
Network-based and Attack-resilient Length Signature
Generation for Zero-day Polymorphic Worms

Zhichun Li, Lanjia Wang†, Yan Chen and Zhi (Judy) Fu‡
Northwestern University, Evanston, IL, USA

†Tsinghua University, Beijing, China
‡Motorola Labs, Schaumburg IL, USA

Abstract—It is crucial to detect zero-day polymorphic worms
and to generate signatures at the edge network gateways or hon-
eynets so that we can prevent the worms from propagating at their
early phase. However, most existing network-based signatures
generated are not vulnerability-based and can be easily evaded by
attacks. In this paper, we propose generating vulnerability-based
signatures on the network level without any host-level analysis
of worm execution or vulnerable programs. As the first step,
we design a network-based Length-based Signature Generator
(LESG) for worms based on buffer overflow vulnerabilities1.
The signatures generated are intrinsic to buffer overflows,and
are very hard for attackers to evade. We further prove the
attack resilience bounds even under worst case attacks with
deliberate noise injection. Moreover, LESG is fast and noise-
tolerant and has efficient signature matching. Evaluation based on
real-world vulnerabilities of various protocols and real network
traffic demonstrates that LESG is promising in achieving these
goals.

I. I NTRODUCTION
Computer worms are serious threats to the Internet caus-

ing billions of dollars in economic loss. Recently, zero-day
worm attacks that exploit unknown vulnerabilities have become
popular [2]. Intrusion detection/prevention systems (IDSes) [3],
[4] are proposed to defend against malicious worm attacks by
searching the network traffic for known patterns, orsignatures.
Such signatures for the IDSes are currently generated manually
or semi-manually, a process too slow to defend against self-
propagating computer worms.

Thus it is critical to automate the process of worm de-
tection, signature generation and signature dispersion inthe
early phase of worm propagation, especially at the network
level (gateways and routers). There is some existing work
towards this direction [5]–[7]. However, to evade detection by
signatures generated with these schemes, attackers can employ
polymorphicworms which change their byte sequence at every
successive infection. Recently, some polymorphic worm signa-
ture generation schemes are proposed. Based on characteristics
of the generated signatures, they can be broadly classified
into two categories –vulnerability-basedand exploit-based.
The former signature is inherent to the vulnerability that the
worm tries to exploit. Thus it is independent of the worm
implementation, unique and hard to evade, while exploit-based
signatures capture certain characteristics of a specific worm
implementation. However, schemes of both categories have
their limitations.

Existing vulnerability-based signature generation
schemes are host-based and cannot work at the network
router/gateway level. These schemes [8]–[10] either require
exploit code execution or the source/binary code of the

1It is reported that more than 75% of vulnerabilities are based on buffer
overflow [1].

vulnerable program for analysis. However, such host-level
schemes are too slow to counteract the worms that can
propagate at exponential speed. Given the rapid growth of
network bandwidth, today’s viruses/worms can propagate
quickly and infect most of the vulnerable machines on
the Internet within ten minutes [11] or even less than 30
seconds with some highly virulent techniques [12], [13]
at near-exponential propagation speed. At the early stage
of worm propagation, only a very limited number of worm
samples are active on the Internet, and the number of machines
compromised is also limited. Therefore, signature generation
systems should be network-based and deployed at high-speed
border routers or gateways where the majority of traffic can be
observed. Such a requirement for network-based deployment
severely limits the design space for detection and signature
generation as discussed in Section II.

Existing exploit-based schemes are less accurate and can
be evaded.Some of these schemes are network-based and are
much faster than those in the former category. However, most
of such schemes are content-based, which aim to exploit the
residual similarity in the byte sequences of different instances
of polymorphic worms [14]–[18]. As mentioned in [18], there
can be some worms which do not have any content-based sig-
nature at all. Furthermore, various attacks have been proposed
to evade the content-based signatures [19]–[22]. The rest of the
schemes in this category [23], [24] generate signatures based
on exploit code structure analysis, which is not inherent tothe
vulnerability exploited and can also be evaded [19].

Therefore, our goal is to design a signature generation system
which has both the accuracy of vulnerability-based schemes
and the speed of exploit-based schemes so that we can deploy
it at the network level to thwart zero-day polymorphic worm
attacks. As the first step towards this ambitious goal, we
propose LEngth-based Signature Generator (calledLESG)
which is a network-based approach for generating efficient and
length-based signatures which cannot be evaded. That is, even
when the attacker knows what the signatures are and how the
signatures are generated, they still cannot find an efficientand
effective way to evade the signatures.

Length-based signatures target buffer overflow attacks which
constitute the majority of attacks [1]. The key idea is that in
order to exploit any buffer overflow vulnerabilities, the length
of certain protocol fields must be long enough to overflow
the buffer. A buffer overflow vulnerability happens when there
is a vulnerable buffer in the server implementation and some
part of the protocol messages can be mapped to the vulnerable
buffer. When an attacker injects an overrun string input forthe
particular field of the protocol to trigger the buffer overflow,
the length of such an input for that field is usually much longer

than those of the normal requests. Thus we can use the field
input length to detect attacks. This is intrinsic to the buffer
overflow, and thus it is very hard for worm authors to evade.

In addition to being network-based and having high accuracy,
LESG has the following important features.

Noise tolerance.Signature generation systems typically need
a flow classifier to separate potential worm traffic from nor-
mal traffic. However, network-level flow classification tech-
niques [7], [25]–[28] invariably suffer from false positives that
lead to noise in the worm traffic pool. Noise is also an issue for
honeynet sensors [5], [16], [23]. For example, attackers may
send some legitimate traffic to a honeynet sensor to pollute
the worm traffic pool and to evade noise-intolerant signature
generation. Our LESG is proved to be noise tolerant or even
better, attack resilient,i.e., LESG works well with maliciously
injected noise in an attempt to mislead NIDS [19].

Efficient Signature Matching. Many users patch their sys-
tems slowly due to the fact that they may have to restart the
applications or reboot the machines. It is more efficient and
effective to deploy signatures at the NIDS/firewall to filter
out the malicious traffic of an entire enterprise network. Since
the signatures generated are to be matched againstevery flow
encountered by the NIDS/firewall, it is critical to have fast
signature matching algorithms.In the LESG system, the length-
based signatures can be matched at the network level with a
protocol length parser without any host-level analysis.

In the rest of the paper, we first survey related work in
Section II and discuss the LESG architecture in Section III.
Then we present the length-based signature generation problem
in Section IV, generation algorithm in Section V, and its attack
resilience in Section VI. After that, in Section VII, we use
real Internet traffic and seven real exploit code (enhanced
with polymorphic capabilities) on five different protocolsto
test the performance of LESG prototype. Results show that
LESG is highly accurate, noise tolerant, capable of detecting
multiple worms in the same protocol pool, and capable of
online signature generation with small memory consumption.
Finally, we discuss some practical issues in Section VIII and
conclude in Section X.

II. RELATED WORK

Property of signatures Signature generation mechanisms
Network-based Host-based

Exploit-based Polygraph [15],
Hamsa [14],
PADS [16],
Nemean [23],
CFG [24]

DACODA [18],
Taint check [17]

Vulnerability-based
LESG

Vulnerability
signature [10],
Vigilante [29],
COVERS [8],
Packet Vaccine [9]

TABLE I
COMPARISON WITH OTHER POLYMORPHIC WORM SIGNATURE GENERATION

SCHEMES.

Early automated worm signature generation efforts include
Honeycomb [5], Autograph [7], and EarlyBird [6], but they do
not work well with polymorphic worms.

