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It is highly desirable and important for end users, with
no special privileges, identify and pinpoint faults inside the
network that degrade the performance of their applications.
However, existing tools are inaccurate to infer the link-level
loss rates and have large diagnosis granularity (in terms
of the number of hops). To address these problems, we
propose a suite of user-level diagnosis approaches in two
categories: (1) only need to be deployed at the source and
(2) deployed at both source and destination. For the former,
we propose two fragmentation aided diagnosis approaches
(FAD), Algebraic FAD and Opportunistic FAD, which uses
IP fragmentation to enable accurate link-level loss rate
inference. For the latter category, we propose Striped Probe
Analysis (SPA) which significantly improves the diagnosis
granularity over those of the source-only approaches. In-
ternet experiments are applied to evaluate each individual
schemes (including an improved version of the state-of-
the-art tool, Tulip [1]) and various hybrid approaches. The
results indicate that our approaches dramatically outperform
existing work (especially for diagnosis granularity) and
provide not only the best performance but also smooth
tradeoff among deployment requirement, diagnosis accuracy
and granularity.

I. Introduction

It is highly desirable and important for end users, with no
special privileges, identify and pinpoint faults inside the
network that degrade the performance of their applications.
However, the modern Internet is heterogeneous and largely
unregulated, which renders Internet fault diagnosis an in-
creasingly challenging problem. The servers and routers in
the network core are usually operated by businesses, and
those businesses may be unwilling or unable to cooperate in
collecting the network traffic measurements vital for Internet
fault diagnosis.

Internet Tomography denotes a class of techniques that
infer link level properties [2]–[5] based on end-to-end
measurements. Generally, Internet tomography requires a
measurement infrastructure, usually a set of end hosts, on

which special measurement tools are deployed. However,
normal users or companies usually only have access to a
few end hosts and thus tomography is not available to them.
More importantly, the diagnosis problem often demands on-
demand online measurement for a particular path. Thus it
is desirable to have a handy diagnosis tool that only needs
to be deployed on one or both end hosts of the target path.
Such design often has to leverage router response, such as
Tulip [1] and cing [6]. However, as shown in Section II,
the existing tools are inaccurate and cannot give very fine-
level diagnosis. For example, the state-of-the-art tool Tulip
accurately infers the loss rate of the forward path only when
(1) the reverse path is not lossy and (2) there is no strong
correlation on the loss of the forward path, because the
control packets and data packets have be sent within very
short period (e.g. 3.5ms suggested in [1]).

We improve Tulip by fixing the first problem, but the
second one is inherent in its design. To address these
challenges, in this paper, we propose a suite of schemes for
link-level loss rate inference from end-to-end measurements
without any infrastructure. We consider two categories: (1)
measurement tools can only be deployed at the source (called
source only) and (2) tools can be deployed at both source
and destination (called source+destination).

For the first category, we propose fragmentation aided
diagnosis (FAD) approaches, which use packet fragmenta-
tion to obtain extra measurement information to differentiate
loss on the forward path vs. loss on the reverse path. We
design two variants of FAD, called Algebraic FAD (AFAD)
and Opportunistic FAD (OFAD) respectively. Note that such
fragmentation happens at the network layer, which leaves
us full flexibility to choose upper layer (e.g., transport
layer) protocols for link-level diagnosis. In addition, IP
fragmentation is well defined in IPv4 and most routers and
hosts support IP fragmentation. In addition, we discuss some
practical issues, such as prefix subpath problem and packet
loss correlations, as well as solutions to overcome these
problems.

For the second category, with extra destination support,
we propose Striped Probe Analysis (SPA) which improves
the diagnosis granularity to the lower bound (close to each
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physical link).

We implemented and deployed these tools on the Plan-
etLab testbed, and designed our experiments carefully
through: 1) studying the correlation between probe packet
size and loss rate to get representative probe packet size;
and 2) calibrating the link loss rate inference results and
excluding measurement outliers.

Then we evaluated the diagnosis granularity and accuracy
of each individual schemes as well as those of various
combination schemes. For source-only diagnosis, we found
that FAD approaches have comparable diagnosis granularity
to Tulip but they are much more accurate than even the
improved version of Tulip. Furthermore, the combination
of FAD and Tulip can significantly reduce the diagnosis
granularity and also provide improved accuracy (especially
for OFAD+Tulip).

When adding support from the destination, SPA achieves
the best possible diagnosis granularity, but its accuracy is
not as good as OFAD and AFAD. However, we found the
combination of SPA and OFAD can effectively solve this
problem and offers both good accuracy and granularity.

For the rest of the paper, we first introduce the related
work, especially Tulip in Section II. Then we present the
source-only diagnosis approaches in Section III and the
source+destination scheme in Section IV. We discuss the
evaluation methodology in Section V and show the results
in Section VI. Finally, we conclude in Section VII.

II. Related Work

Packet loss rate is an important metric of the QoS of a net-
work. For example, throughput of TCP streams is severely
affected even by very small loss rate, because packet loss
is used as the signal of the existence of congestion now.
Ping, Zing [7] are two well known path-level loss rate
measurement tools, and recently Badabing [8] is proposed
to improve the accuracy of loss rate measurement. These
tools only measure the end-to-end loss property, but do
not attempt to locate where the lossy links are. Our focus
in this paper is more challenging, i.e., inferring the loss
rates in link level. Link-level diagnosis can be put into two
categories: infrastructure based approaches [2]–[5, 9] and
router response based approaches [1, 6].

Traditional Internet tomography approaches fall into the
first class. With an overlay network infrastructure, Internet
tomography can infer the loss rate with the granularity
up to each virtual link (i.e., sequence of consecutive links
without a branching point) with high probability. Multicast-
based tomography can achieve unbiased inference on the
loss rates of each virtual link [3]. However, IP multicast
is not widely available in the Internet and thus unicast-
based tomography [4] was proposed as an approximation.
The unicast-based tomography tries to mimic multicast by
exploiting the transmission correlation. But it only works
well when the two back-to-back probes are always both lost

or are both transmitted successfully, i.e., perfect transmission
correlation.

Router-based approaches rely on response packets sent
by routers on the path to be diagnosed. Tulip is the latest
representative of this category [1]. Basically, some routers
use an increasing counter for the IP-ID field of the response
packets generated by the router (i.e., consecutive IP-IDs) and
Tulip uses that feature for diagnosis as follows. The sender
sends multiple probes to each router (with the appropriate
TTL) on the path. In each probe, three packets, two short
control packets (Packets 1 and 3) separated by one long data
packet (Packet 2), are sent with certain intervals between the
packets. The router then sends back corresponding responses
to the sender.

By checking the IP-ID fields of the response packets,
Tulip can infer the loss rate of the forward path. Let binary
random variable Xi = 1 if packet i is received by the probed
router and Xi = 0 otherwise. Similarly, we denote Yi = 1
if the response to packet i is received by the sender and
Yi = 0 if such response is lost on the reverse path. Assume
that Tulip sends out m probes (3 packets in each probe)
to a router. Among the response, n of them only contain
response triggered by the control packets (Packets 1 and 3)
with the right IP-IDs so that we know the data packet is lost
on the forward path. Then Tulip uses n/m as the estimated
data packet loss rate on the forward path. That is, it uses the
probability P (X1 = 1, X2 = 0, X3 = 1, Y1 = 1, Y3 = 1)
to approximate P (X2 = 0). Obviously, Tulip tends to
underestimate loss rate of the forward path, unless the short
packets 1 and 3 are never dropped on the forward path
and their responses are never lost on the reverse path. In
reality, short packets can also be lost and Tulip may severely
underestimate the loss rates as we show in Section VI-C.2.

