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Abstract—The OpenFlow paradigm embraces third-party
development efforts, and therefore suffers from potential attacks
that usurp the excessive privileges of control plane applications
(apps). Such privilege abuse could lead to various attacks
impacting the entire administrative domain. In this paper, we
present SDNShield, a permission control system that helps
network administrators to express and enforce only the minimum
required privileges to individual controller apps. SDNShield
achieves this goal through (i) fine-grained SDN permission
abstractions that allow accurate representation of app behavior
boundary, (ii) automatic security policy reconciliation that
incorporates security policies specified by administrators into the
requested app permissions, and (iii) a lightweight thread-based
controller architecture for controller/app isolation and reliable
permission enforcement. Through prototype implementation,
we verify its effectiveness against proof-of-concept attacks.
Performance evaluation shows that SDNShield introduces
negligible runtime overhead.

I. INTRODUCTION

The control plane is one of the most critical yet vulnerable
part of a network. Traditionally people have to put absolute
trust in the reliability of the control software, which from time
to time allows attackers to exploit network devices [1], [2], [3],
[4]. Today, with software-defined networks (SDN), the control
software becomes even more vulnerable. The mainstream SDN
platforms [5], [6] foster open and prosperous markets for
control-plane software [7], who provide a great range of apps
for network management. However, obtained from various
sources, the apps come with different quality guarantees and
thus may contain flaws, vulnerabilities and even malicious
logic. As a result, the security concern is ranked the top issue
that prevent enterprise and data center networks from adopting
SDN [8].

A natural solution to the over-privilege problem is access
control. Typically, cryptographic authentication is employed
by state-of-the-art SDN security solution in order to prevent
unauthorized accesses. In addition to authentication, some
access control enforcement mechanisms based on Android-like
permissions [9], [10], [11], [12], [13] are proposed. However,
although these mechanisms broadly extend the policy
enforcement frontier, it remains challenging both to specify
appropriate permissions and to enforce permissions gracefully.
Furthermore, most current SDN controllers implement a
monolithic architecture that allows app code directly executed
in the controller runtime. Although efficient, such architecture
provides merely no security isolation between controller and
apps. Rosemary [10] explores to isolate apps with OS process
containment. However, it still remains unexplored how to
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Fig. 1: Existing SDN access control systems.

enable the app developers and the administrators to cooperate
on composing secure permission policies.

Therefore, we envision the next generation SDN permission
system with a fine-grained policy structure, a generic
reconciliation model and a secure while efficient isolation
architecture, as described in the three key features below.

1) App developers can express fine-grained permission
requests. API-grained permissions are inadequate to
specify minimum privileges for SDN apps. We need a
flexible set of permission abstractions that allow fine-
grained representation of app behavior boundary.

2) Administrators can easily refine app permissions with
higher-level security policies. Fine-grained permissions
bring the challenge in permission management. To reduce
management burden, we need a reconciliation process that
refines and customizes the requested app permissions with
the security policies specified by the administrators.

3) The controller needs a secure while efficient isolation
architecture to enforce permissions. Instead of a
monolithic controller, we need to enforce isolation
between controller and apps to ensure reliable permission
enforcement and robustness. Such an isolation architecture
should provide security properties while being compatible
with existing apps and imposing minimal runtime overhead.

We present SDNShield, the first permission control
system for SDN apps that achieves all the above features.
An overview of the SDNShield architecture is shown in
Figure 2. The key challenges are as follows. The behavior
space of controller apps has inherent complicated permission
structure and thus 1) clean permission abstractions are
needed to capture such complexity. 2) Policy reconciliation
needs language support, for which the permission language
and security policy language need to be co-designed. 3)
Enforcement overhead has to be minimal, since permission
enforcement is on the critical path of the control plane.

We made the following contributions.

• We design fine-grained permission abstractions as a
domain-specific language (§IV). The abstractions feature
a two-level structure: the coarse-grained permission token
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Fig. 2: SDNShield overview.

and the fine-grained permission filter. Such structure allow
the flexible expression of permissions with structured
parameters, such as abstract topology, while hides the
complexity of the controller specifics.

• We propose the architecture to conduct reconciliation on
requested permissions and security policies (§V). We define
permission boundary and mutual exclusion as two basic
forms of security policies, which characterize a variety of
security goals.

• We design a novel controller isolation architecture that
features a thread-based lightweight isolation between con-
troller and apps (§VI). We choose to isolate app executions
with Java threads by leveraging and extending Java build-in
security sandbox, which provides comprehensive reference
monitoring, incurs negligible overhead and requires no
modification on legacy apps.

We implement a controller-independent prototype of
SDNShield as a standalone permission engine and a Java-
based controller isolation framework. With some controller
specific extensions, we demonstrate its effectiveness with
OpenDaylight controller platform [5], one of the most popular
SDN controller platforms, as well as Floodlight OpenFlow
controller [14].

We present two use case scenarios in §VII, describe
our prototype in §VIII and evaluation in §IX. The results
demonstrate that SDNShield introduces negligible latency
overhead and imposes minimal impact on throughput of the
controller runtime.

Although our implementation currently works with Java-
based SDN controllers, the design of SDNShield universally
applies to other SDN controller platforms. Furthermore,
we also show that, with some extensions, SDNShield can
be adapted to the emerging controllers that provide rich
northbound interfaces (§VI-C).

The design of SDNShield is inspired by the large body of
studies and practices of general access control systems (§X),
especially on mobile OS and web browsers whose environment
resembles that on a SDN controller. However, the unique
design constraints in SDN environment, such as the resource
structure, the threat models and the permission management

challenges, lead us to the design choices and the technical
contributions of SDNShield.

II. THREAT MODEL

The novel threats on SDN apps stem from the fundamental
challenge of verifying the trustworthiness of a program
module [15]. Because apps directly interact with critical
resources, people expect apps to have a high level of security
as the controller. However, although the mainstream controller
platforms are usually well verified, the quality and goodwill
of all apps in the market are very challenging to guarantee
with the state-of-the-art program analysis techniques, thus the
existence of vulnerabilities and exploits is generally inevitable.
Generally, either buggy or malicious apps can expose the
controller platform to exploits. A number of traditional attack
patterns, such as web-based attacks to the management
interface or host-based attacks on the app host machine, can
potentially give attackers the arbitrary code execution capacity
on behalf of the app.