Existing work on automated polymorphic worm signature
generation can be broadly classified into vulnerability-based
and exploit-based. Based on signature generation input require-
ments, we can further categorize these schemes on another axis:

host-based vs. network-based. The former requires either ex-
ploit code execution or the source/binary code of the vulnerable
program . On the other hand, the network based approaches rely
solely on network-level packets. The classification of existing
schemes and LESG is shown in Table I.

Exploit-based schemes.We have discussed most of them in
the introduction [14]–[18], [23], [24]. For example, Christopher
et al.proposes using the structural similarity of the Control
Flow Graph (CFG) to generate a fingerprint as signatures [24].
However, their approach can be evaded when the worm body
is encrypted. Furthermore, compared with length-based signa-
tures, it is much more computationally expensive to match the
fingerprint with the network packets. Thus it cannot be applied
to filter worm traffic at high-speed links.

In comparison with most recent work in this category, such
as Hamsa [14], LESG has better attack resilience,e.g., it has
better bounds for deliberate noise injection attacks [19].

Vulnerability-based and host-based schemes.Brumley et
al.presents the concept of a vulnerability signature in [10] and
argues that the best vulnerability signatures are Turing machine
signatures. However, since the signature matching for Turing
machine signatures is undecidable in general, they reduce the
signatures to symbolic constraint signatures or regular expres-
sion signatures. Their approach is a heavyweight host-based
approach, which has high computational overhead and also
needs some information such as the vulnerable program, multi-
ple execution traces, and the vulnerability condition. Similarly,
Vigilante [29] proposed a vulnerability-based signature which
is similar to the MEP symbolic constraint signatures in [10].

Liang et al.proposed the first host-based scheme to generate
length-based signatures [1], [8]. Packet Vaccine [9] further
improves the signature quality by using binary search. Un-
fortunately, both of them are host-based approaches and are
subject to the limitations mentioned before and some additional
shortcomings. First, they need to know the vulnerable program.
Sometimes, they have to try many different implementation
versions to find the vulnerable ones. Second, the signature gen-
erated by [8] based on a small number of samples may be too
specific to represent the overall worm population. Therefore,
detection based on their generated signatures tends to havehigh
false negatives. Moreover, the protocol specification language
they used is not expressive enough for many protocols.

Other related work. There are previous research efforts on
network-level detection of buffer overflow exploits. However,
they do not generate any effective signatures due to high
matching overhead and high false positives. TCTP [30] detects
buffer overflow attacks by recognizing jump targets within the
sessions. Approaches like SigFree [31] detect exploit codes
based on control flow and data flow analysis.

III. A RCHITECTURE OFLESG
As shown in Figure 1,LESG can be connected to multiple

networking devices, such as routers, switches and gatewaysvia
a span (mirror) port or an optical splitter. Most modern switches
are equipped with a span port to which copies of entire packets
in the traffic from a list of ports can be directed. In addition,
LESG can also be used to monitor traffic for a large-scale
honeynet/honeyfarm by sniffing traffic at its gateways. The hon-
eynet/honeyfarm can be either centralized or distributed [32]–
[34].

Similar to the basic framework of Polygraph [15] and

Router

Honey
net

Internet

LAN

Splitter

LESG
system

LESG
system

Switch

Gateway

Fig. 1. Deployment of LESG.

Hamsa [14], we first need to sniff traffic from networks and
classify the traffic as different application level protocols.
Next, we filter out known worms and then further separate
the traffic into a suspicious traffic pool and a normal traffic
reservoir using an existing flow classifier [7], [25]–[28].

Similar to Polygraph [15] and Hamsa [14], we use an existing
flow classifier that may use various techniques (such as hon-
eynet/honeyfarm [32]–[34], port scan detection [7], [35],byte
frequency detection [26], [27], and other advanced techniques)
to identify suspicious flows. Note that the flow classifiers can
operate at the line speed of routers as achieved in our previous
work [35]. The scan detection based flow classifiers first
detect the hosts scanning a particular port number and then
classify successful TCP connections from any of the scanning
hosts with that particular destination port number as suspicious
flows. It is effective against any scanning worm. Meanwhile,
the honeynet/honeyfarm based approach considers any traffic
caught in the honeynet/honeyfarm as suspicious flows.

Leveraging the normal traffic selection policy mentioned
in [14], we can create the normal pool. The suspicious pool
and the normal pool are inputted to the signature generator as
shown in Figure 2. We first specify the protocol semantics and
use a protocol parser to parse each protocol message into a set
of fields. Each field is associated with a length and a type. The
field length information of both the suspicious pool and the
normal pool are given as input to the “LESG core”(signature
generation algorithm) module to generate the signatures.

A. Protocol Parsing
As emphasized in [36], protocol parsing is an important step

in any semantic analysis of network traffic, such as network
monitoring, network intrusion detection systems [3], [4],smart
firewalls, etc.. We analyzed three text-based protocols (HTTP,
FTP, and SMTP) and seven binary protocols (DNS, SNMP,
SMB, WINRPC, SUNRPC, NTP, SSL). We find that, in gen-
eral, it is much easier and faster to parse the lengths of the
protocol fields than full protocol parsing.

Some recent research, such as BINPAC [36], has studied
how to ease the job of writing a protocol parser. BINPAC
is a yacc-like tool for writing application protocol parsers. It
has a declarative language and compiler, and actually works
as a parser generator. Its input is a script which is actually
a protocol specification written in BINPAC language. The
output is a parser code for that protocol. Currently, BINPACis
executed in connection with Bro [4], which implements other
necessary traffic analysis at lower levels. With BINPAC, writing
a protocol parser has been greatly simplified. Furthermore,not
only can the available scripts provided by Bro be reused, but
also many people can potentially contribute and produce more
reusable protocol specifications for BINPAC as an open source

tool. Because of these advantages, we use BINPAC and Bro for
packet flow reassembling and protocol parsing in our research.

IV. L ENGTH-BASED SIGNATURE DEFINITION AND

PROBLEM STATEMENT
In this section, we model each application message as a field

hierarchy, and present it as a vector of fields. Based on this
model, we formally define the length-based signatures and the
length-based signature generation problem.

A. Field Hierarchies
Each of the application sessions (flows) usually contains one

or more Protocol Data Units (PDUs), which are the atomic
processing data units that the application sends from one end-
point to the other endpoint. PDUs are normally specified in
the protocol standards/specifications, such as RFCs. A PDU
is a sequence of bytes and can be dissected into multiple
fields. Here, a field means a sub-sequence of bytes with special
semantic meaning or functionality as specified in the protocol
standard. Typically, a field encodes a variable with a certain
data structure, such as a string, an arrayetc.. Take the DNS
protocol as an example. Figure 3 shows the format of the DNS
PDUs. It has a header and four other sections – QUESTION,
ANSWER, AUTHORITY and ADDITIONAL. Each section is
further composed of a set of fields. The QUESTION section
contains one or more DNS queries that are further composed
of field class QNAME, QTYPE and QCLASS. The other three
sections contain one or more Resource Records (RRs), and each
RR is composed of six lower level fields (NAME, TYPE,etc.).
Borrowing terms from the object model, we call the type of
fields, such as QNAME and QTYPE, thefield class, and each
concrete instance of a certain field aninstanceof the field.

Among all the field classes in PDUs, some,e.g., QNAME,
NAME and RDATA, arevariable-length fields; others arefixed-
length fields, in which the instances all have the same length
as defined in the protocol standard.

