores for
domains by using a large set of features, whereas we try to
extract malware domain groups by just using the temporal fea-
tures. Kopis [8] aims to detect malware domains by monitoring
network traffic at the “upper-levels” of the DNS hierarchy.
Our approach is fundamentally different from Kopis in terms
of the vantage point (monitoring at the TLD as opposed to the
RDNS servers), features in use, and operational requirements.
Konte et al. use active techniques to identify malicious fast-flux
DNS domains from spam data [27]. Rajab et al. actively probed
open DNS caches to test the prevalence of known malicious do-
mains [44]. In contrast, we employ passive analysis on domain
queries at resolvers. Hao et al. examine TLD servers to cluster
newly registered domains based on registration information
and lookups [21]. In [50], Yadav et al. proposed several statis-
tical metrics to identify randomly generated domain names of
botnets, and subsequently they improved on their techniques
by examining failed DNS queries [51], [52]. Perdisci et al. [43]
proposed a technique to detect malicious flux service networks
through passive analysis of recursive DNS traces. Unlike our
approach that looks at the co-occurrence and sequence in
domain names, their approach is focused on fast-flux features,
where multiple IP addresses are multiplexed to a single domain
name using DNS responses with short TTLs. Sato et al. [45]
extended blacklists using the co-occurence relation between
DNS queries. We operate on a much more global and larger
dataset and our analysis is complicated by the fact that our
data stream occludes the client IP addresses, as we observe
aggregated data streams emanating from the resolver, which
necessitates more sophisticated analysis.

VI. CONCLUSION

In this paper, we conduct a comprehensive measurement
study with more than 26 billion DNS query–response pairs
collected from 600 global DNS resolvers. Besides reaffirming
some findings in published work, our results reveal some sig-
nificant differences. We witness the demise of A-for-A queries
and a significant rise in AAAA queries. We also find that
queries for invalid TLDs are responsible for more than 99%
of queries with negative answer observed at root servers and
that TTLs of A records become much smaller than a decade
ago. In Table X, we summarize comparisons made in this paper
with five prior studies and highlight our results. Note that this

table only includes a subset of our measurement results that are
directly comparable to results in prior work.
Our findings can help implementation, deployment, and

configuration of DNS software, Web sites, and other applica-
tions. First, because of the increase of AAAA queries for IPv6
addresses, Web sites should take IPv6 support into account.
DNS providers and ISPs should also consider to support IPv6
for DNS resolution because of the high percentage of IPv6
resolvable domains. The high failure ratio of PTR queries
implies that some DNS administrators pay less attention to
configuring reverse mappings from IP addresses to domain
names. The high rate of invalid TLD queries to root servers
suggests that client-side implementations should differentiate
local names (used only in Intranets) with global domain names.
Our analysis of repeated queries reveals that complementary
security enhancements of resolvers could have nonnegligible
effects on DNS resolution, suggesting that more evaluations
should be conducted before the wide adoption of such features.
Our analysis also reveals several possible optimization to
suppress unnecessary queries.
Furthermore, we propose a novel approach that isolates

malicious domain groups from temporal correlation in DNS
queries, using a few known malicious domains as anchors.
On average, this approach achieves more than 96% detection
accuracy while producing more than 50 previously unknown
malicious domains for every known malicious anchor domain.
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