As long as an app is compromised, the attacker will have
unfettered control of the controller, the OF switches in the
network domain as well as the resources provided by the host
operating system. Thus, the attacker can launch a full range of
potential attacks. Among them, we are particularly interested
in the following four classes of attacks as shown in Figure 3,
for which existing SDN security approaches do not deliver
good protection.

Class 1: Intrusion to data plane: With the capacity
of packet-in/packet-out messages, the compromised app can
sniff/inject arbitrary data-plane packets in realtime, which
enables attackers to directly manipulate the traffic.

Class 2: Leakage of sensitive information: A
compromised app can leak out obtained information via host
network or other side channels on the host machine where the
controller resides. This loophole breaches the confidentiality
of the network configuration and traffic statistics, and can
enable more advanced attacks by allowing attackers to conduct
analysis on the flow tables, the control software and the models
of OF switches.

Class 3: Manipulation of rules: A compromised
app can manipulate forwarding behavior stealthily with the
unfettered capacity to modify OF rules, resulting in various
active network attacks, such as the man-in-the-middle attack
and blackhole attack. Such capacity can be combined with
network-based attacks to generate more advanced exploits.

Class 4: Attacking other apps: A compromised
app can deactivate other apps, especially security apps, by
overriding or bypassing their rules. Attackers can bypass
the ACL rules set by a security app through dynamic-flow
tunneling [16], which evades existing security policies by
establishing a tunnel and modifying the packet header at both
ends of the tunnel.

Table I compares the attack protection coverage of existing
SDN security approaches and SDNShield. Among them, traffic
isolation prevents the attacks launched from one network
slice to attack another slice, but delivers no security to apps
deployed on one network slice that collaboratively process
the same set of traffic. Network state analysis, on the other
hand, can detect global invariant violations (e.g., forwarding
black-hole) in forwarding rules, but is unable to detect the
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Class 1 Class 2 Class 3 Class 4

Traffic isolation CT CT CT CT

NW state analysis ✗ ✗ ✓ ✓

SDNShield ✓ ✓ ✓ ✓

TABLE I: Comparison of protection delivered by SDN security
approaches. CT: only protect against attacks across tenants.

other malicious behavior, such as traffic sniffing/injection and
information leakage.

In comparison, with proper permission settings, SDNShield
delivers good protection on all the four attack classes by
preventing apps from conducting security sensitive actions it
is not authorized to.

III. SDNSHIELD OVERVIEW

SDNShield is a general SDN permission system for
both app developers and the administrators that allows
easy policy composition for the administrators and reliable
policy enforcement on apps. We propose a configurable
permission and reconciliation system that allows administrators
to configure the app requested permissions with parameters
and make it possible to write apps that gracefully react
to the denied permissions. As depicted in Figure 2, the
process works as follows. 1) The app developer distributes app
release together with the permission manifest representing the
potentially needed permissions. 2) Before app deployment, the
administrator configures and customizes the app permissions
with the local security policies, which contains parameters and
constraints to the app permissions. 3) The reconciliation engine
then reconciles the permission manifests with the security
policies, and produces the final parameterized permissions to
be enforced. 4) When the app is running, the permission engine
mediates API calls and enforces the permissions. Utilities are
provided for app developers to check for permissions and
handle the permission denials before making an API call that
requires permissions. 1

SDNShield contains two major components, the permission
engine and reconciliation engine.

Permission engine. SDNShield permission engine com-
piles and enforces the permission policies written in SDNShield
permission language. When the app is loaded, the permission
engine compiles the permission manifest into the runtime

1From the lesson of Android market, the app may crash or not function in
the desired manner if the developer doesn’t proactively handle the cases that
requested permissions are denied.

checking code that is associated with every API call issued
from the app. During the lifetime of the app, the permission
engine keeps mediating all the API calls, making sure the
permission policies are consistently enforced.

In practice, the permission manifests provided by the app
developers are distributed along with app release packages,
since the app developers have the most complete knowledge
of the apps. A permission manifest can be automatically
generated from app source code with static/dynamic analysis
tools employing the techniques similar to Android permission
analysis [17], [18], [19]. Then, the developers can refine the
permission manifest to specify optional permission switches
for specific functionalities, so that no redundant permissions
are requested if optional functionalities are disabled.

Reconciliation engine. SDNShield allows the administra-
tors to configure app permissions via security policy. The secu-
rity policy is represented with the domain-specific SDNShield
security policy language, which provides abstractions for a
variety of security constraints.

In practice, the administrators first describe their local
security policies in the security policy language, and feed
the policies to the reconciliation engine. The reconciliation
engine then verifies the security policies by looking at
the input permission manifest. Once a policy violation is
detected, the reconciliation engine alerts the administrator and
provides possible alternative permissions for administrator’s
consideration. The alternative permissions are generated by
truncating the offending permissions or refining permissions
with environment variables.

The composition of the local security policies is guided
by potential threats. For example, to defend against Class 1
attacks, SDNShield only needs to specify a security constraint
to prevent an app to have both the packet-in/-out permission
and the access to host network of the controller. This prevents
the app from both the traffic sniffing/injection capacity and
the ability to communicate with a remote attacker via host
network. In real deployment, those security policies for specific
threats can be distributed as templates, so as to lower the hurdle
to have basic protection. For advanced protection, a GUI will
be provided to facilitate the policy customization/composition
process. In fact, such administration process is proven
effective with the prevalence of the similar administration
system for Enterprise Mobility Management (EMM), such as
AirWatch [20] and Citrix XenMobile [21].

IV. PERMISSION ABSTRACTIONS

The heart of SDNShield is a domain specific permission
language that defines the boundary of app behaviors.

Existing SDN permission systems typically model app
permissions at the granularity of the APIs provided by
the controller platform. For example, SE-Floodlight [11]
can control whether an app can insert/modify a rule with
FLOW MOD permission. However, such API-level permissions
are often too coarse-grained to specify a usable app permission.
For example, it cannot make decisions based on the parameters
of the API calls such as the switches, the subnet or the rule
actions.

SDNShield enables fine-grained parameterized permission
granting by introducing a two-level permission abstraction



Resource Permission Token Notes

Flow table read flow table
insert flow Including insert and modify.
delete flow
flow event Get callback notification.