We make the following two observations on such a rep-
resentation of PDU. First, the number of instances of one
field class in a PDU may vary. For example, one PDU may
contain one instance of fieldA, and another PDU may contain
two. Second, in certain server implementations, it is possible
that the concatenation of multiple field instances (of the same
field class or not) are stored in one buffer. That is, if the
server has an overflow vulnerability related to this buffer,it
is the concatenation of several field instances that can overflow
the buffer. For example, imagine a DNS server receives a
DNS PDU and stores the entire PDU in a vulnerable buffer.
What overflows the buffer is the concatenation of all the field
instances. These two observations have been further validated
on other protocols such as SNMP and WINRPC.

With these considerations, we design a hierarchical model
to describe the possible field classes in a PDU. As Figure 5
shows, we denote the QUESTION section as a new fieldO,
a concatenation of all the instances of fieldA and B2, O =
(AB)∗. In short, we include all possible variable-length fields
that potentially correspond to vulnerable buffers. We build such
a hierarchy for every flow.

In the rest of the paper, we refer to variable-length fields
simply as fields for the sake of brevity. Suppose there is a total
of K classes of fields in the hierarchy constructed for a certain

2we denote the variable-length field QNAME asA, and the concatenation
of fixed-length field QTYPE and QCLASS asB.

Filter

Suspicious
Traffic Pool

Normal
Traffic Pool

YESQuit

SignaturesLESG
Core

Protocol
Specification

Parsed
Normal

Parsed
Suspicious

Protocol
Parser

NO

Pool size
too small?

Fig. 2. LESG signature generator

Header

Additional

Authority

Answer

Question

QNAME

QCLASS

QTYPE

NAME

TYPE

CLASS

RDLENGTH

TTL

RDATA

questions

RRs

Fig. 3. Illustration of DNS PDU

… … ……AB AB CDE CDE FGH FGH IJK IJK

Fig. 4. Abstraction of DNS PDU

… … ……AB AB CDE CDE FGH FGH IJK IJK

L L M M N N

P Q RO

… …

…

…

…

…

…

Fig. 5. Hierarchical Structure of DNS PDU

protocol. We use an index setE = {1, 2, . . . , K} to denote
theseK fields. Let xk, k = 1, 2, . . . , K, be the maximum
among the lengths of potentially multiple instances of fieldk,
then a vectorX = (x1, x2, . . . , xK) is generated to represent
the field lengths for each field in a session (flow).
B. Length-based Signature Definition

Based on the length vector representation of a session, we
formally define the concept of alength-based signaturein this
section. A signature is a pairSj = (fj , lj), wherefj ∈ E, fj

is the signature field ID, andlj is the corresponding signature
length for fieldfj .

When using the signature to detect the worms, the matching
process is as follows. For a flowX = (x1, x2, . . . , xK), we
comparexfj

and lj . If xfj
> lj , then the flowX is labelled

as a worm flow; otherwise it is labelled as a normal one. More
than one signature corresponding to different fields can possibly
be generated for a given protocol, resulting in asignature set
S = {S1, S2, . . . , SJ}. A flow, which may contain one or more
PDUs, will be labelled as a worm if it is matched by at least
one signature in the set.

The length-based signatures are designed for buffer over-
flow worms. The signature field should be exactly mapped
to a vulnerable buffer. In this case, the field of this instance
must be longer than the buffer to overflow it, while normal
instances must be shorter than the buffer. Note that different
servers may implement different buffer lengths if the maximal
length is not specified in the RFC. Here we focus on pop-
ular implementations because the spread speed and scope of
worms will be significantly limited if they only target unpopular
implementations. We define the minimum buffer length of
popular implementations asthe ground truth signature, denoted
as B = (fB, LB) where LB is the vulnerable buffer length.
Even with multiple different implementations, for the field
related to the vulnerable buffer, the distributions of normal
flows and worm flows should be well apart. That is, the lengths
of normal flows should be less thanLB because for a popular
server implementation (e.g., FTP), there are often various client
programs communicating with it without knowing its buffer
length. SoLB should be large enough for most of the normal
flows. On the other hand, those of worm flows should obviously
be larger thanLB.

As elaborated below, our algorithm will not output any sig-
natures for non-buffer-overflow worms because our algorithm
ensures that all generated signatures have low false positives.
C. Length-Based Signature Generation Problem Formulation

If the flow classifier is perfect, all the flows in the suspicious
pool are worm samples. If the worm is a buffer overflow worm,
finding a length-based signature amounts to simply finding the
best field and the field length with minimal false negatives and
minimal false positives. However, in practice, flow classifiers at

the network level are not perfect and always have some false
positives, and therefore, the suspicious pool may have some
normal flows. Finding signatures from a noisy suspicious pool
makes the problem NP-Hard (Theorem 1). On the other hand,
due to the large volume of traffic on the Internet, we assume
the noise (worm flows) in the normal pool is either zero or very
limited, and thus it is negligible.

After filtering existing known worms, there can be multiple
worms of a given protocol in the suspicious pool, though the
most common case is a single worm having its outbreak under-
way in the newly generated suspicious pool. The output of the
signature generation is a signature setS = {S1, S2, . . . , SJ}.
A flow matched by any signature in this set will be labelled as
a worm flow.

In Table II, we define most of the notations used in the
problem formulation and theorems.
Problem 1 (Noisy Length-Based Signature Generation
(NLBSG)).
INPUT: Suspicious traffic poolM = {M1, M2, . . .} and nor-
mal traffic poolN = {N1, N2, . . .}; value γ < 1.
OUTPUT: A set of length-based signaturesS =
{(f1, l1), . . . , (fJ , lJ)} such thatFPS is minimized subject to
COVS ≥ 1 − γ.

Theorem 1. NLBSG is NP-Hard
Proof Sketch: The proof is by reduction from Minimum

k Union, which is equivalent to Maximumk-Intersection [37].

V. SIGNATURE GENERATION ALGORITHM
Although the problem NLBSG is NP-Hard in general, for

buffer overflow worms, the algorithms we proposed are fast
and have fair accuracy even in the worst case scenarios. We
formally proved the theoretical false positive and false nega-
tive bounds with or without adversaries to inject intentionally
crafted noise. To the best of our knowledge, we are thefirst
network based signature generation approach that has the ac-
curacy bound even with adversaries’ injected noise.

The protocol parsing step generates (field id, length) pairsfor
all flows in the normal traffic pool and suspicious traffic pool
respectively. Based on that, we design a three-step algorithm
to generate length-based signatures.
Step 1: Field Filtering Select possible signature field candi-
dates.
Step 2: Signature Length OptimizationOptimize the signature
lengths for each field.
Step 3:Signature PruningFind the optimal subset of candidate
signatures with low false positives and false negatives.
A. Field Filtering

In this step of the algorithm, we make the first selection
on the fields that could possibly be signature candidates. The
goal is to limit the searching space. Two parameters are set

M : suspicious traffic pool N : normal traffic pool
|M| : number of suspicious flows inM |N| : number of noise flows inN
M1 : set of true worm flows inM M2 : set of noise flows inM
α : coverage of true worms K : number of variable length fields
MS : set of suspicious flows covered by signature setS NS : set of normal flows covered by signature setS

COVS : |MS |
|M|

for a signature setS FPS : |NS |
|N|

for a signature setS
COV0 : minimum coverage requirement for a signature candidateFP0 : maximum false positive ratio for a signature candidate

γ′ : minimum coverage increase requirement for a signature
to be outputted in the first loop of the Step 3 algorithm

γ : minimum coverage increase requirement for a signature
to be outputted in the second loop of the Step 3 algorithm

TABLE II
TABLE OF NOTATIONS

Algorithm Step 1Field filtering (M,N)
S ← ∅;
for field fj = 1 to K

find lj such that
|Nlj

|

|N|
≤ FP0 <

|Nlj−1|

|N|
;

if
|Mlj

|

|M|
≥ COV0

S ← S ∪ {(fj , lj)};
end

end
Output S ;

as the input:FP0 and COV0, which indicates the most basic
requirement on the false positives and detection coverage.For
example, in our experiments, we chooseFP0 = 0.1% and
COV0 = 1%.