In addition, Tulip has conflicting requirements for probe
packet correlation which further compounds the inference
accuracy problem. On one hand, Tulip desires the transmis-
sion independence among the the three packet in a probe.
Otherwise, if they are 100% correlated, the three probe
packets are either all lost or all go through. Then the event
of (X1 = 1, X2 = 0, X3 = 1) will never happen no matter
how large P (X2 = 0) is. That is, Tulip will always get
zero loss rate estimation. On the other hand, to avoid the
interference of the cross traffic on the continuous IP-ID in
the response packets, the three packets in a probe of Tulip
are sent within 3.5 msec, which means the transmission (or
loss) of the three packets in a probe is probably correlated.
This conflict is fundamental to the design of Tulip. Our FAD
can also be affected by the loss correlation. However, as we
will discuss in Section III-B.2, we can put enough interval
between the fragmented packets so that their loss correlation
is small.

III. Source-only Diagnosis

In this section, we first present our design to improve
Tulip. Then we propose to apply fragmented packet based
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measurements to do link-level diangosis. We propose two
such FAD schemes. One is based on an extra algebraic
loss rate equation introduced by packet fragmentation. We
call it Algebraic FAD, or AFAD. The other explores the
opportunity that most of the loss rates on the Internet paths
are not very large. We term it Opportunistic FAD, or OFAD.
We first introduce the basic ideas for each approach to
distinguish the forward loss and reverse loss. Then we extend
them to achieve link-level diagnosis, and discuss practical
issues, such as the packet loss correlation as well as our
solutions.

A. Improvement to Tulip

We design the following scheme to improve Tulip. We
use the same notations in Section II. In addition, let n′ be
the expected number of cases that we received both response
packets triggered by the two short packets (Packets 1 and 3).
Thus n′/m gives P (X1 = 1, X3 = 1)×P (Y1 = 1, Y3 = 1).
Then we can estimate the forward loss rate as:

p̂f = n/m
n′/m = P (X1=1,X2=0,X3=1)×P (Y1=1,Y3=1)

P (X1=1,X3=1)×P (Y1=1,Y3=1)

= P (X1=1,X2=0,X3=1)
P (X1=1,X3=1)

= P (X2 = 0|X1 = 1, X3 = 1)

(1)

We use the assumption that the transmission (or loss) on
the forward path and the reverse path is independent in the
deduction [10, 11]. This estimate is no longer affected by the
reverse path loss rate, and thus has better inference accuracy,
especially for these paths which are very lossy as shown
in Section VI-C.2. On the other hand, this improved Tulip
scheme still suffers from the packet loss correlation problem
which is inherent to the use of IP-ID to differentiate loss on
the forward path vs. on the reverse path. So next, we will
introduce our FAD schemes to overcome this problem.

B. AFAD for Forward Path Diagnosis

1) Basic Algebraic Idea: Assume p, pf and pr are
the loss rate of the round-trip path, the forward path and
the reverse path respectively. Given only support from the
source, we can easily get the route-trip loss rate (p), e.g.,
using ping. Thus we can obtain the following equation with
two variables:

(1 − pf ) × (1 − pr) = 1 − p (2)

However, if we can somehow change such “one request
to one response” pattern, we can obtain more equations. For
example, imagine there is an scenario that each probe from
the source has i packets, and only when all of the packets
are received, the destination will send back j replies (i 6= j).
When the loss of the packets are random and independent,
we get a new equation (p′ is the new round-trip loss rate)
as follows.

1 − p′ = (1 − pf )i × (1 − pr)
j (3)

Given Equation 2 and 3, we can easily solve the two
variables pf and pr. However, we leverage on an assumption
that the loss of packets are not correlated. This assumption
may not always be true, and we will justify it in the next
subsection.

There are many methods to implement the above idea,
i.e., to introduce Equation 3. For example, if the destination
provides http service, we may be able to send one http
request for a large web page (or a figure) and then get
many replied packets. Unfortunately, Internet routers usually
do not open any TCP service to unauthorized users. To
achieve link level diagnosis, we need to seek some prevalent
responses from routers as well as end hosts. IP fragmentation
is the best candidate that we find so far.

Internet Protocol allows IP fragmentation so that data-
grams can be fragmented into pieces small enough to pass
over a link with a smaller MTU (Maximum Transmission
Unit) than the original datagram size [12]. A router does not
reassemble IP fragments while forwarding. But routers and
end hosts reassemble fragments if they are the destination.
Take ping for example, if an ICMP Echo Request datagram
is split into two fragments at the prober and sent to a host
(a router or an end host), the host will reply with an ICMP
Echo Reply only when it can reassemble the ICMP Echo
Request, i.e., when it gets both the fragments. By doing so,
we actually obtain a case of Equation 3, where i = 2 and
j = 1.

2) The Impact of Packet Loss Correlation and its Solu-
tion: To achieve Equation 3, we make an assumption that
the loss of packets are uncorrelated. In this section, we study
such assumption and propose countermeasures when it is
violated.

In our specific scheme of using IP fragmentation, we split
a probing packet into two fragments F1 and F2. Let Xi be
the random variable of whether Fi is received by the probed
destination. We set Xi = 0 when Fi is lost, and Xi = 1
otherwise (i = 1, 2). Therefore,

P{X1 = 1} = P{X2 = 1} = 1 − pf .

When we consider the correlation of the loss of the two
fragments, Equation 3 is changed to be:

1 − p′ = P{X1 = 1} × P{X2 = 1|X1 = 1} × (1 − pr)
= (1 − pf ) × P{X2 = 1|X1 = 1} × (1 − pr)

(4)

By manipulating Equations 2 and 4, we can get the value
of P{X2 = 1|X1 = 1}. We actually use P{X2 = 1|X1 =
1} to estimate pf , i.e.,

p̂f = 1 − P{X2 = 1|X1 = 1}

= P{X2 = 0|X1 = 1}
(5)

From the above equation, it is clear that we use the
conditional loss to estimate the loss rate. When there is
no correlation between the loss of the two fragments, i.e.,
X1 and X2 are independent, P{X2 = 0|X1 = 1} = pf
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and our estimation is unbiased. However, if X1 and X2

are dependent, our estimation is biased and the inaccuracy
depends on the degree of correlation.

Many previous studies show that Internet packet loss has
short-term correlation [10, 11, 13]. Bolot found that the
loss of probe packets are essentially random when the probe
traffic uses a small fraction of the available bandwidth [13].
Most recent work of Zhang et al. show that 27% of measured
paths have uncorrelated loss, while the remaining paths show
significant loss correlations under timescale of 500-1000ms.
In addition, both [10] and [11] found that loss rates in
a path’s two directions are weakly correlated or completely
independent.

One straight-forward way to break the loss correlation
between two fragments is to have their sending interval
sufficiently large. In [12], the lower bound on the reassembly
waiting time is recommended as 15 seconds, which is much
larger than the correlation timescale of packet loss. Thus if
we choose the interval between two fragments as 1000ms,
we can have an unbiased and accurate estimate of the path
loss rate.

However, in practice, the interval between two fragments
of an IP datagram affects the probing frequency we can take.
The buffer allocated by routers to reassemble fragments is
limited, as the main task of routers is forwarding instead of
receiving as an end host. This means a router can buffer only
a few first-half fragments at the same time. For example, if
a router can buffer 100 fragments of different IP datagrams,
and the interval between the two fragments of a datagram
is one second, then the first-half fragment of the 101st
datagram should be sent later than the time that the first
datagram is reassembled. This means in one second there
are at most 100 probes sent out.