Topology visible topology Specify partial or virtual
topology.

modify topology Change controller’s view
of physical topology.

topology event

Statistics read statistics
& Errors error event

Pkt-in read payload Payload in pkt-in msg.
& Pkt-out send pkt out

pkt in event

Host host network Network access outside
system control channel.

file system
process runtime Shell access, etc.

TABLE II: A subset of SDNShield permission tokens.

comprised of coarse-grained permission tokens and fine-
grained permission filters.

A. Permission Token

Permission tokens are the coarse-grained app behavior
privileges that can be either approved or denied for an app.
We divide the set of SDN specific permission tokens along
two dimensions, namely SDN resources and app actions.
The SDN resources we consider range from network states,
controller states to low-level control messages. For each
resource, the app’s potential actions include read, write
and event notification. The permission tokens are designed
orthogonal with each other, so that there is no inter-permission
dependency. Other than interacting with SDN APIs, apps may
also need to interact with the host machine OS via system
calls. We design permission tokens to limit the system calls,
which may expose apps to unnecessary attack surface. Table II
shows a subset of our permission set.

B. Permission Filter

Permission tokens can only be granted in an all-or-none
manner. In order to specify permissions in a finer-grained
way, we introduce the permission filter, which is associated
with a permission token to restrict its effective scope. For
example, the app’s read flow table permission can be
restricted to a specific port number when associated with a
flow predicate filter as the parameter:

PERM read_flow_table LIMITING TCP_DST 80

Semantically, a permission token can be viewed as a boolean
switch of a set of static APIs; while a filter is a boolean
function of a runtime API call (along with all the arguments
and the runtime context). We use the term attribute to refer
to any of the runtime arguments or context of an API call.
A filter splits the space of API calls into two subspaces by
labeling each API call with ALLOW or DENY. In this way, a
filter helps establish a middle state of a permission token by
allowing a subset of API calls to pass through.

Next, we present the syntax and semantics of permission
filters in detail.

a) Singleton Filter: Singleton filters are the building
block of filter expressions. A singleton filter labels an API
call according to a specific attribute of the API call. Different
singleton filters inspect different attributes, and thus are
independent of each other. Normally, an individual singleton
filter is only effective to modify a subset of permissions that
contain the specific attributes it inspects. SDNShield defines a
number of singleton filters on several attributes as follows.

Flow filter. Flow filters act on flow-specific arguments
of an API call. Thus, they can be associated with the
permissions managing flow table resources. Based on the
inspected attributes, flow filters include predicate filter, action
filter, ownership filter, etc. As an example of flow filters,
predicate filter compares the flow predicate in an API call with
the value or the value range specified in the filter parameters,
and only allows API calls with narrower predicates to pass
through. A value range can be presented using a bit-wise mask:

PERM read_flow_table LIMITING \

IP_DST 10.13.0.0 MASK 255.255.0.0

this permission allows the app to see the flow entries targeting
at the subnet 10.13.0.0/16. To provide more flexibility,
SDNShield offers wildcard filter, which inspects the wildcard
bits rather than the matched bits. When associated with
insert flow or delete flow permission token, it
forces the apps to set specific wildcard bits in their rules. For
example, a load-balancing app that shuffles flows according to
the lower 8 bits of IP dst should have the permission:

PERM insert_flow LIMITING \

WILDCARD IP_DST 255.255.255.0

This permission specifies that the upper 24 bits wildcard of
IP dst of any issued rules must always be set, i.e., the app
can only identify flows using the lower 8 bits that are not
wildcarded.

In addition, action filter inspects flow actions. Ownership
filter inspects and keeps track of the issuers of all the existing
flows. Priority filter limits the maximum/minimum priority
value set in rules. Table size filter limits the maximum number
of rules an app can put into a switch. Packet out filter can
prevent apps from issuing packet-out with an arbitrary content.
In sum, flow filters are useful to restrict apps’ visibility or
manipulability of flow table entries.

Topology filters. Topology filters help administrators to
create abstract topology for apps. Topology filters allow two
type of abstract topology. Physical topology filter helps to
expose a subset of physical switches and links to an app.
Virtual topology filter helps create the illusion of big switches,
each of which is comprised of multiple physical switches:

PERM visible_topology LIMITING \

VIRTUAL SINGLE_BIG_SWITCH LINK EXTERNAL_LINKS

The above permission allows the app to see the topology as
a single big switch by translating the topology information in
the API request/response on the fly.

In addition to flow filters and topology filters, SDNShield
also support a number of other filters. event callback filters
inspect how an app interacts with an event notification.
Statistics filter helps to restrict an app’s visible statistics.



b) Filter Composition: While singleton filters are
flexible in constraining a single attribute, the administra-
tors may need to express complicated permissions with
multiple attributes. For example, one might want to grant
read flow table permission to an app, but only
restricting to the flows previously issued by the app or the
flows affecting the subnet 10.13.0.0/16.

SDNShield fulfills this demand through filter composition.
SDNShield supports the composition of singleton filters
with logical operators including conjunction, disjunction and
negation. Intuitively, the conjunction (disjunction) of two
filters labels an API call true if and only if both operands
(either operand) label(s) it true; while the negation of a filter
always outputs the opposite label produced by the operand.
The composition of filters enables SDNShield to describe the
permissions with complicated logical conditions. Consider the
above example, which could be expressed as

PERM read_flow_table LIMITING OWN_FLOWS OR \

IP_SRC 10.13.0.0 MASK 255.255.0.0 OR \

IP_DST 10.13.0.0 MASK 255.255.0.0

SDNShield permission language syntax is in Appendix A.

V. SECURITY POLICY RECONCILIATION

A. Security Policy Language

SDNShield security policy language provides abstractions
for two types of constraints: mutual exclusion and permission
boundary. To specify security policies, the administrator
writes constraint statements that are comprised of mutual
exclusion expressions and permission boundary assertions. For
example, an enterprise network may wish to prevent a single
app from possessing two mutually exclusive permissions:
insert flow and network access. A second example
is to bound the permissions from a tenant to a partial topology
and/or a flow space.