In the algorithm below,Nlj and Mlj denote the flows
detected by signature(fj , lj) in poolsN andM respectively.

We set a lowFP0 as the basic low-false-positive requirement.
A conservatively small value is chosen forCOV0 initially
because attackers may inject noise into the suspicious pool.
We will further optimize the values in the subsequent steps.

We process each field class separately. For every field class,
the algorithm takesO(|N | log |N |) time to find the signature
length, and then takesO(|M|) time to calculate the detec-
tion coverage onM. Therefore, the total running time is
O(K|N | log |N | + K|M|). Since |M| is usually far smaller
than |N |, the overall time cost isO(K|N | log |N |).

This step makes use of the fact that, for buffer overflow
worms, the true worm samples should have longer lengths on
the vulnerable fields than the normal flows and the noise in the
suspicious pool that is not injected by attackers should have a
similar length distribution to traffic inN . If the coverageα
of true worm samples in the suspicious poolM is more than
COV0, the vulnerable field length with small false positive
ratio FP0 should have a larger coverage thanCOV0 in the
suspicious pool. TheCOV0 andFP0 are the very conservative
estimates of the coverage and the false positive of the worm.

B. Signature Length Optimization
The first step selected candidate signatures to meet the most

basic requirements. In the second step, we try to optimize the
length value of each candidate signature to find the best tradeoff
between the coverage and false positives. If the length signature
selected is too long, there will be less coverage of malicious
worm flows. On the other hand, if the length selected is too
short, there will be a lot of false positives. The first step isa very
conservative estimate of coverage. Sometimes a length does
improve a lot on the coverage of the suspicious pool but also
increases false positives. We need to have a method to compare
different lengths to determine which one is a “better” signature.
For the sake of brevity, letFPlj denote the false positive ratio
of signature(fj, lj) and let COVlj denote its coverage on
M. This step aims to maximizeScore(COVlj , FPlj) for each
field fj . We used the notion score function, which is proposed

in [14], to determine the best tradeoff between the false positive
and coverage. For example, we need to make a choice between
COV = 70%, FP = 0.9% andCOV = 68%, FP = 0.2%.

In the Step 2 algorithm,M = {X1, X2, . . . , X|M|}, where
Xm = (x1

m, x2
m, . . . , xK

m), m = 1, 2, . . . , |M| is the length of
each field in a flowm. We defineMk = {xk

1 , xk
2 , . . . , xk

|M|}.
Signature setS generated in Step 1 is the input of this step.

With the sorted lengths as input, for candidate signature
fields, each length above the candidate length selected at Step 1
will be tested for its goodness according to the score function,
and the best one with the maximum score will be selected. The
first loop picks a longer length value with the best score. Then
in the second loop, we further optimize it by finding a smaller
length with the same score.

In Mfj = {x
fj

1 , x
fj

2 , . . . , x
fj

|M|}, if x
fj
m is in the ascending

order, it is easy to know that between any two consecutive
elements, namelyxfj

m−1 and x
fj
m , the score is monotonically

non-decreasing inlj . Thus we only need to search among all
the x

fj
m − 1, m = m0, . . . , |M| for the best score,i.e.the total

number we need to try is at most|M|.
The rationale for the second loop is as follow. The signature

length too close to the edge of the lengths of worm flows is
not a good choice, especially when the length distributionsof
normal field instances and of malicious field instances are well
separated. So in the second loop of the algorithm Step 2,lj
decreases until the score changes (decreases actually) orlj
reaches the median of two consecutive elements inMfj . In the
Section VI-B, we will analyze the advantages of this choice.

To sort eachMfj needsO(|M| log |M|). To search the best
score fromm0 to |M| needs at mostO(|M| log |N |). In the
worst case, to find the best signature in the gap betweenx

fj

m−1

andx
fj
m , half of the gap needs to be searched. Since|S| ≤ K,

the total running time isO(K(|M| log |M| + |M| log |N | +
G)). G is the possible maximum gap among all the fields.

C. Signature Pruning
Still we have a set of candidate field and length signatures.

Too many length signatures will cause unnecessary false pos-
itives because we try to match any of the length signatures in
the detection phase. Therefore, in this final step, we will find
an optimal small subset of signature candidates to be the final
signature set. Usually, the more signatures we use, the more
false positives there are but with better coverage.

As proved in Section IV-C, to select the optimal small set
of signatures in general is NP-Hard. The algorithm proposed
here is not to search for the global optimum but to find a
good solution with bounded false positives and negatives. In
the Step 3 algorithm,γ′ and γ are parameters andγ′ < γ.
The Step 3 algorithm has two stages. The first one is the
opportunistic stage. We opportunistically find the signatures
which can improve at leastγ′ percent of the initial suspicious

Algorithm Step 2Signature Length Optimization(S,M,N ,Score(·, ·))
for signature(fj , lj) ∈ S

sortMfj in ascending order;

find m0 such thatx
fj

m0−1
< lj < x

fj
m0

;
max score← 0;
for m′ = m0 to |M|

l′
j
← x

fj

m′ − 1;
if (max score < Score(COVl′

j
,FPl′

j
))

max score← Score(COVl′
j
,FPl′

j
);

lj ← l′
j
;

m← m′;
end

end

while (lj >
x

fj

m−1
+x

fj
m

2
)

if (Score(COVlj
,FPlj

) == Score(COVlj−1, FPlj−1))
lj ← lj − 1;

else
updateS with lj ; break;

end
end

end
Output S ;

Algorithm Step 3Signature Pruning(S,M,N)
m← |M| ; Ω← ∅ ;
S1 ← {e|e ∈ S; FPe = 0} ; S2 ← {e|e ∈ S; FPe > 0} ;
LOOP1:
while (S1 6= ∅)

Find s ∈ S1 such that|Ms|
m

is the maximum one inS1 ;

If (|Ms|
m
≥ γ′)

Ω← Ω ∪ {s} ;S1 ← S1 − {s} ;
Remove all the samples which matchs in M ;

else
Break ;

end
end
LOOP2:
while (S2 6= ∅)

Find s ∈ S2 such that|Ms|
m

is the maximum one inS2 ;

If (|Ms|
m
≥ γ)

Ω← Ω ∪ {s} ; S2 ← S2 − {s} ;
Remove all the samples which matchs in M ;

else
Break ;

end
end
Output Ω ;

pool coverage than the existing signature set without generating
any false positives. Usually,γ′ is small. If the best signatures we
can find for each worm have no false positive, the opportunistic
stage can help improve the true positives even when adversaries
are present. Then, we use a similar process to find other
signatures with a marginal improvement requirementγ.

Calculating |Ms| takes O(log |M|), and thus finding the
signature with maximum coverage takesO(K log |M|). Fur-
thermore, removing samples matched by signatures takes
O(|M|). Therefore, the final running time for the Step 3
algorithm can be bounded byO(K(K log |M| + |M|)).