In fact, one second interval is a very conservative upper
bound of the loss correlation. As we show in Section VI,
even the interval of packets are much less than one second,
the estimation error introduced by correlation is very small,
and thus we can achieve accurate diagnosis while having
enough probing frequency.

C. OFAD for Forward Path Diagnosis

P1

P2

R12

(a)

P2'

P1

P2

(b)

P2'

R12'

Fig. 1. Inferring loss in OFAD

Inspired by Tulip, we de-
signed OFAD as follows.
In one probe, we create
two datagrams (datagram 1
and 2) with the same IP-
ID, which share the same
first k bytes of IP payload.
Therefore, when we split
each datagram into two
fragments, we can have
a common first-half frag-
ment 1. As shown in Fig-

1Checksum of ICMP, UDP or TCP payload of the two datagrams should
be the same, which can be achieved by carefully padding the payload.
Alternatively, we can create two datagrams with the same second fragments.

ure 1, we send these three packets with certain interval:
the first one (packet 1) is the common fragment, which is
usually small; the second one (packet 2) is the second-half
fragment of datagram 1; and the third one (packet 2’) is the
second-half fragment of datagram 2. If receiving packet 1,
the destination will assemble a datagram (either datagram
1 or datagram 2) when receiving either packet 2 or packet
2’. The reassembled datagram will trigger a response to the
source with enough information to tell which datagram has
been reassembled. Once datagram 2 is assembled (case (b)
in Figure 1), we are sure that both packet 1 and packet 3
are transmitted successfully while packet 2 is lost on the
forward path.

Let’s denote Xi = 0 when forward packet i is lost and
Xi = 1 otherwise. Y = 0 means the response packet is lost
and Y = 1 otherwise. Then the probability of receiving the
response to datagram 1 is P (X1 = 1, X2 = 1)×P (Y = 1).
The probability of receiving datagram 2 is P (X1 = 1, X2 =
0, X2′ = 1) × P (Y = 1). Let n be the expected number of
received response of datagram 1 , and n′ that of datagram
2. Then we have

n
n+n′

= P (X1=1,X2=1)×P (Y =1)
P (X1=1,X2=1)×P (Y =1)+P (X1=1,X2=0,X

2′=1)×P (Y =1)

= P (X1=1,X2=1)
P (X1=1)(1−P (X2=0,X

2′=0|X1=1))

≈ P (X1=1,X2=1)
P (X1=1) = P (X2 = 1|X1 = 1)

(6)
In the above deduction, we assume P (X2 = 0, X2′ =

0|X1 = 1) to be close to 0, which is true when the loss is not
very large. The loss rate of forward path pf is P (X2 = 0).
When there are loss independence between packets 1 and 2,
we have p̂f = 1 − n

n+n′
= n′

n+n′
. The resulting conditional

probability is similar to that of Tulip. However, unlike Tulip,
we can choose large interval between these probe packets
to achieve small loss dependence for OFAD. Thus OFAD
is more accurate than the improved Tulip as verified by the
evaluation in Section VI-C.2.

Packet reordering may introduce some potential false loss
rate detection in OFAD. For example, if no packets are
lost but packet 2’ arrives before packet 2, OFAD considers
this as a case of packet loss. In practice, the reordering
problem does not affect OFAD too much. As the intervals
between packet 2 and packet 2’ in OFAD can be relatively
large (e.g. 100ms) to reduce the packet loss correlation,
the reordering problem seldom happens. Actually, if the
response to datagram 2 is received by the source before
packet 2’ is sent out, packet 2’ is saved. For example, the
program can first estimate the round-trip latency with a few
probes and set the interval between packet 2 and packet 2’
to be larger than the round-trip latency, if the latency is
relatively small (e.g. < 500ms).

D. Link-level Diagnosis of FAD (both AFAD and OFAD)

Given the capability of identifying the loss rate of forward
paths, it is straightforward to achieve link-level diagnosis.
For example in Figure 2, suppose we can identify the loss
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rate of forward paths p1 and l1. We can infer the loss rate of
link l2 by solving the equation 1−p1 = (1− l1)×(1− l2). 2

Similarly, we can identify the loss rate of each link along
the end-to-end path from the source to the destination, no
matter how many hops the path has. However, there are
three practical issues we need to address: selection of FAD
probes to be supported by routers, security problem of using
IP fragmentation and the prefix subpath problem. Next, we
discuss them as well as their solutions.

1) FAD Probes Widely Supported: If a router does not
respond to the probes or respond in an unexpected manner,
its related link cannot be diagnosed. Then we can only
diagnose some link sequence and the diagnosis granularity
will be affected. Fortunately, IP fragmentation is executed
at the network layer and it does not have any limit on the
higher layer protocols. This gives us the flexibility to explore
any kind of probes that a router or an end host reacts. Some
possible probes are ICMP Echo Request, ICMP Timestamp
Request, UDP probe and TCP probe.

Our IP fragmentation based approaches only have two
requirements: 1) routers support IP fragmentation, 2) routers
respond to any of the four probes listed above. In Section
VI-A, we show that more than 80% of routers satisfy both
requirements.

It is worth mentioning that IPv6 does not support frag-
mentation any more, which means FAD cannot be applied
to IPv6 network. Actually, this big evolution will invalidate
many measurement tools, such as Tulip. IPv6 does not allow
fragmentation and there is no IP-ID field in IPv6 packet
header. However, it is predicted that there will be a slow
adoption of IPv6 (especially in North America) and even
adopted, both will co-exist for a long time [14].

2) Normal Amount of Normal Fragmented Packets Ac-
ceptable: Another concern on using IP fragmentation is the
security issue. There were some security problems related
to IP fragmentation, such as Ping of Death Fragmentation
Attack and the Teardrop Attack [15]. Also, tiny fragments
or overlapping fragments were used to bypass firewalls to
gain access to victim hosts. However, normal IP fragments
as those we use in measurements, will not cause any security
problems. Considering the fact that routers and firewalls may
spend more time processing fragmented packets than normal
packets, large amount of probing should be avoided. Since
we do not want our measurements to cause any congestion,
we always send small amount of fragmented probes such
as five per second, which has been proved to work well in
most routers as shown in Section VI-A.3.

3) Prefix Subpath Problem and Its Solutions: Internet
routing often does not take the shortest path and there is big
difference between intra- vs. inter-AS routing. Therefore the
routing path from the source to an in-between router on an
end-to-end path may not be the prefix subpath of the end-
to-end path from source to destination (we call it the prefix
subpath problem). Figure 3 shows a case that the target end-

2We use the same notation for the path (or link) and its loss rate.
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Fig. 2. Example of link level diag-
nosis.
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Fig. 3. Example of the prefix sub-
path problem.

to-end path is S → A → B → C → D, while the routing
path from S to B is S → E → B and the path from S
to C is S → E → B → C. In this case, the loss rate of
link C → D can not be inferred by the loss rate of path
S to D and path S to C. This prefix subpath problem is
pretty common in Internet routing, because Internet routing
is a combination of inter-domain routing (BGP) and intra-
domain routing. In this example, we can only diagnosis the
link S → A and the link sequence A → B → C → D on the
end-to-end path. In FAD, traceroute is executed toward each
router in the end-to-end path to identify the prefix subpath
problem.