In practice, a constraint statement, which describes
a certain security property, is associated with a set of
apps. The constraint enforcement engine evaluates the
constraint expressions against the permissions of the associated
apps, determining whether the permissions fully satisfy the
constraints or not. The output includes a pass/fail label
together with a message pointing out any constraint-violated
permissions. After a constraint is set up on a set of apps,
the constraint enforcement engine keeps track of permission
updates and ensures the constraint expressions are satisfied
persistently.

Mutual Exclusion: Mutual exclusion expressions
specify a pair of permissions that should never be possessed by
one single app. Mutual exclusion is often required to describe
global security properties based on specific attack patterns. For
example, a combination of network access permission
and send packet out permission could potentially en-
able the injection of arbitrary data-plane packets from a remote
attacker. To prevent such combination, we can set them as a
mutual exclusion:

ASSERT EITHER { PERM network_access } \

OR { PERM send_packet_out }

Semantically, this constraint prevents the two permissions from
being possessed by a single app.

Permission Boundary: Permission boundary is a
powerful tool to enforce static permission boundary and
dynamic relations between multiple permission manifests.
Permission boundary is implemented by checking logical
assertions. In a logical assertion, permission expressions
are computed and compared like sets using intersection,
union, complement operations and inclusion relation. The
semantics of the operations are naturally defined based on the
allowed app behaviors. SDNShield supports set operations on
permission expressions: intersection, union and complement.
The semantics of the operations are defined similarly with
the corresponding filter operations, namely conjunction and
disjunction.

The basic building block of a logical assertion is the
permission comparison expression. Thanks to the property of
comparability of permissions, SDNShield offers two compari-
son operations between permission expressions: inclusion and
equality. They can be used to express permission boundary.
For example, we can specify the permission boundary for all
monitoring apps to be no more than reading topology, reading
port-level statistics and communicating with data collecting
servers at 192.168.0.0/16:

LET templatePerm = {

PERM read_topology

PERM read_statistics LIMITING PORT_LEVEL

PERM network_access LIMITING \

IP_DST 192.168.0.0 MASK 255.255.0.0

}

ASSERT monitorAppPerm <= templatePerm

where the less than or equal to sign (<=) specifies the
permission boundary, which defines the super set of the app
behavior this app can possess.

Permission Customization: SDNShield allows two
ways to customize the requested permissions. First, the app
developer can leave permission filter stubs for customization
purpose, e.g., a stub macro named “administrative IP range”.
The administrator just need to redefine the macro to the actual
value in the local environment. Second, the administrator
can also restrict a specific permission by directly appending
permission filters. For example, a cloud operator can restrict
the operating topology of a tenant app by appending virtual
topology filter to the requested permissions.

SDNShield security policy language syntax is in Ap-
pendix B.

B. Reconciliation Mechanism

To enforce the security policies, SDNShield needs a
mechanism to evaluate the security policy expressions on
concrete permission manifest, and modify the permission
manifest in case of policy violations. In this subsection, we
detail the reconciliation mechanism.

1) Permission Comparison: The evaluation of permission
policies fundamentally depends on the comparison of the
permission expressions. Abstractly, a permission expression
can be viewed as a set of the allowed app behaviors.
Since high-level permissions are orthogonal, the question
on permission expressions can be converted to the same
question on the filters associated with the same permission
of the operands. For example, an insert flow permission on a



192.168.0.0/16 IP dst filter includes the same permission on
a 192.168.1.0/24 IP dst filter, due to the inclusion relation of
the filters.

It is trivial to determine the relation of two singleton filters.
In the presence of complex filters, however, things become a
bit complicated.

Algorithm 1. The inclusion relation of a pair of filters can be
determined algorithmically.

Without loss of generality, we assume we want to
determine if Filter A includes Filter B. The algorithm is as
follows:

Step 1: We first convert A to CNF, denoted as (a∧ b∧ ...),
and convert B to DNF, denoted as (x∨y∨ ...). In this way, the
question is converted to determine whether every disjunctive
clause (a, b...) in A includes every conjunctive clause in B
(x, y...).

Step 2: We then scan over all possible pairs the disjunctive
clauses in A and the conjunctive clauses in B. We denote one
of the pairs as a = a1∨a2∨ ..., x = x1∧x2∧ .... Consider the
fact that filters on different dimensions are independent, hence
cannot include each other. Thus, we know a singleton filter can
only include another singleton filter on the same dimension of
attribute. We match the singleton filters on the same dimension
in a and x, and conduct singleton filter comparison. Therefore,
we have a includes x if there exists ai ⊃ xj , otherwise a and
x are independent.

2) Security Policy Reconciliation: SDNShield reconciles
the permission boundary violation by conducting a conceptual
intersection between the permission manifest and the permis-
sion boundary. Due to the set nature of permission expressions,
we can naturally define set operations, including intersection,
union and complement, on permission expressions. Permission
operations are generalization of filter composition, and can
be implemented using filter composition operations. Similarly,
mutual exclusion violations are handled by truncating one
of the exclusive permissions. And permission customization
is implemented via a preprocessor that replaces stub macros
with the administrator-supplied local permission settings.
It is worths noting that by default SDNShield alerts
administrators of any security policy violations, and the
reconciled permissions are then offered for administrators’
consideration.

VI. PERMISSION ENFORCEMENT

A. Controller Isolation Architecture

In SDNShield, the existence of multiple principals with
different privileges in a controller entails the demand for
reference monitoring. Specifically, two types of actions, i.e.,
the controller API access and the system calls to the host OS,
should be reference monitored. Semantically, any reference
monitoring paradigm that offers complete access control
over both types of actions would suffice. While regarding
performance, we want to minimize the latency and throughput
degradation to the controller processing.

We compare the pros and cons of a number of
reference monitoring paradigms in Table III. Among the
candidates, isolating apps OS process container brings

Ctrl System Runtime Impl’n
API Access Overhead Complexity

OS Process ✓ ✗ Median Low

HW Virt’n ✓ ✓ High Medium

PL Sandbox ✓ ✓ Low Median

TABLE III: Comparison of reference monitoring approaches.
SDNShield opts for PL sandbox.

large context switching overhead to gain complete memory
space isolation. Moreover, sandboxing OS process requires
additional mechanism to mediate the interaction between a OS
process and the OS kernel. Similarly, hardware virtualization
(e.g., KVM) or OS-level virtualization (e.g., LXC) introduces
even greater overhead to reference monitor the apps running as
guest OSes or containers, since the communications between
app and controller need to traverse OS kernel or even network
socket. Compared with the above paradigms, programming-
language-level sandbox (e.g., Java VM and Python interpreter)
provides a lightweight approach to offer necessary reference
monitoring capacity.