With our three-step algorithm, we guarantee low false posi-
tives and false negatives on the generated signatures for buffer-
overflow worms. For non-buffer-overflow worms, the algorithm
will output an empty set, having found no signatures to meet
the minimal requirements on false positives and false negatives.

VI. ATTACK RESILIENCE ANALYSIS

In this section, we analyze and prove attack resilience of our
algorithm, i.e., the quality of signatures generated (evaluated
by false negatives and false positives) when attackers launch
attacks to try to confuse and evade the LESG system. In
particular, attackers may deliberately inject some noise into the
suspicious pool to fool LESG.
A. Worst Case Performance Bounds

Note that the noisy length signature generation problem
(NLBSG) is a NP-Hard problem and eventhe global optimum
solution due to the limited input size can be different from
the ground truth signatureLB as defined in Section IV-B. The
signatures we generated areapproximated signatures. In the
Step 1 and Step 2 algorithms, we always select the fieldfB

in the signature candidate set if the worm coverage is larger
thanCOV0. However, in our algorithm, instead of getting the
optimal lengthLB, we might getL′

B. We denote the signature
B′ = (fB, L′

B). In the Step 2 algorithm, we tend to choose a
more conservative signature than the ground truth signature B,
i.e., L′

B ≤ LB. ThereforeFN{B′} = 0 andFP{B′} ≤ FP0.
For most cases, the distributions of normal flows and worm

flows are well apart, and there is a noticeable gap between the
two distributions. In these cases we will getFP{B′} = 0, which
has the same power as the ground truth signature. Without
adversaries, our algorithm will output the signatureB′, which

we call the best approximated signaturebecause it has the
tightest bound to the corresponding ground truth signaturewhen
compared with signatures generated with adversaries. Then
with different adversary models and depending on whether the
normal and worm flow length distributions have a noticeable
gap, our algorithm will output different approximated signa-
tures with different attack resilience bounds.

Let M1 be the set of true worm flows inM and letM2 =
M − M1, which is all the noise inM. Let the fraction of
worm flows inM be α, i.e.|M

1|
|M| = α. Due to the interest of

space, we ignore the proofs here.Please refer to our technique
report [38] for all the detailed proofs.

1) Performance Bounds with Crafted Noises:In Theorems 2
and 3, we prove the worse case performance bounds of our
system under the deliberate noise injection attacks,i.e., with
crafted noises. This is the worst case. The attackers not only
fully craft the worms but also inject the crafted noises. The
difference between Theorem 2 and Theorem 3 is that Theo-
rem 2 assumes the length distributions of normal flows and
worm flows are well apart which is the most common case in
reality. Theorem 3 considers even more general cases, which
the length distributions of normal flows and worm flows might
not be well apart.
Theorem 2. If the best approximated signature has no false
negative and no false positive, the three step algorithm outputs
a signature setΩ such thatFNΩ < γ′

α
andFPΩ ≤ FP0 ·⌊

1−α
γ

⌋.

Theorem 3. If the best approximated signature has no false
negative and the false positive ratio is bounded byFP0, the
three-step algorithm outputs a signature setΩ such thatFNΩ <
γ
α

and FPΩ = FP0 · (⌊
1−α

γ
⌋ + 1).

These bounds are still tight, as shown in the example of
deliberated noise injection attacks in Section VI-A3.

2) Performance Bounds without Crafted Noises:Since in-
jected crafted noises will slow down the worm propagation, the
worm authors might not want to do that. For example, when the
noise ratio is 90% (i.e., 90% of traffic from a worm is crafted
noises), the worm will propagate at least 10 times slower than
before based on the RCS worm model [12]. For example, the
Code Red II may take 140 hours (six days) to compromise all
vulnerable machines instead of 14 hours.

Without crafted noises,i.e., the noises are from normal
traffic, we are able to prove even tighter performance bounds
for our system. Here, the Theorem 4 below assumes the length
distributions of normal flows and worm flows are well apart
while the Theorem 5 removes this assumption. Both theorems
assume the noises in the suspicious pool are randomly sampled
from the normal traffic.
Theorem 4. If the noise in the suspicious pool is normal
traffic and not maliciously injected and the best approximated
signature has no false positives and no false negatives, then
the three-step algorithm outputs a signature setΩ such that
FNΩ = 0 andFPΩ = 0; in other words, with no false negative
and false positive.

In this case, the outputted signature setΩ contains the best
approximated signature.
Theorem 5. If the noise in the suspicious pool is normal
traffic and not maliciously injected and the best approximated
signature has no false negative and a false positive ratio
bounded byFP0, then the three-step algorithm outputs a
signature setΩ such thatFNΩ ≤ FP0·

1−α
α

and FPΩ ≤ FP0.
The evaluation results in Section VII-B are consistent with

the theorem and are often better than the bounds proved in the
theorems.

3) Discussions: In this section, we discuss some issues
related to the attack resilience theorems.

Multiple worms.For single worm cases, the theorems can
be directly applied. In the case that multiple worms are in the
suspicious pool, for each worm we treat the other worms as
noises, and thus we have the same bound.

ParameterFP0. From the theorems above, we can tell that
FP0 plays an important role on the bound. We have the
following observations for its value. Usually given a standard
protocol, a popular implementation of peer/server should be
able to interoperate with various different implementations of
peer/clients. Thus even for a server implementation with a
buffer overflow vulnerability, in most cases the normal traffic
should not trigger the buffer overflow. Here we assumeFP0 is
no larger than 0.1%, and we conservatively set it to be 0.1%,
i.e., the server should be able to handle 1000 normal requests
without crashing (buffer overflow triggered). This is equivalent
to a server handling six requests per hour and not crashing
for a week. We believe this is reasonable for most popular
implementations of a protocol.

Assumptions for theorems on attack resilience.There are two
general assumptions for all the theorems above. First, there is
little or no overlap for the input length of vulnerable fields
between the normal traffic and the worms. This is discussed in
Section IV-B and also validated in our experiments. Secondly,
the attacker cannot change the field length distribution of
normal traffic, which is also generally true. Compared with
the recent Hamsa system [14], we have fewer assumptions and
allow crafted noises.
B. Resilience Against the Evading Attacks

In this section, we discuss the resilience of our schemes
against several recently proposed attacks [19]–[22].

Deliberate noise injection attackIn [19], deliberate noise
injection is proposed to mislead the worm signature gener-
ator. Most other existing signature generators suffer under
this attack. However, even with this attack, our approach can
perform reasonably well, especially in the case when the best

approximated signature with zero false positive exists. For
example if γ′ = 1% and γ = 5%, even with 90% crafted
noise, in most cases the false negative rate can be bound as
10% and the false positive rate as 1.8%. Note, this is the worst
case theoretical bound, in practice it is very hard to approach.
To the best of our knowledge, we are thefirst network-based
approach that can achieve this performance.

There are several different attacks proposed in
Paragraph [20]. Among them, thesuspicious pool poisoning
attack is similar to the deliberate noise injection attack. Next,
we discuss other attacks.

Randomized red herring attack or coincidental attackis to
inject unnecessary tokens into the content based approaches
with a probability model so that these tokens are highly likely
to be included in the signatures, producing more false negatives.
A similar attack can be proposed for our approach, but it
requires the attackers to use the “don’t care” fields, which
are the fields that can be manipulated without influencing the
worm execution. Unlike the content-based signature generation
approaches with which attackers can inject as many tokens
as they want, there may be zero or only a small number of
such “don’t care” fields in a protocol, so the attack may not
be applicable. Moreover, we use a signature set, so when any
signature in this set matches the sample, we label the sample
as a worm. This is more resilient than using the whole set as
a signature.