To solve this prefix subpath problem, we propose the
following approach. We can infer the loss rate of a prefix
subpath of the end-to-end path indirectly. Considering the
above example, we show how to infer the loss rate of path
S → A → B. Assume the routing path from B back to S
is B −→ S. As mentioned in Section III-B, we can get the
loss rate of the reverse path (B −→ S), say pα, as well as
that of the forward path (S → E → B) by sending probes
to router B. At the same time, we also send non-fragmented
probes to the end host D while limiting TTL to be 2 (the
same as traceroute). This new probes will traverse the path
S → A → B to B and be replied via path B −→ S.
This probe will tell us the total loss rate of the round-trip
S → A → B −→ S (say pβ).

Some routers have severe rate limit on the generation of
ICMP TTL Exceeded packets. To solve this problem, we
also send a small control packet with the same TTL after
each probe to check if rate-limiting happens. This is similar
to the approach used in Tulip [1] to measure round-trip loss
rate in face of rate-limiting. Note that we assume in all
the probes the reverse path B −→ S is always the same.
This is generally true, if Internet route is stable. Thus given
the loss rate of the round-trip S → A → B −→ S, pβ,
and the loss rate of B −→ S, pα, we can compute the
loss rate of path S → A → B as 1 − (1 − pβ)/(1 − pα).
Clearly, This approach solves the prefix routing problem and
thus the diagnosis granularity is not affected. The tradeoff is
that we need to measure more paths and hence with larger
measurement overhead.

IV. Source+Destination Diagnosis

As shown in Section VI, FAD is highly accurate to infer
the link-level loss rate. However, not all routers support
fragmentation, and hence FAD cannot diagnose each indi-
vidual links. In this section, we present the Striped Probe
Analysis (SPA) to achieve the diagnosis granularity up to
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each physical link. SPA requires support from both source
and destination, but not any internal routers.

As shown in Figure 4, in SPA, we send two packets in a
stripe: packet 1 is sent to the destination D with large enough
TTL, and packet 2 is sent to D with a pre-configured TTL so
that router R will send back “ICMP TTL-Exceeded error”
message. By checking the logs on host D and the received
ICMP messages, SPA can estimate the forward transmission
(or loss) rate from S to R as follows.

Let X , Y and Z be corresponding random variables
of the path segments S → R, R → D and R → S.
The random variable is one if the packet goes through
the corresponding path segment successfully and is zero
otherwise. For example, X1 = 0 means the packet 1 in
the stripe is lost on path segment S → R.

Based on received packets and responses on end hosts
S and D, we know the transmission success rates on path
S → R → D (P (X1 = 1, Y1 = 1)) and on path S →
R → S (P (X2 = 1, Z2 = 1)), and the probability of the
whole stripe is transmitted successfully is P (X1 = 1, Y1 =
1, X2 = 1, Z2 = 1).

If we assume that the transmission on different path
segments are independent, the transmission rate of path
segment S → R can be estimated as:

q̂1 = P (X1=1,Y1=1)×P (X2=1,Z2=1)
P (X1=1,Y1=1,X2=1,Z2=1)

= P (X1=1)
P (X1=1|X2=1)

(7)

If the transmission success correlation of the packets in a
stripe on path segment S → R is 1 (i.e., P (X1 = 1|X2 =
1) = 1), this estimation is unbiased. To achieve such strong
correlation, the two packets in a stripe should be sent back-
to-back.

Since R is selected by the TTL value, SPA can actually
infer the loss rate from S to every intermediate router on
the path S → D as long as the router can generate “ICMP
TTL-Exceeded” messages. Hence, every router that responds
to traceroute supports SPA and the diagnosis granularity of
SPA reaches the lower bound of any diagnosis scheme that
relies on traceroute.

Such correlation based statistical inference is also used
for network tomography [4] which inspired our design of
SPA. As the classical two leaf tree topology shown in
Figure 5, S, D1 and D2 are the end hosts while R is
a router. To infer the loss rates from S → R, S sends
a few back-to-back packets (called a stripe) to D1 and
D2 respectively. This is analogous to the D and S in

our problem. However, their approach usually requires an
infrastructure (i.e., multiple destinations) to cooperate for
diagnosis. The diagnosis granularity is the unit of virtual
link (i.e., the sequence of links without branching point),
which depends on the size of the infrastructure and is usually
much larger than the close-to-1 granularity (each physical
link) achieved by SPA.

V. Measurement Evaluation Methodology

In this section, we describe some of our measurement
methodologies. We first discuss the choice of probing packet
length, then how to calibrate the measurement results given
the statistic nature of measurements. Finally, we list the
evaluation metrics of link-level diagnosis, which will be
further used in the next evaluation section.

A. Packet Probe Size Selection

In this section, we study whether the packet length affects
the loss rates and what length we should use for represen-
tative loss rate measurements. Obviously, to save the active
measurement overhead, we prefer to send out short probing
packets. For example, we save about 97% measurement costs
if we use 40-byte probes to take the place of 1500-byte
probes. If the loss rates of different packet lengths on the
same paths are different, we may have to use the probes of
the same length as used by the targeting application.

We deployed UDP senders and sinkers on 120 randomly
chosen PlanetLab hosts and measured the 14,280 paths
between them. For each measured path, the sender sends
out UDP packets of five different lengths, i.e., 40, 200,
576, 1000 and 1500 bytes. The measurement of a path
takes about 200 seconds, and we send 1000 probes for each
packet size. As shown in [16], the majority of the packets
seen are one of three sizes: 40 byte packets (the minimum
packet size for TCP) which carry TCP acknowledgements
but no payload, 1500 byte packets (the maximum Ethernet
payload size) from TCP implementations that use path MTU
discovery, and 576 byte packets from TCP implementations
that don’t use path MTU discovery. We also consider the
packet lengths of 200 bytes and 1000 bytes, which are
the middle lengths between these three outstanding packet
lengths.

We consider both the direct loss rate difference and rela-
tive loss rate difference. For example, let the loss rate of 40-
byte packets be l40 and that of 1500-byte packets be l1500.
The loss rate difference is l40 − l1500 (we always subtract
the loss rate of long packets from that of short packets) and
the relative loss difference is (l40 − l1500)/ max(l40, l1500).
Figures 6 and 7 show the histograms of the loss rate
difference and relative loss rate difference between packet
sizes of 40 bytes, 576 byes and 1500 bytes. We ignored
the results involving packet sizes of 200 bytes and 1000
bytes, because they follow the clear relationship between
packet size and loss rate, which can be observed in our
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Fig. 6. Histogram of loss rate difference between size 40, 576 and 1000.

presented results. From Figures 6 and 7, it is clear that in
some paths the loss rate of the long packets is larger than
that of the short packets. In the extreme cases, the loss rate
of 40-byte packets is 0 while that of 576-byte or 1500-byte
packets is significantly larger than 0. For example, in about
45% of cases, the relative loss difference between 40-byte
packets and 1500-byte packets is about -0.95%. There are
some interpretations on the phenomena. In [1], the authors
mentioned that routers are more likely to drop long packets,
perhaps due to the lack of buffer space. Another possible
reason is the artifact of the bandwidth limiting policy of
PlanetLab hosts. PlanetLab hosts are more likely to drop
long packets when (shared) bandwidth is limited or the nodes
are overloaded. To filter out the potential bias introduced by
PlanetLab, we also used PING to measure the round-trip
loss rate from the source to the first hop router for each
sender. We remove all the paths that loss are observed on
the round-trip paths from the senders to the first hop routers.
We find that the relationship between packet size and loss
rate does not remarkably change, no matter whether we do
this filtering. Also shown in the figure, there are some paths
on which short packets have similar or even larger loss rates
than long packets. From the cumulative distribute function
of (relative) loss rate difference (See Figures 8 and 9), on
about 20-30% of paths the (relative) loss difference is non-
negative. And in a few cases, the relative loss difference is
close to 0.8. Currently, we do not have an explanation other
than measurement errors for these extreme cases, as we are
not aware of any scheme that prefers to drop short packets
over long packets. In summary, in PlanetLab network, the
loss rate of a path is likely to be related to the packet size.
While using short probes may reduce measurement cost, you
may miss some loss events that can be observed by large
probing packets. In our evaluation part (Section VI), we infer
the loss rate of 1500 bytes unless otherwise mentioned. And
the default probe rate is 1000 probes sent in 200 seconds.