We design a general controller isolation architecture
and embody it based on Java security model, as depicted
in Figure 4. We propose to use sandboxed thread (e.g.,
Java thread) as the basic unit for sandboxing and privilege
enforcement. In general, the app code runs in unprivileged
threads and the trusted controller kernel runs in privileged
threads. The thread container provides the following security
properties:

• Control flow isolation. Threads isolation guarantees that
a single thread isolation executes either trusted controller
code or untrusted app code. The reference monitor (e.g.,
the customized Java SecurityManager) ensures that the app
code cannot convert an unprivileged thread into a privileged
one.

• Data isolation. Since the app/controller communication
is now through only limited communication channels,
it is easier to prevent apps from getting references to
controller kernel object, therefore preventing apps’ access
or modification to controller states.

• System call mediation. Security sensitive system calls from
apps are now mediated by the reference monitor (e.g.,
Java SecurityManager), thus can be restricted by security
policies.

In SDNShield’s isolation architecture, both the controller
threads and the app threads run on top of the sandbox shim
layer (i.e., a Java VM). The Kernel Service Deputy (KSD) is
located within the controller kernel acting as a choke point of
all the communications between the controller kernel and the
app threads. Another communication choke point is the access
control point (i.e., the customized Java SecurityManager)
located within the shim layer, which mediates system calls
to the host OS. Note, the choke points do not mean serialized
points. Actually, SDNShield’s isolation architecture is highly
scalable regarding the number of apps by exploiting thread-
level parallelization. Multiple instances of KSDs can run in
parallel to offload the API requests from apps.

B. Permission Engine

Every API call issued by apps is eventually checked by the
permission engine (PE). Generally, the PE reads the permission
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manifest and compiles to the checking code to be executed
at the reference monitor. We highlight two techniques of
SDNShield in implementing the PE.

1) Evaluation of Abstract Filters: The first challenge is
the semantic gap between the OF messages and the filter
abstractions, esp., the abstract topology filters. Controllers
typically do not support abstract topology in their APIs. As
a result, the reference monitor has to interpret the network
view in realtime by overwriting the API calls and responses.

To fill the semantic gap, SDNShield actively maintains
the topology mapping between the abstract topology and the
physical topology, as well as the flow tables and the statistics of
the virtual switches. When a flow rule is added to a virtual big
switch, SDNShield find the corresponding physical switches
and translate the flow rule to several physical rules that along
the shortest path in the underlying physical topology. Statistic
requests are handled similarly by querying multiple physical
switches and aggregating the results.

2) Transactional API calls: Consider the scenario that
multiple rules are to be installed, while one of them violates the
permission. Conducting permission checking one by one may
result in problematic intermediate state. SDNShield introduces
API call transaction, which allows an app to group multiple
semantically related API calls into a transaction and issue
atomically. An API call transaction will only be executed if
all the individual calls pass permission checking. In case of
permission violation, the entire transaction will roll back and
the app will be notified of the reasons for the failed API call.

C. Accommodating High-level SDN Languages

Today, the controller design increasingly moves towards
rich northbound interfaces with higher-level abstractions and
new programming paradigms. Hence, it is interesting to
explore how the design of SDNShield can be adapted and
applied to future SDN paradigms.

Novel Programming Paradigms: One of the major
trends in SDN’s northbound API is to provide app developers
novel programming paradigms, such as the functional reactive
programming [22], [23] and decision tree [24]. These
programming paradigms typically expose SDN functionalities
through explicit APIs, such as switch commands in Nettle [22]
and rule insertion/invalidation in Maple [24]. SDNShield can

leverage these explicit APIs to enforce access controls over
the SDN specific resources; while system resources can still
be enforced through programming-language-level sandbox.

Declarative Policy Languages: The other trend is to
provide new abstractions of network resources through domain
specific policy languages, such as Frenetic [25], Pyretic [26]
and NetKAT [27]. Although the policy languages may contain
novel abstractions, they are ultimately compiled to low-level
OpenFlow instructions, where SDNShield access control can
be enforced.

One of the challenges in enforcing SDNShield permission
language is the difficulty to determine which app actually
issues the OpenFlow instruction. In fact, the source app
of an OpenFlow instruction can become ambiguous during
compilation.

This challenge can be addressed by extending the compiler
of the policy language and the ownership model of SDNShield.
On the compiler side, we simply ask it to track the ownership
information at a finer granularity during the policy composition
process, and expose the information to SDNShield. Once
SDNShield obtains the ownership information, it can split
the rule and feed them to the permission engine respectively.
Furthermore, we can extend SDNShield to allow an API access
to be partially denied when some of the owner apps lack certain
permissions. We leave the systematic solution as our future
work.

VII. APPLICATION OF SDNSHIELD

In this section, we illustrate how SDNShield together with
proper permissions prevents or mitigates the control-plane
attacks with two hypothetical cases.

Scenario 1: Vulnerable Monitoring App: Consider
a monitoring app deployed to supervise network usage of
a tenant in a multi-tenant network. The app allows web
connection from the administrator for management purpose.
Further, we assume the app bears a vulnerability that allows
arbitrary code execution.

The app release contains the following permission
manifest:

PERM visible_topology LIMITING LocalTopo



PERM read_statistics

PERM network_access LIMITING AdminRange

PERM insert_flow

where two stubs, LocalTopo and AdminRange, are left for
administrator to complete. The administrator supplies the
security policy and local configurations as follows:

LET LocalTopo = {SWITCH 0,1... LINK 3,4...}

LET AdminRange = {IP_DST 10.1.0.0 \

MASK 255.255.0.0}

...

ASSERT EITHER { PERM network_access } \

OR { PERM insert_flow }

Next, the reconciliation engine extends the stub macros and
verifies security policies. Then, it finds the mutual exclusion
violation and reconciles by truncating the insert flow

permission. Finally, it generates the final permissions:

PERM visible_topology LIMITING \

SWITCH 0,1... LINK 3,4...