Dropped red herring attackincludes some tokens in the
beginning of the worm spread and drops those tokens in
later propagation of the worm. Again, a similar attack can be
proposed for our approach, but there are several problems as
well as countermeasures for such attacks. Firstly, this attack
also requires “don’t care” fields. Secondly, we can potentially
still detect the worm with any disjunction in the signature
set instead of using the conjunction. Thirdly, this attack is
hard to implement because it requires the worm to dynami-
cally change itself with synchronized actions. Fourthly, there
are some dynamic update problems for signature change and
signature regeneration. Since our signature generation isfast,
it can alleviate the damage by this attack.

Moreover, there is another similar attack which can be
designed specially for length-based signatures. We call itlength
dropping attack. Since the attackers have to inject an input
longer than the buffer lengthLB, they can inject a long input
L at the beginning and gradually decrease the length by∆L
in each run of infection untilLB. However, if there is a gap
betweenL and LB, in our design we choose the signature

length to belj =
x

fj

m−1
+x

fj
m

2
so that thexfj

m−1 is comparable
to LB and thex

fj
m is comparable toL. In other words, we

will choose the median ofL and LB. Therefore, even when
this attack is launched, we only need to regenerate the length
signatureO(log(L1−LB)) times whereL1 is the initial length
that the attackers use.

Innocuous pool poisoningis the poisoning of the normal
traffic pool. However, in general, this is very hard. First,
the amount of normal traffic is huge, even to poison 1% is
hard. Second, using the random selection policy of normal
traffic [14], it is very hard for attackers to poison the traffic
in the right time to have an effective evasion during the worm
breakout.

In [21], Simon et al.propose two types ofallergy attacks.

The type I attack makes the IDS generate signatures which can
deny current normal traffic. The type II attack makes the IDS
generate signatures which can deny future normal traffic. The
type I allergy attack does not work for our approach because
we check the false positive against the normal traffic. The type
II attack may work in theory, but in practice it is very hard to
happen. The contents of future traffic may change a lot more
than that of the current normal traffic, but the length profileof
fields in the protocol will still remain stable. Therefore, it is
hard to find such a case. Even if there is such a case, it is very
hard for the attack to predict.

The blending attacks[22] cannot work for our approach
because the worm has to use a longer-than-normal input for
the vulnerable field and they cannot mimic the normal traffic.

VII. EVALUATION

We implemented the protocol parsing using Perl scripts
with BINPAC and Bro, as mentioned in Section III-A, and
implemented the LESG signature generator inMATLAB.
A. Methodology

We constructed the traffic of eight worms based on real-
world exploits and collected more than 27GB of Internet traffic
plus 123GB of email SPAM. To test LESG’s effectiveness,
we used completely different datasets for LESG signature
generation (i.e. training dataset) and for signature quality testing
(i.e. evaluation dataset). For the training dataset, we used a
portion of the worm traffic plus some samples from the normal
traffic (as noise) to construct the suspicious pool, and we used
a portion of the normal traffic as the normal pool. For the
evaluation dataset, we used the remaining normal traffic to test
the false positives and worm traffic to test false negatives.

1) Polymorphic Worm Workload: To evaluate our
LESG system, we created eight polymorphic worms
based on real-world vulnerabilities and exploits from
securityfocus.com, as shown in Table III, by modifying
the real exploits to make them polymorphic. The eight worms
use six different protocols, DNS, SNMPv1, SNMPv1trap,
FTP, SMTP and HTTP. Since the original exploit code is
not polymorphic and the field lengths are fixed, we modified
them as follows: for the exploit unrelated fields,i.e.“don’t
care” fields, we randomly chose the lengths with the same
distribution as those in normal traffic; for the signature related
fields, the lengths in the original exploit codes are longer than
the buffer lengths in most cases, so we used these values as
the upper bound in the worms and used the hidden buffer
length or a larger value that we believed was necessary to
exploit the vulnerability as the lower bound (specified by the
row “ground truth” in Table III); moreover, for some exploits
that have rigid exploit conditions, we kept the fixed length.
In the Table III, the row titled “signature related field length”
specifies whether the overflowing field length is fixed or not.
For the vulnerability for which we cannot find the ground
truth by searching literature, we indicate such as “unknown”.

The detailed descriptions of the worms we created are as
follows.

DNS worm. It’s a variant of the lion worm that attacks
a vulnerability of BIND 8, the most popular DNS server.
The exploit code constructs a UDP DNS message with a
QUESTION section whose length is 493 bytes and difficult
to make variable.

SNMP worm. It attacks a vulnerability in the NAI sniffer

agent. The vulnerable buffer is 256 bytes long and stores the
data transferred in the field ObjectSyntax.

SNMP Trap worm. The worm targets Mnet Soft Factory
NodeManager Professional. When it processes SNMP Trap
messages, it allocates a buffer of 512 bytes to store the data
transferred in the field ObjectSyntax.

FTP worm I. It exploits a vulnerability in the Sami FTP
Server. The content of the USER command must be longer
than 228 bytes to overflow the buffer storing it.

FTP worm II. It targets a popular desktop FTP server, Serv-
U. The content of the SITE CHMOD command plus a path
name is stored in a buffer which is 419 bytes long.

FTP worm III. It targets the BulletProof FTP Client. The
content of the FTP reply code 220 must be longer than 4104
bytes.

SMTP worm. This vulnerability resides in the RCPT TO
command of the Ipswitch IMail Server.

HTTP worm. It exploits the IIS vulnerability also attacked
by the famous worm Codered. The difference is that we varied
the length of our created worm, while Codered has a fixed
length.

2) Normal Traffic Data: The traffic traces were collected
at the two gigabit links and another hundred-megabit link of
the gateway routers at Tsinghua University campus network
in China on June 21 - 30, 2006. All the traffic at Tsinghua
University to/from DNS, SNMPv1 Trap, SNMPv1, HTTP and
FTP control channel was collected without using any form of
sampling. We used another 123GB SPAM dataset from some
open relay servers at a research organization in the U.S. for
the SMTP. The datasets are summarized in Table IV. Since a
SNMPv1 Trap message is sent to port 162 and its format is
different from other types of messages, we treat SNMPv1 Trap
as a protocol separate from SNMPv1 on port 161. Also note
that for evaluation purpose, in our prototype system, we only
parsed the GET request for HTTP, which has the same effect
as a complete parsing because the worm is only related to the
GET request. The traces are checked by the Bro IDS system
to make sure that the traces are normal traffic.

3) Experiment Settings:In the Step 1 algorithm, we set
FP0 = 0.1% and COV0 = 1%. The score function in Step
2 is Score(COV, FP) = (1/logFP + 1) ∗COV, which works
well in practice. The basic requirement of a score function is
that the score should be monotonically increasing withCOV
and decreasing withFP. This function has another merit in that
a largeFP (eg. FP ∈ [10−3, 10−2]) affects the score greater
than a much smallerFP (eg.FP ∈ [10−5, 10−4]) does. In Step
3, we chooseγ′ = 1% andγ = 5%, indicating that we focus
on the worms that cover more than 1% of the suspicious pool.
B. Signature Generation for A Single Worm with Noise

We evaluated the accuracy of LESG with the presence of
noise. The noise is the flows randomly sampled from normal
traffic, and mixed with worm samples to compose the suspi-
cious pool. We chose DNS, SNMP, SNMPtrap, SMTP and
HTTP protocols to demonstrate the cases of a single worm
with noise. For HTTP we also tested our algorithm against the
Codered worm.