B. Calibration of Loss Rate Inference

Under ideal circumstances, as we extend the path seg-
ments, the loss rates only increase (if the newly included link
or links are lossy) or stay the same (if the new link or links
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have no loss), but they should never decrease. Therefore,
the loss rates of the path segments on a end-to-end path
make a step function of the length of the path segment
(See Figure 10). In reality, loss rate measurements may have
some measurement errors, and hence the inferred loss rates
of forward path segments may also have some errors. If
we assume that the loss rate measurements are independent
binomial experiments (as in [17]), then the measured loss
rate has a binomial distribution. If the loss rate of the
path is p and n probes are sent with Poisson intervals, the
variance is p(1− p)/n, and therefore the standard deviation
is

√

p(1 − p)/n. For example, if p = 0.05 and n = 1000,
then the standard deviation is about 0.7%. With a probability
of 95%, measured loss rates are within (0.0365, 0.0635).
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The variance of the inference schemes is related to the
variance of the simple loss rate measurement process, but it
could be much more complicated. Meanwhile, some routers
may have unexpected behaviors, which may result in some
remarkable inaccuracy in loss rate inference. For example,
if a router has strict rate-limiting on ICMP packets and we
can only receive 10 responses out of 1000 probes, we cannot
trust any inference result from this measurement. Figure 10
shows an example of the inferred loss rates of the forward
path segments. As shown in Section VI-C.3, these loss rate
diagnosis schemes are consistent in most cases, which means
a path segment usually has no less loss rate than its sub-
path segments. But there are exceptions, which are probably
caused by measurement variance or some unexpected events.
Our objective of calibration is to fit the data into a step
function, which helps remove measurement outliers, and
reveals the location as well as the loss rate of lossy links (as
in Figure 10).

We first preprocess the data and filter out some outliers
that may be caused by unexpected behaviors of routers (such
as rate-limiting on replying ICMP packets). Here are some
heuristic schemes as follows.

• For a path segment, we infer the forward loss rate
while at the same time measuring the round-trip loss
rate. If the round-trip loss rate of a path segment is
much larger than those of other path segments
(especially longer path segments), then it is quite
possible that this measurement suffers rate-limiting or
there is outstanding loss rate on the reverse path. In
either case, the loss rate inference on the forward path
segment is prone to be inaccurate, and we discard the
data point before fitting to the step function.

• For each diagnosis scheme, there are assumptions. If
an assumption is violated in a measurement, this
measurement will be discarded. For example, if
obvious reordering of packets is found in a Tulip
measurement, this measurement will be filtered. For
AFAD, if the inferred forward loss rate is much larger
than the round-trip loss rate, this may be caused by
the special rate-limiting only on fragmented packets,
and hence the corresponding data pointer is removed.

After preprocessing the data, the next step is to fit the
loss rates of the path segments to a step function. In [18],
a dynamic programming approach is introduced to fit gap
sequences into a step function. The situation in [18] is
similar to ours, and we adopt the approach proposed in [18].

C. Metrics

We consider the following two metrics:

• Diagnosis granularity: We define a router on an
end-to-end path to be diagnosable if we can infer the
loss rate of the forward subpath (of the end-to-end
path) from the source to the router. A path segment
between two diagnosable routers is a diagnosable
segment. Diagnosis granularity of a single path is
defined as the weighted average of the lengths of its
diagnosable segments, as used in [1]. For example, if
an 8-hop path has two diagnosable segments of
length 3 and 5, the granularity of the path is
(32 + 52)/8=4.25. This metric represents the expected
length of diagnosable lossy segments if a lossy link
distributes in the path randomly.

• Accuracy: To compare the inferred loss rate p̂f with
the real loss rate pf of the forward path, we use both
the estimation error (p̂f − pf ) and the relative error
Fε(pf , p̂f ) defined as follows:

Fε(pf , p̂f ) =
|p̂f − pf |

max(ε, pf )

We choose ε as 1%, which is used to avoid the
division by zero problem.

VI. Measurement Evaluation Results

We implemented AFAD, OFAD, Tulip and SPA, and de-
ployed them in the Internet for evaluation. In this section, we
first present the results on the prevalence of router support,
and then analyze the diagnosis granularity and accuracy
results. We consider both individual diagnosis schemes and
various combinations of them for evaluation.

A. Prevalence of Router Support

In this subsection, we study how widely FAD is supported
by Internet routers. In the next subsection, we compare the
diagnosis granularity of FAD and other schemes.

1) Router Collections: To obtain a large number of router
IP addresses, we randomly generate destination IP addresses,
run traceroute to these IPs and collect routers on the paths
from a computer in our institute. We filter the paths with
length less than 8 hops because in most cases, short paths
are due to failures of route to the random IP (e.g., the
IP is in an unassigned IP block). We measured altogether
72,874 paths in March 2006, which involved 64,320 router
IP addresses. The number of routers is smaller than the
number of paths, because some paths may find same routers
(Note that end hosts are not counted). In most cases (93.3%
of paths), traceroute cannot give all routers on the path. The
last several hops are usually “* * *”. The main reason is that
these randomly generated IPs can be unused IPs, and thus
traceroute cannot find the destinations. The average length
of all the traceable sub-paths is about 15.1 hops, which is
close to the typical path length in the Internet [19].



9Echo Timestamp UDP TCP Any
1 source 85.3% 69.2% 64.5% 71.7% 88.2%

11 sources 87.3% 72.3% 70.7% 73.3% 90.1%

TABLE I

ROUTER RESPONSE TO DIFFERENT PROBES

2) Support of Different Probes: We sent 5 packets for
each of the four types of probes listed in Section III-D.1 to
these 64,320 IPs from multiple sources. We use 10 PlanetLab
nodes and one PC in out institute as the sources in our
experiments. Table I shows the fraction of responsive routers
for different types of probes. For example, if only the source
in one major university is used, we find that 85.3% of routers
respond to ICMP Echo and 69.2% of routers support ICMP
Timestamp requests. About 88.2% of routers reply to at least
one type of probe. If all these sources are used, the number
of responsive routers will increase about 2% to 5%. For
UDP, responsive routers increase most when the number of
sources increases. This is partially because UDP probes are
severely rate limited by routers and thus are likely to be
affected by cross traffic.

3) Support of IP Fragmentation: Although IP frag-
mentation is required to be supported by both routers
and end hosts in IPv4 networks, we find that in prac-
tice about 90.3% of routers that respond to at least one
type of probes support IP fragmentation. Thus altogether,
about 80% of routers support FAD. This means FAD is
widely supported by the current IPv4 Internet. By ex-
amining the routers that do not support IP fragmenta-
tion, we find many of them are from sprintlink.com,
verizon-gni.net, cox.net, wcg.net, telia.net
and atlas.cogentco.com. However, these routers usu-
ally do not filter IP fragments, which means they forward IP
fragments as common IP datagrams. Also, we find that the
buffer size of routers to reassemble IP fragments are usually
larger than or equal to 10 packets.