PERM read_statistics

PERM network_access LIMITING \

IP_DST 10.1.0.0 MASK 255.255.0.0

With this permission manifest, SDNShield can effectively
mitigate the control plane attacks. The attacks through web
interface will be blocked at the very first step by checking the
source IP address. Even if the attacker launches the attack from
an administrator’s IP address, all the active attacks will still be
blocked when the attacker tries to add rules or inject packets
into the network. In fact, two of the four attack classes (Class 1
and 3) are completely prevented, since the monitoring app does
not have the basic permissions to modify the network states.
Class 4 attacks are extremely difficult to launch because the
app is executed in a sandbox where inter-app communication is
disallowed unless it is through socket communication and the
destination matches the AdminRange. The remaining attacks
in Class 2, are also constrained to the leakage of the topology
and statistics to the administrator-controlled IP addresses.

Scenario 2: Malicious Routing App: Consider the
administrator deploys a routing app containing malicious code.
The app implements shortest path routing in normal cases, but
stealthily launches control-plane attacks at times. Assume the
app is configured with the following permission:

PERM visible_topology

PERM flow_event

PERM send_pkt_out

PERM insert_flow LIMITING \

ACTION FORWARD AND OWN_FLOWS

SDNShield provides three levels of protection against the
attacks from the malicious app. First, the routing app cannot
communicate with the outside world, which implies the
attacker cannot control the app over the network or obtain
the sensitive information about the network. This property
eliminates the possibility of Class 2 attack. Second, the
app cannot overwrite firewall rules or establish dynamic-flow
tunnel [16] to bypass firewall rules, because it is not allowed
to modify other app’s rules. As a result, Class 3 and Class
4 attacks are mostly prevented. To entirely prevent Class 3
and Class 4 attacks, the administrator can further specify
topology and flow space isolation with topology and flow
filters. Third, although the routing app can still insert malicious
rules and packet-out messages, the SDNShield can provide

activity logging, which enables forensic analysis after the
attack happens.

VIII. IMPLEMENTATION

A. Permission Engine and Reconciliation Engine

We implement a prototype of SDNShield policy engines as
controller-independent Java bundles. Our SDNShield prototype
implementation consists of three major components: i) a
permission compiler that compiles permission manifests into
abstract syntax trees (ASTs), ii) a reconciliation engine
that enforces security policies on a permission AST, iii) a
permission checking engine that check whether a specific API
call is compliant with the given permission AST. The prototype
consists of ∼23k lines of java code.

B. Isolation Architecture

a) Java-based Reference Monitor.: We implement a
Java thread based isolation architecture that can be easily
plugged into Java based SDN controllers with trivial changes
on the controller and no changes on apps.

Inter-thread Communication and API Wrapper. Due to
the thread isolation, the direct function calls between
controller and apps now need to traverse through inter-thread
communication channel. We implement a concurrent queue-
based communication utility to facilitate the communication.
In order to minimize the changes on the legacy system, we
provide wrappers for service interfaces or listener interfaces
so that the apps are transparent of the underlying changes
in the communication channels. As a highlight, the wrappers
are generated automatically according to the source code of
service interface or listener interface with code transformation
techniques, so that minimal human intervention is needed to
support a new controller platform.

Controller and App Initiation. During the controller initiation
time, we start all controller modules and a pool of kernel
deputy threads with full privilege, and start an app thread with
corresponding privilege of each app. Then, each app thread
executes the app initiation code to configure initial states,
obtain controller services and register listeners. We make
necessary changes into the controller, so that the services and
listener builders supplied to the apps are all wrapped. Hence
the communication is enforced to traverse through inter-thread
channel. Further, we ensure that all threads spawned from a
unprivileged thread inherit their parents’ privilege. During the
lifetime of an app, all its API calls will traverse via inter-thread
channel and received by a kernel deputy thread, which checks
for permissions and, if permission allows, executes the API
call on the behalf of the app.

We implement access control on top of Java SecurityMan-
ager, a customizable reference monitor provided by standard
Java runtime. Furthermore, SecurityManager ensures that all
system calls from apps are mediated by SDNShield permission
engine. We extends Java SecurityManager to be able to
check the customized permissions defined by SDNShield.
Figure 4 depicts the architecture of the reference monitor
implementation.



b) OpenDaylight Platform Support: OpenDaylight [5]
is a Java-based community-led open source SDN controller
platform supported by major SDN switch vendors. To enable
SDNShield, we implement two extensions on OpenDaylight.

Architecture. OpenDaylight has a monolithic architecture,
meaning the controller core and the apps runs in a single
execution instance without runtime context separation. Since
the boundary between the core controller functionalities
and app modules is ambiguous on OpenDaylight, we draw
a boundary according to our understanding to place our
permission checking. We modify the app initialization process
so that OpenDaylight apps runs in SDNShield thread container.
The modification involves less than 100 lines of code on
OpenDaylight source code.

We customize the API wrapper generation tool to adapt
for OpenDaylight service interfaces and notification listener
interfaces. We also implement a number of API converters
in order to convert the OpenDaylight internal objects into
the abstractions SDNShield permission engine can read.
Specifically, a runtime API call is wrapped into a permission
checking object, which contains the information including the
caller app identity, the required permission and the parameters.

In addition to runtime access control, we also implement
coarse-grained loading-time access control leveraging OSGi
framework security. Specifically, OpenDaylight employs OSGi
framework to dynamically load Java apps into the runtime.
When an app is loaded, OSGi links the APIs that the app
consumes with the modules that provide the APIs. We perform
permission checking when OSGi loads the apps so that if no
runtime permission checking is needed in case when the app
does not have the required permission tokens at all.

Permission Checking. OpenDaylight employs model-driven
northbound interfaces, i.e., most controller northbound inter-
faces are implemented as accessing the YANG data model. As
a result, some SDNShield permission policies are enforced by
mediating the read and write access to the YANG data model.
Specifically, we extend the YANG data model so that sensitive
nodes are associated with the necessary permissions required
to read or write it. We also modify the data broker so that
all data accesses are mediated by the permission engine with
the associated permissions. We mediate event notifications and
remote procedure calls (RPCs) at the kernel deputy thread,
where necessary permission checking is performed.

c) Floodlight Controller Support: Floodlight [14] is an
open-source Java-based OpenFlow controller. We also make
extensions on the above two aspects to support SDNShield.