For each protocol, we tested the suspicious pool size of 50,
100, 200 and 500, and at each size we changed the noise ratio
from 0 to 80%, increasing 10% in each test. After signature
generation, we matched the signatures against another 2000
samples of worms and an evaluation set of normal traffic to

Protocol DNS SNMP SNMPtrap FTP1 FTP2 FTP3 SMTP HTTP
Bugtraq ID 2302 1901 12283 16370 9675 20497 19885 2880

ground truth (fieldID,BufLen) (2,493) (6,256) (7,512) (1, 228) (11,419) (33, 4104) (3, unknown) (6, 240)
signature related field length fixed variable variable variable variable variable variable variable

TABLE III
THE SUMMARY OF WORMS

Number of Normal pool Evaluation dataset
Fields Bytes Flows Hours Bytes Flows Hours

DNS: 14 120M 320K 21 960M 4.4M 120
SNMP: 10 12M 13K 20 282M 77K 120
SNMPt: 11 21M 16K 72 67M 54K 218

FTP: 60 2.7G 66K 14 10G 373K 37
SMTP: 12 840M 210K 24 122G 31M 744
HTTP: 7 2G 77K 7 11G 360K 40

TABLE IV
DATASET SUMMARY FOR EVALUATION

test the sensitivity and accuracy.
Table V shows the range of the signatures we generated and

their accuracy. Tr. FN/FP denotes the training false negatives
and false positives in the training data. Ev. FN/FP denotes the
evaluation false negatives and false positives in the evaluation
data set. Under all the pool sizes and noise ratios, the same
signature fields are generated. Because the size of suspicious
pool is limited, the signature length varies in different tests.
We checked these signatures against the evaluation datasets,
and they all have excellent false negative and false positive
ratio. It may be noticed that generated signature lengths are
smaller than the true buffer length, because the length in normal
flows are usually much smaller than the buffer length, which
is reasonable since the buffer length is designed to be longer
than the longest possible normal requests.

Worm Signatures Tr. FN Tr. FP Ev. FN Ev. FP
(ID,length)

DNS (2, 284∼296) 0 0 0 0
SNMP (6, 133∼238) 0 0 0 0
SNMPt (7, 304∼314) 0 0 0 0
SMTP (3, 109∼112) 0 0 0 10−5

(1, 128∼169)
FTP (11, 262∼300) 0 0 0 0

(33, 2109∼2121)
HTTP (6, 239∼240) 0 0 0∼1% 10−4

CodeRed (6, 339) 0 0 0 10−5

TABLE V
SIGNATURES AND ACCURACY UNDER DIFFERENT POOL SIZE AND NOISE

C. Signature Generation for Multiple Worms with Noise
We also evaluated the case of multiple worms with noise

using the FTP protocol. We have three FTP worms in total.
We tested the suspicious pool sizes of 50, 100, 200 and 500,
and at each size we changed the noise ratio from 0 to 70%,
increasing 10% in each test.The result is also shown in TableV.
D. Evaluation of Different Stages of the LESG Algorithm

The LESG algorithm has three steps, and we evaluated the
effectiveness of each step. Table VI illustrates the results of
each step for the DNS worm with a suspicious pool of size
100 and a noise ratio 50%. Table VI shows that the false
positive rate is largely decreased by refining each signature
length in Step 2. And comparing with the ground truth shown in
Table III, we can see that in Step 3, the best and most accurate
signature is selected, further decreasing the false positives.
E. Pool Size Requirement

We tested the accuracy of our algorithm when only a small
suspicious pool is available. We chose suspicious pools of size
10 with a noise ratio of 20% and of size 20 with a noise ratio
of 50%. All the tests generated signatures within the range

Signature Tr. FN Tr. FP
Step 1 {(1,62), (2,66), (3,2), (4,15), 0 0.32%

(5,28), (6,47), (10,99),(11,2)}
Step 2 {(1,68), (2,296), (3,21), (4, 99), 0 0.15%

(5,333), (6,543), (10,111), (11,2)}
Step 3 {(2, 296)} 0 0

TABLE VI
RESULT OF EACH STEP FOR THEDNS WORM

presented in Table V.
We did similar tests for the DNS worm using normal pool

sizes of 5K, 10K, 20K, and 50K, and we found that our
approach is not sensitive to the size of the normal pool either.

F. Speed and Memory Consumption Results

Normal pool Protocol Signature generation
(Bytes/Flows) parsing (in different pool size)
(Bytes/Flows) (secs) (secs)

50 100 200 500
DNS 120M/320K 58 2.1 3.6 9.4 18

SNMP 12M/13K 8 0.08 0.09 0.15 0.32
SNMPt 21M/16K 4 0.12 0.24 0.37 0.88

FTP 2.7G/66K 95 0.20 0.29 0.54 1.20
SMTP 836M/210K 50 0.47 1.30 1.84 3.36

TABLE VII
SPEED OF PROTOCOL PARSING AND SIGNATURE GENERATION

We evaluated the parsing speed by using Bro and BINPAC
and the speed of our signature generation algorithm. Since
HTTP was not completely parsed, we only provide the results
of the other five protocols. Table VII shows that the speed
of the signature generation algorithm is quite fast, thoughthe
speed is influenced by the sizes of the suspicious pool and the
normal pool. The protocol parsing for the normal pool can be
done offline. We can run the process every once in a while (e.g.
several hours). These datasets were collected over a 20-hour+
period. For the suspicious pool, since it is much smaller than
the normal pool, the protocol parsing can be done very quickly.
Moreover, as mentioned in [39], the BINPAC compiler can be
built with parallel hardware platforms, which makes it much
faster.

Normal pool size Suspicious pool size
100 200 500

DNS 50K 5.64MB 5.66MB 5.71MB
(14 fields) 100K 11.26MB 11.28MB 11.33MB

FTP 50K 8.43MB 8.45MB 8.53MB
(60 fields) 100K 16.83MB 16.85MB 16.93MB

TABLE VIII
MEMORY USAGE OF THE ALGORITHM

The memory usage of the signature generation algorithm
implemented inMatlab was evaluated under different pool
sizes, shown in Table VIII. The memory usage is proportional
to the normal pool size and the number of fields.

VIII. D ISCUSSIONS OFPRACTICAL ISSUES
a) Speed of Length Based Signature Matching:The oper-

ation of length-based signature matching has two steps: proto-
col parsing of packets and field length comparison with the
signatures. The latter is trivial. The major overhead is for

protocol parsing. Currently, the Bro and BINPAC based parsing
can achieve 50∼ 200 Mbps. As mentioned in [39], with parallel
hardware platform support, BINPAC may achieve 1∼ 10 Gbps.
On the commercial products side, Radware’s security switchon
an ASIC-based network processor can operate at 3 Gbps link
with protocol parsing capability [40]. Therefore, with hardware
support, the whole length-based signature matching can be done
very fast, which is comparable to the current speed of pattern-
based (string) signature matching techniques widely used in
IDSs.

b) Relationship Between Fields and Vulnerable Buffers:
The main assumption of length based signatures is that thereis
a direct mapping between variable length fields and vulnerable
buffers. In addition to the vulnerabilities shown in the eval-
uation section, we further checked 11 more buffer overflow
vulnerabilities fromsecurityfocus.com. We found that
the assumption holds for all cases except one. Therefore, we
know in most situations that LESG should work. Next, we will
first examine the normal cases and then check the special one.