4) Degree of Rate Limiting on Responses: It is well
known that ICMP packets are prone to being rate limited.
ICMP rate limiting may significantly affect the router re-
sponse based approaches because the dropped ICMP packets
will be counted in the packet loss of the paths. We select
8,000 routers that support all four kinds of probes from
the router pool and send probes to them with a frequency
of 100Hz. We find that for ICMP Echo, ICMP Timestamp
and TCP probes, more than 99% of routers allow a rate of
100 probes/sec, as we receive the responses with negligible
losses. However, UDP probes to more than 60% of routers
suffer severe rate limiting. Therefore it seldom suffers rate-
limiting to use ICMP Echo, ICMP Timestamp and TCP
probes for diagnosis, especially when the probe frequency is
low (e.g.10 probes/s). In addition, when one type of probe
suffers rate limiting, we may still be able to switch to another
kind of probe which does not have this problem.

B. Diagnosis Granularity Results

1) Results of Individual Schemes: Based on the defini-
tion, in the ideal case, if all the routers that are discovered
by traceroute are diagnosable, we achieve the finest diag-
nosis granularity. This is the lower bound of any diagnosis
approach that leverages on traceroute, at least to find the
router. This is also the lower bound of almost all Internet
tomography approaches. SPA can reach this lower bound
because SPA only requires that the routers support the ICMP
TTL-Exceeded packets.

By testing whether a router supports fragmented probes,
we get the diagnosis granularity of FAD approaches. We
exclude all the routers that only support UDP probes because
“ICMP Port Unreachable” packets are usually rate limited
(See Section VI-A.4). Note that a Planetlab host does not
allow users to send out fragmented packets, but it does the
fragmentation itself when the packet length is larger than
the MTU (usually 1500 bytes). Similarly, we obtain the
diagnosis granularity of Tulip by checking which routers
support IP-ID.

To compare the diagnosis granularity of Tulip, FAD and
SPA, we check the granularity of these schemes on the same
set of paths. Note that if all the tested paths are from the
same source, these paths usually share long prefix paths.
Thus the diagnosis granularity comparison is biased and
heavily depends on the routers close to the source. Therefore,
we randomly select 60 PlanetLab hosts, and each of them
runs traceroute to 500 random IP addresses. Then altogether
we have 60 sources and 30,000 destinations.

Figure 11 shows the cumulative distribution function
(CDF) of the diagnosis granularity of different schemes. The
average diagnosis granularity of SPA is about 1.09 hops,
which means nearly every physical link is diagnosable. For
FAD, the average diagnosis granularity is 2.74 hops because
not all the routers support IP fragments. The median of
diagnosis granularity is 1.88 hops. With Tulip, the average
diagnosis granularity is 2.71 hops, which is slightly better
than that of FAD, but the median is 2.24 hops, which
is larger than that of FAD. That is, although FAD has
better diagnosis granularity for most of the paths, for about
10%-20% of paths FAD has very large granularity. This is
because, as shown in Section VI-A.3, some ISPs tend to
disable IP fragmentation on most of their routers. So when
a path goes through such ISPs, it includes a long diagnosable
path segment composed of routers in such ISPs. This leads
to large path diagnosis granularity because the metric of
granularity gives more weight for long diagnosable path
segment than shorter ones, as in its definition.

2) Results of Combined Schemes: Different diagnosis
schemes rely on different probe response support of routers.
Thus the combination of them is very likely to have better
diagnosis granularity. In Section VI-C.2, we also show
that such combinations can improve the loss rate inference
accuracy.

SPA has the finest possible diagnosis granularity and
cannot be improved further. For the source-only schemes,
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Tulip and FAD, there are multiple ways of combining
them. One simple combination of FAD (OFAD or AFAD)
and Tulip is to select the scheme with the finer diagnosis
granularity for the target path. For example, given a path, if
the diagnosis granularity of FAD is three and that of Tulip is
two, we will use Tulip for that path and hence the diagnosis
granularity is two. The resulting diagnosis granularity of
this approach is shown in Figure 11 as “FAD+Tulip-1”. The
average diagnosis granularity is improved to 1.76 hops, and
the median is 1.5 hops. The more aggressive combination
is to consider a router diagnosable if the router supports
the probe response packet either for FAD or for Tulip. This
hybrid scheme gives the best diagnosis granularity that the
combination of FAD and Tulip can offer, but as discussed
in Section VI-C.2, it can be a complicated problem to
determine the loss rate of each diagnosable path segment.
We show its diagnosis granularity as “FAD+Tulip-2” in
Figure 11 with mean being 1.38 hops and median 1.19 hops.

C. Diagnosis Accuracy Results

In this section, we first study the packet transmission
correlation on the Internet and how it is affected by packet
transmission intervals. This is important to understand the
limitation of Tulip and to choose the interval parameter for
FAD. Then we evaluate the accuracy of different schemes
through path-level experiments due to lack of the ground
truth on link-level loss rates. Finally, we run the link-level
loss rate inference and show the consistency test results.

1) Packet Transmission Correlation: Packet transmission
(or loss) correlation is a very important factor that affects the

accuracy of SPA, Tulip, OFAD and AFAD. In this section,
we study how it varies with different time intervals between
packets.

We randomly choose 100 PlanetLab hosts and randomly
measure 5000 paths between them with a probing frequency
of 20Hz. We calculate the packet transmission correlation
coefficient (p̂f ) of certain time intervals (50ms, 100ms,
200ms and 400ms) of each experiment. As most Internet
paths are no loss, we exclude all the paths with loss rate
less than ε (1% as defined in Section V-C) and only consider
the lossy paths. Figure 12 shows that when the interval is
as small as 50ms, in about 80% of paths the transmission
correlation coefficient is close to 0, which means the trans-
mission correlation is negligible. A larger interval such as
400ms has a small correlation, however, the improvement
is marginal. About 20% of paths show strong transmission
correlation. After manually checking them, we found that
these are caused by long loss episode in these paths. One
possible reason is that PlanetLab hosts have strict traffic rate
limiting, and thus long loss episode happens when network
traffic is above the quota.

2) Path-Level Accuracy Evaluation: Basically, there are
two major sources of inaccuracy: transmission correlation
and measurement errors. SPA desires strong transmission
correlation, while AFAD, OFAD and Tulip prefer transmis-
sion correlation to be as weak as possible. Since it is hard
to get the real loss rates of Internet links as the ground
truth for validation, we apply a path-level validation for these
schemes. Once the schemes have accurate loss rate inference
on the forward path, it is very likely that they can achieve
accurate link-level diagnosis as well.

To this end, we implemented the application level FAD,
Tulip and SPA with UDP packet probes. For example, one
fragmented packet is implemented with two UDP pack-
ets, with each containing a certain payload to indicate its
role. Similarly, the destination will simulate the reassembly
process and respond with another UDP packet when two
“UDP fragments” of one datagram are received successfully.
Tulip control packets are also UDP in the application-
level evaluation. The consecutive IP-ID is simulated by the
payload of UDP packets. By introducing this application-
level simulation, we bypass the problem that PlanetLab hosts
do not allow IP fragmentation. In addition, we do not have
the rate-limiting problem of routers.