Architecture. Although Floodlight has a clear boundary
between the controller core and the apps on code-level, it
still runs monolithically. We make similar modification into
Floodlight’s app loading process to isolation Floodlight apps
into SDNShield thread containers. We also customized the API
wrapper generation tool for Floodlight.

Permission Checking. Different from the model-driven
northbound interfaces of OpenDaylight, Floodlight opts for
an API-style northbound interfaces. We also implement a
number of API conversion functions to convert Floodlight API
parameters into SDNShield abstractions.

IX. EVALUATION

In this section, we evaluate the effectiveness and per-
formance of SDNShield on SDNShield-enabled OpenDaylight
SDN controller and Floodlight OpenFlow controller.

A. Methodology

We first evaluate the effectiveness of SDNShield permission
engine and reconciliation engine with proof-of-concept
malicious apps on Floodlight. Then, we focus on understanding
the overhead brought by SDNShield. The same experiments
are repeated on both Floodlight and OpenDaylight and exhibit
qualitatively similar results. In the interest of space, we only
show the runtime overhead results on OpenDaylight. We omit
showing the reconciliation engine overhead, since it only
occurs at the app installation time and the processing time
never exceeds one second during our pressure tests.

The runtime overhead of SDNShield mainly stems from
the permission checking and the asynchronous communication
due to the thread isolation. The permission checking overhead
mainly involves the permission evaluation and the book-
keeping tasks. The asynchronism overhead is introduced by
the asynchronous function calls via thread signaling, which
leads to CPU context switching and potential waiting.

We use micro benchmarks to evaluate the permission
checking throughput on a single CPU core. We then simulate
two use scenarios to evaluate the end-to-end overhead of
SDNShield on the controller runtime.

We deploy the controllers on an Intel Quad-core i7
3.40GHz workstation with 8GB RAM. We deploy a
customized CBench [28] as our OF message generator hosted
on another dedicated physical machine. We use OpenDaylight
Lithium SR1 and Floodlight v0.90 as our baseline controllers.
We simulate two use scenarios.

• L2 Learning Switch. The user network configures switch
flow tables using the OpenDaylight l2switch app, which
learns host position and generates switching rules by
listening to OpenFlow packet-ins containing ARP packets.
In this scenario, SDNShield checks permissions at the time
of both the listener notification and the switching rule
issuance.

• Traffic Engineering based on Application-Layer Traffic
Optimization(ALTO) information. The ALTO app on
OpenDaylight provides real-time topology and routing cost
information to upper-layer apps. We write a simple traffic
engineering (TE) app that listens to the ALTO app events
and reacts with flow-mods that changes the routing paths.
In this scenario, SDNShield checks permissions at the
time of the listener notification to ALTO app, data model
publication from ALTO app, data model event notification
to TE app and routing rule issuance from TE app.

B. Experimental Results

1) Effectiveness: We first verify the effectiveness of the
permission enforcement on four proof-of-concept malicious
apps that conduct attacks as described in Section II. The first
app monitors active flows by looking at packet-in messages
and injects TCP RST to all active HTTP sessions. The
second app collects network topology as well as switch/port
configurations, and leaks out to outside attackers via HTTP
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Fig. 5: Permission checking throughput on one core.

POST. The third app changes the existing routes between
two hosts to traverse through a third host controlled by the
attacker. The fourth app establishes a dynamic-flow tunnel
through a firewall that only allows HTTP traffic at port 80. We
run these apps on SDNShield with permissions in Scenario 1
described in Section VII and on original Floodlight. The results
show original Floodlight is vulnerable to all the attacks, while
SDNShield-enabled Floodlight is immune to all of them.

We also verify the effectiveness of the security policy
reconciliation by checking over-privileged permission man-
ifests with security policies generated based on the attack
patterns. The results show that the over-privilege problem can
be effectively prevented with appropriate security policies that
cut off the apps’ access to unnecessary resources. The only
exception is that some apps (e.g., forwarding apps) essentially
require access to the resources that enable certain attacks (e.g.,
insert forwarding rules), which is the inherent limitation of
access control.

2) Permission Engine Performance: In this experiment, we
evaluate the efficiency of the standalone SDNShield permission
engine, i.e., how many the permission checks the engine
can handle in a time unit on a CPU core. We measure the
permission engine throughput with three manually generated
permission manifests, which represent small, medium and
large permission complexity. Three manifests respectively
contain 1, 5 and 15 permission tokens, and each token
is associated with 10-20 filters. The app behavior trace is
a sequence of flow insertions and statistics requests that
guarantees 5% of the API calls violate the permissions.

Figure 5 shows the permission checking throughput of two
API calls (insert flow and read statistics) on a single core
varying the complexity of the permission policies. The results
show that permission checking latency is always less than one
microsecond. Furthermore, since the permission checking is
stateless, we can easily scale out the permission engine with
parallelism.

3) End-to-end Performance: We then evaluate the overall
overhead of SDNShield in the context of an OpenDaylight
controller.We compare OpenDaylight controller with and
without SDNShield in two scenarios. We measure the control-
plane latency and throughput at the simulated switches by
observing the issued packet-ins/topology changes and the
received flow-mods.

End-to-end Latency: The overall latency introduced
by SDNShield is dominated by the permission checking and
the reference monitoring. Our evaluation shows that the total
latency overhead introduced by SDNShield is around tens of
microseconds, with varying app complexity and CPU core
abundance. The latency overhead is two orders of magnitude
smaller than the typical end-to-end latency in a data center
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throughput.

network.

We conduct experiments to compare the overall control-
plane latency of original OpenDaylight controller and
SDNShield-enabled OpenDaylight controller in two use
scenarios. Each experiment is repeated for 100 times. Figure 6
shows the results varying the number of switches in the
network. The median result is shown as the bar and the 10/90
percentile results are shown as the error bar. We can see that
the additional overhead introduced by SDNShield is almost
unnoticeable in both experiments. Such results are confirmed
by similar experiments on Floodlight controller.

End-to-end Throughput: We finally conduct pressure
test to understand how much throughput penalty the thread
isolation architecture of SDNShield brings, in comparison to
a monolithic architecture of the original OpenDaylight. We
conduct it on the L2 learning switch scenario, since the update
throughput of ALTO app is limited to 2 updates per second
due to unknown reasons. Figure 7 shows the results. From the
figure we can see that SDNShield brings negligible throughput
degradation compared to the original OpenDaylight controller.
Such results are also confirmed by similar experiments on
Floodlight controller.