In Section IV-A we show that the consecutive fields can be
combined together to form acompound field. For the variable
length fields which cannot be further decomposed, we call them
simple fields. We found in 13 cases (out of the total of 18 cases
that we examined) that the field mapped to the vulnerable buffer
is a simple field while in 3 cases it is a compound field. There
is one case we found in which two simple fields, which cannot
be combined to form a compound field, are mapped to one
vulnerable buffer. Therefore, either of the two fields can cause
the buffer overflow to happen. In all these cases, we can get
the accurate length-based signatures. However, we did find one
case (again, 1 out of 18 cases) which does not have length-
based signatures. It is a buffer overflow vulnerability present
in versions of wu-ftpd 2.5 and below. The vulnerable buffer
corresponds to the path of the directory, so if a very deep path
is created by continuously making new directories recursively,
the buffer will eventually be overflowed. From the protocol
messages of the FTP, only a set of MKD (mkdir) commands
can be seen, and the length of each directory could be normal.
Therefore, no length-based signatures exist.

IX. CONCLUSIONS

In this paper, we proposed a novel network-based automatic
worm signature generation method that generates length-based
signatures for buffer overflow worms. Our approach has good
attack resilience guarantees even under deliberate noise injec-
tion attacks. We further show that our approach is fast and
accurate through experiments and evaluation based on real-
world vulnerabilities and network traffic.

X. ACKNOWLEDGEMENT

Support for this work was provided by the NSF grant CNS-
0627751.

REFERENCES

[1] Z. Liang and R. Sekar, “Automatic generation of buffer overflow attack
signatures: An approach based on program behavior models,”in Proc. of
Computer Security Applications Conference (ACSAC), 2005.

[2] The SANS Institute, “The Top 20 Most Critical Internet Security
Vulnerabilities - PRESS UPDATE.” http://www.sans.org/top20/2005/
spring2006update.php.

[3] M. Roesch, “Snort: The lightweight network intrusion detection system,”
2001, http://www.snort.org/.

[4] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Computer Networks, vol. 31, 1999.

[5] C. Kreibich and J. Crowcroft, “Honeycomb - creating intrusion detection
signatures using honeypots,” inProc. of the Workshop on Hot Topics in
Networks (HotNets), 2003.

[6] S. Singh, C. Estan,et al., “Automated worm fingerprinting,” inProc. of
USENIX OSDI, 2004.

[7] H. Kim and B. Karp, “Autograph: Toward automated, distributed worm
signature detection,” inProc. of USENIX Security Symposium, 2004.

[8] Z. Liang and R. Sekar, “Fast and automated generation of attack signa-
tures: A basis for building self-protecting servers,” inProc. of ACM CCS,
2005.

[9] X. Wang et al., “Packet vaccine: Black-box exploit detection and signa-
ture generation,” inProc. of ACM CCS, 2006.

[10] D. Brumley et al., “Towards automatic generation of vulnerability-based
signatures,” inProc. of IEEE Security and Privacy Symposium, 2006.

[11] D. Moore et al., “The spread of the Sapphire/Slammer worm,”
http://www.caida.org, 2003.

[12] S. Stanifordet al., “How to own the Internet in your spare time,” in
Proceedings of the 11th USENIX Security Symposium, 2002.

[13] ——, “The top speed of flash worms,” inProc. of ACM CCS WORM
Workshop, 2004.

[14] Z. Li, M. Sanghi, Y. Chen, M. Kao, and B. Chavez, “Hamsa: Fast
signature generation for zero-day polymorphic worms with provable
attack resilience,” inProc. of IEEE Security and Privacy Symposium,
2006.

[15] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating
signatures for polymorphic worms,” inProc. of IEEE Security and
Privacy Symposium, 2005.

[16] Y. Tang and S. Chen, “Defending against internet worms:A signature-
based approach,” inProc. of IEEE Infocom, 2003.

[17] J. Newsome and D. Song, “Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits oncommodity
software,” inProc. of NDSS, 2005.

[18] J. R. Crandall, Z. Su, and S. F. Wu, “On deriving unknown vulnerabilities
from zeroday polymorphic and metamorphic worm exploits,” in Proc. of
ACM CCS, 2005.

[19] R. Perdisciet al., “Misleading worm signature generators using deliberate
noise injection,” inProc. of IEEE Security and Privacy Symposium, 2006.

[20] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwartingsignature
learning by training maliciously,” inProc. of RAID, 2006.

[21] S. P. Chuang and A. K. Mok, “Allergy attack against automatic signature
generation,” inProc. of RAID, 2006.

[22] P. Foglaet al., “Polymorphic blending attacks,” inProc. of USENIX
Security Symposium, 2006.

[23] V. Yegneswaranet al., “An architecture for generating semantic-aware
signatures,” inProc. of USENIX Security Symposium, 2005.

[24] C. Kruegelet al., “Polymorphic worm detection using structural infor-
mation of executables,” inProc. of RAID, 2005.

[25] Packeteer, “Solutions for Malicious Applications,” http://www.packeteer.
com/prod-sol/solutions/dos.cfm.

[26] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” inProc. of RAID, 2004.

[27] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based worm
detection and signature generation,” inProc. of RAID, 2005.

[28] R. Vargiya and P. Chan, “Boundary detection in tokenizing network
application payload for anomaly detection,” inProc. of ICDM Workshop
on Data Mining for Computer Security (DMSEC), 2003.

[29] M. Costet al., “Vigilante: End-to-end containment of internet worms,” in
Proc. of ACM Symposium on Operating System Principles (SOSP), 2005.

[30] F. Hsu and T. Chiueh, “Ctcp: A centralized TCP/IP architecture for
networking security,” inProc. of ACSAC, 2004.

[31] X. Wanget al., “Sigfree: A signature-free buffer overflow attack blocker,”
in Proc. of USENIX Security Symposium, 2006.

[32] V. Yegneswaran, P. Barford, and D. Plonka, “On the design and use of
internet sinks for network abuse monitoring,” inProc. of RAID, 2004.

[33] M. Bailey et al., “The internet motion sensor: A distributed blackhole
monitoring system,” inProc. of NDSS, 2005.

[34] W. Cui, V. Paxson, and N. Weaver, “GQ: Realizing a systemto catch
worms in a quarter million places,” ICSI, Tech. Rep. TR-06-004, 2006.

[35] Y. Gao, Z. Li, and Y. Chen, “A dos resilient flow-level intrusion detection
approach for high-speed networks,” inProc. of the IEEE International
Conference on Distributed Computing Systems (ICDCS), 2006.

[36] R. Panget al., “binpac: A yacc for writing application protocol parsers,”
in Proc. of ACM/USENIX IMC, 2006.

[37] S. A. Vinterbo, “Maximum k-intersection, edge labeledmultigraph max
capacity k-path, and max factor k-gcd are all NP-hard,” Decision Systems
Group,Harvard Medical School, Tech. Rep., 2002.

[38] Z. Li, L. Wang, Y. Chen, and Z. Fu, “Network-based and attack-
resilient length signature generation for zero-day polymorphic worms,”
Northwetern University, Tech. Rep. NWU-EECS-07-02, 2007.

[39] V. Paxsonet al., “Rethinking hardware support for network analysis and
intrusion prevention,” inProc. of USENIX Hot Security, 2006.

[40] Radware Inc., “Introducing 1000X Security Switching,” http://www.
radware.com/content/products/applicationswitches/ss/default.asp.