We randomly selected 120 PlanetLab hosts and measured
the 14,280 paths between these PlanetLab nodes. We did
the experiments twice in Jul 2006, so 28,560 paths were
measured altogether. We send 1000 probes 3 for each of the
four schemes in 200 seconds. Tulip and the improved Tulip
(marked as “I-Tulip”) use the same measurements and they
only differ in the loss rate inference. The probe frequency
is low because we measure these four schemes at the same
time for each path and higher probe frequency can easily
trigger the rate-limiting of the PlanetLab hosts. The interval

3A probe may have different number of packets for different schemes.
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between the two fragments of a probe in AFAD is 100ms,
while the interval between the three fragments of a probe in
OFAD is 50ms. Among all the measured paths, a majority of
them have no loss or very low loss rate, and a few paths are
obviously rate-limited by the PlanetLab hosts. By removing
them, we have 5136 paths with round-trip loss rate of no
less than 0.5% which are used for accuracy evaluation.

Results of Individual Schemes: Figures 13 and 14 show
the inference errors of the individual schemes. I-Tulip is
slightly better than Tulip in our experiments because most
paths have very small loss rate, and hence the improvement
of I-Tulip is not obvious. Clearly Tulip, I-Tulip, OFAD
and SPA are prone to underestimate the loss rate. This
is because of the intrinsic bias of these three schemes.
AFAD does not show an obvious trend to underestimate
or overestimate loss rate. First, this again confirms that
the transmission correlation is small with reasonably large
packet intervals. Second, the measurement error is the main
source of inaccuracy for AFAD. By manually checking the
data, we find that AFAD tends to be inaccurate in the case
that the reverse path is quite lossy while the forward path
is good. When there exists a certain measurement error on
the reverse path, this measurement error is brought into the
loss inference on the forward path in AFAD. For example,
if the reverse path has a loss rate of 10% and there is no
loss on the forward path, it is possible that the round-trip
loss rate of a fragmented probe is 11% while that of a non-
fragmented probe is 9%. Therefore, the forward path loss
rate is inferred as about 2%. Comparing these four schemes,
OFAD is the most accurate one, while SPA is the least
accurate one. Overall, Tulip and AFAD are similar, although
there are different reasons for their inaccuracies.

Figures 15 and 16 show the inference accuracy of these
schemes on very lossy paths. We consider the paths with a
round-trip loss rate larger than 10%, of which there are 322
paths. These figures clearly show that the major estimation
errors of AFAD are caused by measurement errors. In some
cases, the absolute errors of AFAD are not large while the
relative errors are very large because the forward path has
nearly no loss. I-Tulip is shown to be slightly better than
the original Tulip, as the transmission correlation is still the
major source of inaccuracy for Tulip. SPA has an accuracy
similar to that of Tulip on these paths, and OFAD is still the
most accurate scheme.

Results of Combined Schemes: In Section VI-B.2, we
show that the combination of source-only diagnosis schemes
can significantly improve their diagnosis granularity. In this
section, we investigate whether a similar combination (in-
cluding both source-only and source+destination schemes)
can improve their accuracy as well.

The four individual schemes (SPA, AFAD, OFAD and
Tulip) have different bias related to the transmission corre-
lation. Since the improved Tulip has better accuracy than
the original Tulip, we will use the improved scheme as
the representative for the rest of the paper and just call it
Tulip. SPA requires strong correlation to be accurate, while

OFAD, AFAD and Tulip prefer the loss to be independent.
Therefore, the question is how to combine these schemes to
improve accuracy.

Since SPA, OFAD, and Tulip tend to underestimate the
loss rates, we design a simple hybrid approach as follows.
When both individual schemes (e.g., SPA and OFAD) give
loss inference for certain segments, we choose the larger
one as the real loss rate estimation. However, when each
scheme give different diagnosable path segments, it can be
a complicated problem to combine the results from each
scheme because they may have different characteristics of
inference errors. Due to lack of the ground truth on link-
level loss rates, in this paper, we evaluate their path-level
performance for the combined scheme. It is part of our future
work to study the link-level performance.

Figures 17 and 18 show the estimation errors and relative
errors of combined schemes: OFAD+SPA, OFAD+Tulip, and
Tulip+SPA. Clearly, these hybrid schemes outperform the
single schemes, especially for the methods involving SPA.
In other words, SPA is a good complement to OFAD or
Tulip because when there exists long loss episode, the probe
packets will become correlated in loss, which will affect
the accuracy of OFAD and Tulip as shown in our statistical
analysis in Section III. The OFAD+Tulip scheme has similar
performance to that of OFAD because their loss rate esti-
mation approaches are similar, but OFAD is more accurate
because it can afford to choose a large interval between
fragmented packets to reduce the correlation. Similarly, we
do not show the performance of the SPA+OFAD+Tulip
combination because it is similar to that of SPA+OFAD.

3) Link-level Accuracy Evaluation: In this section, we
evaluate the link-level accuracy. Since we cannot get the
ground truth of link-level loss rates, we use two indirect
methods for evaluation. First, we take a similar consistency
check method as in [1]. That is, if an approach is measuring
the loss rate correctly, the inferred loss rates should not
decrease as we move further along the path. We use this
approach to evaluate each individual scheme. Second, since
both SPA and Tulip tend to underestimate the loss rates
of the links (which is shown both in theory and in the
experiments in Section VI-C.2), we simply consider the one
that infers larger loss rates to be more accurate. We apply
this to compare SPA, Tulip and their combination.

Internal Consistency Check of FAD: Since PlanetLab
hosts disable fragments generated by slice users, we cannot
use PlanetLab hosts to do the experiments. Therefore, we use
three common Linux hosts (one in an US university, one in
CERNET of China and one in the Comcast residential net-
work) as the sources, randomly generate 1500 IP addresses
as the destination and use the 4500 paths for evaluation.
275 paths among the measured path have a loss rate larger
than 0.5%, and we only consider these lossy paths in the
consistency check.

Figure 19 shows the CDF for all the forward loss rate
deltas of OFAD. It shows that the forward loss rate inference
is consistent. Over 80% of loss rate deltas are non-negative,
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schemes for 322 lossy paths (with loss rates
> 10%).
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Fig. 17. Estimation error CDFs of the hybrid
schemes for 5136 paths (with loss rates >

0.5%).
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Fig. 18. Relative error CDFs of the hybrid
schemes for 5136 paths (with loss rates >

0.5%).
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Fig. 19. Consistency check for AFAD and OFAD.

and most negative deltas are likely to be caused by the
statistical nature of the measurement. Similar to [1], we use
the Chi-squared test [20] to check whether the negative loss
delta is statistically significant or not. The null hypothesis is
that the two path segments have the same loss property and
the loss difference can be considered the result of a statistical
variation. With a 95% confidence interval, 92.9% of negative
loss deltas are not statistically significant; 97.8% of them are
not statistically significant with a 99% confidence interval.
We manually checked these statistically significant negative
loss rate deltas, and found that the measured path segments
usually have a much larger reverse loss rate than forward
loss rate. For example, if the forward loss rate is 2% while
the reverse loss rate is 15%, the variance may be dominated
by the reverse loss rate, which is very large compared to the
forward loss rate.

Figure 19 shows the CDF for all the forward loss rate
deltas of AFAD. It shows that the AFAD measurement is

also consistent: about 80% of loss deltas are non-negative
and the Chi-squared test shows that 91.2% of negative loss
deltas are not statistically significant with a 95% confidence
interval. Manually checking shows that large loss rate on
the reverse path is an important cause of inconsistency.
Furthermore, we observe a small number of cases in which
the forward loss rates inferred by AFAD are much larger
than those of the round-trip loss rates. Further probes show
that some routers have a rate-limit on processing fragmented
packets but not on common packets.