Scalability: We evaluate the scalability of SDNShield
to large networks and complicated apps. We collect the latency
overhead varying the number of concurrent apps and the
complexity of apps (measured by the API calls issued by the
app). The results in Figure 8 demonstrates that the latency
overhead of SDNShield increases linearly with the number of
concurrent apps and the complexity of apps, thus SDNShield
is highly scalable even if the number of concurrent apps and
the complexity of individual apps grow in the future.

X. RELATED WORK

a) Security on OpenFlow infrastructure: The demand
for a more secure OF infrastructure has been partially
addressed by prior research efforts. Network slicing [29],
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[30], [31], [32] focuses on isolating control for disjoint traffic
slices and prevents cross-slice attacks. In contrast, SDNShield
delivers protection to not only disjoint network slices but also
the apps that sequentially or collaboratively processing the
same set of traffic. Network state analysis techniques [33],
[16], [34] verifies network properties, such as reachability
and middlebox traversal order, by analyzes network-wide
flow rules. SDNShield could detect a broader set of control
plane attacks and conduct access control with fine-grained
permissions.

A few proposals also adopt the approach of permission
control in SDN controllers [9], [10], [11], [12], [13]. Different
from previous efforts, SDNShield is the first to provide
the fine-grained parameterized permission abstractions and
to introduce the reconciliation mechanism that customizes
requested permissions with security policies.

b) Access control system design: The design of access
control systems has been studied for decades. The large
body of researches on design principles and practices [35],
[36], [37] inspires our design of SDNShield mandatory access
control system. Also, we learn important lessons from the
recent studies on designing mobile OS permission systems.
Particularly, some works design fine-grained permissions and
enforcement mechanisms [38], [39], [40] for finer access
control of general resource access. Other works [41], [42],
on the other hand, identify that higher permission complexity
may decrease users’ ability and willingness to review the
declared permissions. In comparison, SDNShield features the
parameterized fine-grained permission abstractions for SDN
environment. To provide better usability, SDNShield designs
security policy reconciliation mechanism that generate fine-
grained permissions by customizing declared permissions with
local security policies.

c) High-level SDN languages and controllers: Today’s
OF controllers feature with low-level northbound interfaces
that are closely coupled with the underlying switch hardware
rather than the general network programming concepts. In
contrast, intensive recent research efforts have been spent on
identifying the “right” high-level abstraction for control plane
software composition. These emerging proposals [23], [24],
[25], [26] embrace a variety of programming paradigms and
introduce abstractions on all levels of network programming
entities, such as packet, network topology and composition
operation. Specifically, Frenetic [25] designs different pieces
of high-level language for state querying, packet forwarding
and logic composition. Their following work, NetCore
programming language [43], expands the query language and
the packet-processing language, and provides formal semantics
for the novel language. A parallel work Procera [23] embraces

a fully reactive programming paradigm and introduces a
different abstraction of the network resources. Pyretic [26]
proposes dramatically different programming models for
packet, network topology and policy operation.

All these SDN policy languages serve as vehicles to
specify concrete network forwarding policies. In comparison,
SDNShield permission language specifies the behavior priv-
ileges of SDN apps, and thus has different semantics and
scope with the above SDN policy languages. Moreover, none
of these works devote sufficient attention to potential control
plane attacks. We believe SDNShield is orthogonal to the
above works and we show that SDNShield can be adapted to
provide access control to them. Although SDNShield does not
currently have an implementation on any of the next-generation
OF controllers, we think with reasonable engineering efforts,
SDNShield can be adapted and deployed on these high-level
abstractions of network programming.

XI. CONCLUSION

With the involvement of third-party apps, OF controllers
are subject to the privilege abuse problem, which actuates a
series of control-plane attacks that could compromise the entire
network. To deal with the threats, we propose SDNShield,
a privilege enforcement system comprising a fine-grained
permission system and an automatic reconciliation system
that merges requested permissions with local security policies.
Our prototype implementation demonstrates the effectiveness
and the acceptable efficiency of SDNShield compared with
baseline.
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APPENDIX A
SDNShield PERMISSION LANGUAGE SYNTAX

Permission

perm := perm expr | perm perm expr

perm expr := PERM perm | PERM perm LIMITING filter expr

filter expr := filter expr AND/OR filter
| NOT filter expr | ( filter expr ) | filter

Filter Categories

filter := flow f | topology f | callback f | statistics f

flow f := pred f | action f | owner f | table size f
| priority f | pkt out f

pred f := field val | field val MASK val
| WILDCARD field val

action f := DROP | FORWARD | MODIFY field

owner f := OWN_FLOWS | ALL_FLOWS
priority f := MAX_PRIORITY <INT> | MIN_PRIORITY

<INT>

table size f := MAX_RULE_COUNT <INT>

pkt out f := FROM_PKT_IN | ARBITRARY
topology f := phy topo f | virt topo f

phy topo f := SWITCH switch set LINK link set

virt topo f := VIRTUAL switch map LINK link set

callback f := EVENT_INTERCEPTION |
MODIFY_EVENT_ORDER

statistics f := FLOW_LEVEL | PORT_LEVEL | SWITCH_LEVEL

Helpers

field := IP_SRC | IP_DST | TCP_SRC | TCP_DST ...

val := <INT> | <INT>.<INT>.<INT>.<INT>
ip fmt := <INT>.<INT>.<INT>.<INT>

switch set := { sw idx , ... }

switch map := { switch set AS sw idx , ... }

link set := { link idx , ... }

APPENDIX B
SDNShield SECURITY POLICY LANGUAGE SYNTAX

Security Policy Language

expr := binding | constraint

constraint := ASSERT exclusive | ASSERT assert expr

exclusive := EITHER perm expr OR perm expr

assert expr := assert expr AND/OR boolean expr
| NOT assert expr | ( assert expr )
| boolean expr

boolean expr := perm expr cmp op perm expr

cmp op := < | > | == | <= | >=
binding := LET var perm = { perm expr }

| LET var perm = APP app name
| LET var perm = perm expr

perm expr := perm expr MEET/JOIN var perm
| ( perm expr ) | var perm | { perm }

var perm := <STRING>

app name := <STRING>