Internal Consistency Check of SPA: SPA does not rely
on IP fragmentation, so we can use PlanetLab host to easily
measure a large number of paths for a consistency check.
These paths are more representive because of the divergence
of the sources and destinations. In this consistency check,
we employed 115 PlanetLab hosts randomly and used SPA
to measure the paths between them. Finally measurement
data of 10,493 paths were collected. Among them, 2,325
(about 22%) paths have loss rate larger than 0.5%.

Figure 20 shows the loss rate deltas measured by SPA.
Again, the figure shows that the loss rate measured by
SPA is internally consistent. Over 75% of loss rate deltas
are non-negative and most negative loss rate deltas are not
statistically significant. The Chi-squared test shows that with
a 95% confidence interval, 94.3% of negative loss rates are
not statistically significant; the number increases to 98.1%
with a 99% confidence interval.

Internal Consistency Check of the Combination of SPA
and Tulip: While we were checking the consistency of
SPA (See the previous section), we also ran Tulip (as well
as I-Tulip) at the same time. Therefore we can check the
consistency of SPA, Tulip and I-Tulip respectively and also
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Fig. 20. Consistency check for SPA, Tulip and their combination.

the consistency of combined schemes, such as SPA+I-Tulip.
Figure 20 shows the CDF of the loss rate delta of the four

schemes. First, I-Tulip has slightly larger absolute values of
loss rate delta than Tulip, which is not surprising. From the
figure, we cannot see an obvious difference in the degree of
consistency between Tulip and I-Tulip. Also, the lines for
SPA and Tulip are overlapping, which suggests that they are
similar in terms of consistency. As for the combination of
SPA and I-Tulip (See the line “SPA+I-Tulip” in Figure 20),
we see that larger positive loss deltas are observed, as we
expected. Since both SPA and I-Tulip tends to underestimate
the loss rate, larger loss rate deltas suggest that the inferred
loss by the combination scheme is closer to the true value.
Meanwhile, the combination scheme also has a slightly
smaller negative loss rate deltas. This is reasonable, because
we may get the worst case of I-Tulip and SPA for a single
path.

Accuracy Comparison of SPA and Tulip: In this section,
we compare the link-level accuracy of SPA, Tulip and
their combination through comparing their inferred loss rate
values as introduced earlier. Note that one important reason
that we do not compare AFAD/OFAD with Tulip or SPA is
that both SPA and Tulip are easy to deploy on PlanetLab
hosts, which prohibit users from sending out fragmented
packets. Leveraging on the large scale PlanetLab testbed,
we can easily employ hundreds of hosts simultaneously and
let them measure the paths between them.

In this experiment, we use 115 PlanetLab hosts to measure
the 13,110 paths between them. For each path, Tulip and
SPA are run at the same period to diagnosis the path. Since
SPA has finer diagnosis granularity and the diagnosable
routers of Tulip is a subset of that of SPA, we downgrade
the diagnosis granularity of SPA to that of Tulip in this
experiment. Finally we collected measurement results for
10,585 paths out of 13,110 paths. Some paths are missing,
simply because some PlanetLab hosts were down when we
collected the data. For each path, we control the packet
length of the probe packets and infer the loss rate of packet
size of 40 bytes and 1500 bytes. We only consider the
paths with loss rate larger than 1%. After calibration, SPA
and Tulip infers the loss rates of some path segments in
each path. We check the difference of the loss rate inferred
by SPA and Tulip (defined as lSPA − lTulip) as well as

the relative difference of loss rate inference, defined as
(lSPA − lTulip)/ max (lSPA, lTulip).

From Figures 21 and 22, we see that for long packets,
Tulip and SPA have similar accuracy overall. However, it is
clear in Figure V-A that for a single path, SPA and Tulip
may have a large divergence on the loss rate inference. This
confirms our theoretical analysis, as Tulip and SPA have
contradictory requirement on the loss correlation. As for
short packets, SPA seems to be more accurate than Tulip, and
the (relative) differences are more likely to be positive. This
is mainly because the loss correlation between both short
packets is larger than the loss correlation between a long
and a short packet, especially when long packets usually
have larger loss rates. Still, the combination of SPA and
Tulip should underestimate the loss less and hence be more
accurate.

We also studied the loss rate inferred by the combination
of SPA and Tulip (called SPA+Tulip), simply choosing the
larger loss rate inferred by Tulip and SPA. As we argued,
since both of SPA and Tulip tends to underestimate loss
rates, the combination scheme are supposed to be more
accurate. Figure 23 shows the relative difference of the loss
rate between SPA+Tulip and Tulip, and between SPA+Tulip
and SPA with 1500-byte probes. Obviously, using either
SPA or Tulip will miss a large portion of lossy links, and
SPA+Tulip can improve each single scheme remarkably
because of the divergent loss rate inference results of SPA
and Tulip. For example, in about 30% paths, the relative loss
difference between SPA+Tulip and Tulip is larger than 75%,
which means Tulip estimates less than one-fourth loss rates
than SPA+Tulip.

D. Lossy Link Distribution

Since SPA has close to one diagnosis granularity and it
is easy to be deployed on PlanetLab hosts, we conducted a
large scale experiment on PlanetLab to measure the location
of the lossy links. We randomly selected 117 PlanetLab hosts
and about 60% of them are within US. Since there are many
long international paths, SPA used 50-byte probes instead of
1500-byte probes so as to probe all the diagnosable internal
routers simultaneously. The probe rate is 5 probes per second
and 1000 probes are sent for each path segment. Finally, data
of 11,721 out of all the 13,572 paths were collected. Among
these paths, there are 1,047 lossy paths with loss rate larger
than 1%. After calibration, we got 110 unique lossy links as
well as the IP addresses of both ends of the lossy links.

We derive the IP-to-AS mapping from the BGP tables
published in Route Views [21]. Then we mapped the IP
addresses of the ends of the lossy links to their AS numbers.
By checking the AS numbers of the both ends of the lossy
links, we found that about 25.5% lossy links have different
AS numbers on their ends, and these links are likely to
be inter-AS links. The remaining 74.5% lossy links are
probably intra-AS links, as each of they connects two routers
with the same AS number. The result is a bit different from
previous research which shows half bottleneck links are
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Fig. 21. Loss rate inferred by SPA minus loss
rate inferred by Tulip.
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Fig. 22. Relative difference of loss rate inferred
by SPA and Tulip.
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Fig. 23. Relative difference of loss rate inferred
by SPA+Tulip, SPA and Tulip.

probably inter-AS links [22] and bottleneck link location is
correlated with lossy link location [18]. Further investigation
revealed that we measured much more international paths
than [22] and the networks outside of US are more lossy.
For example, we found 20 loss links in CERNET of China
(AS 4538) alone. Thus we suspect that networks in different
areas may have quite different characteristics due to different
deployment status.

E. Summary and Recommendations to Users

In summary, based on the evaluation results above,
we make the following recommendation for users. If the
user can only deploy measurement tools at the source,
OFAD+Tulip is recommended. If the user has control for
both source and destination, we recommend SPA+OFAD
which has both the finest granularity and best accuracy.

VII. Conclusions

In this paper, we propose a suite of user-level on-demand
link-level loss rate inference schemes, and compare their
accuracy and diagnosis granularity with existing tools. In-
ternet experiments show that our approaches dramatically
outperform existing work especially in terms of diagnosis
granularity. Furthermore, the suite of schemes provide a
smooth tradeoff among deployment requirement, diagnosis
accuracy and granularity.
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