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Abstract—In-app advertising has served as the major revenue source for millions of app developers in the mobile Internet ecosystem.
Ad networks play an important role in app monetization by providing third-party libraries for developers to choose and embed into their
apps. Various ad mediations help developers manage all of the ad libraries used in apps to show the best available ad among received
ads from different ad network servers. However, developers lack guidelines on how to choose from hundreds of ad networks or ad
mediations and various ad features to maximize their revenues without hurting the user experience of their apps. Our work aims to
provide app developers guidelines on the selection of ad networks, ad mediations and ad placement by observing current common
practices.

To this end, we investigate 838 unique APIs from 207 ad networks which are extracted from 277,616 Android apps, develop a
methodology of ad type classification based on UI interaction and behavior, and perform a large scale measurement study of in-app
ads with static analysis techniques at the API granularity. We found that developers have more choices about ad networks than several
years before. Most developers are conservative about ad placement and about 77% of the apps contain at most one ad library.
Besides, the likeliness of an app containing ads depends on the app category to which it belongs. Furthermore, we propose a
terminology and classify mobile ads into five ad types: Embedded, Popup, Notification, Offerwall, and Floating. Also, our research
shows that it is a better solution for developers to integrate ad libraries with ad mediation feature in their apps because it may avoid bad
ratings and improve user experience. And in our findings, more than 95% of Embedded, Popup, Notification and Offer ads locate in the
zero activity (main activity), the first activity and the second activity of Android apps. More interestingly, developers tend to put high
aggressive ads on activities which need deeper user interaction. Our research is the first to reveal the preference of both developers
and users for ad networks, ad mediation feature and ad types.

Index Terms—Android app, In-app advertising, Ad network, Ad mediation, Static analysis.
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1 INTRODUCTION

ANdroid has increasingly become the dominant oper-
ating system for mobile devices today and its world

wide market share has hit 86.1% in the first quarter of
2017 [1]. According to [2], the total number of apps in
Google Play has reached 2.9 million in the Feb 2017, 92.5%
of which are free apps. In-app advertising has become one
of the major sources of income for free app developers,
VisionMobile predicts that the in-app advertising market
will be worth 62 billion US dollars by 2017 [3].

Most of free apps leverage third-party in-app advertising
for monetization. To achieve this, app developers need to
connect their own apps to an ad network, a intermediate
platform used for ad delivery. This process usually requires
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code integration: merging a pre-compiled library (a.k.a. ad
library) provided by a specific ad network with the original
app. In practice, there are hundreds of ad networks available
on the market, and even for a specific ad network, devel-
opers still have great flexibility in this integration process.
As described in documentation, many ad networks provide
different ad types, such as banner, interstitial, native, video
and etc, varying in aggressiveness to users. Furthermore,
there is no unified classification system available for in-app
ads, making it easier for developers to get confused. Conse-
quently, for a specific category of app, following decisions
must be made by developers before integration:

• What is the trend in ad networks used by apps in
recent years?

• Can in-app advertising jeopardize user growth and
app ratings?

• Are there any patterns in different co-existed ad
types within the same app?

• How many ad networks within an app can be con-
sidered as acceptable to users?

• What are the popular ad types and what are the ad
types that users are inclined to tolerate?

• Why is it a better solution to choose ad networks
with ad mediation feature and how ad mediation
affects user experience?
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• Where do different ad types locate in the view hier-
archy of Android apps and how location influences
user engagement from the perspective of user inter-
action?

All the questions above must be carefully considered by
developers because excessive ads impression or improper
ad type may ruin an app’s user experience, thus causing
user loss. Given the fact that there are hundreds of ad
networks with different features on the market, it poses
a great challenge for developers to choose the best ad
networks and ad types for their own apps with the balance
between revenue and apps’ user experience. Although mo-
bile advertising ecosystem has been a target of many recent
research, most of them focus on security and privacy of ad
networks [4] [5] [6] [7] [8], mobile ad fraud [9] [10], and ad
targeting [11] [12] [13]. None of existing works can address
this challenge.

To provide guidelines of choosing best ad networks and
ad types, in this paper we study Android in-app advertising
from a developer’s perspective. According to the principle
of statistics, it is of great significance to mastering the
general trend for guiding the holistic direction of devel-
opment. Popular apps are favorable platforms for mobile
advertising, because they have a large number of users.
The more users an app has, the more likely the mobile ads
embedded are seen by its users, and thus improving the
developers’ revenue. Therefore, we statistically surveyed
how the developers of those popular apps leverage mobile
ads to gain their profits. People naturally seek profit and
circumvent loss. In the environment of market economy, the
developers of popular apps will take advantage of their vast
number of users to gain revenue by embedding ads. At the
same time, they will certainly avoid ads affecting the user
experience, which may make their users unsatisfactory and
cause a user loss. Therefore, we think that by observing how
the developers of popular apps use in-app advertising, we
can give guidance to those developers who want to make
money from mobile ads. In particular, we develop a system
called MAdLens, a static analysis framework for Android
apps, which extracts libraries of different ad networks from
a large set of apps, map each of ad relevant APIs inside a SD-
K to a specific ad type and generates summary information
(e.g. number of ad API calls, number of instructions, number
of Android component and etc). Leveraging on MAdLens,
we further perform a large scale measurement across the
Android market and uncover the current trend in usage of
mobile ad networks, aggressiveness difference of ad types
and its impact on various properties of apps.

To summarize, this paper makes the following contribu-
tions:

• To the best of our knowledge, we are the first to
provide practical guidelines for mobile developers
to monetize their apps through third-party in-app
advertising.

• We are the first to map APIs of ad network to specific
ad types and measure third-party in-app advertising
in Android apps at API granularity.

• We are the first to provide a unified classification sys-
tem for mobile in-app ads, and measure the impact
of different ad types on various properties of apps.

• In order to explore how ad mediation, a new feature
of ad networks, influences our measurement of the
impact of different ad types on various properties
of apps, we improve our mapping methodology by
using function call graph instead of simply scanning
the smali code. To the best of our knowledge, we are
the first to detect ad networks with ad mediation fea-
ture and measure their impact on mobile advertising
in Android apps.

• We are the first to measure the impact of ad types
on mobile advertising from the perspective of user
interaction. More specifically, we target at the rela-
tionship between ad types and the view hierarchy
of Android apps, which implies one of the most
important evaluation indexes for Android apps, the
user engagement.

The article extends our conference version [14] in the
following important aspects. We detect ad networks with ad
mediation feature based on function call graph and greatly
improve the accuracy of the percentages of ad types in
Android apps. This demonstrates how ad mediation, a new
popular feature of ad networks, influences our measure-
ment of the impact of ad types on a variety of properties
of apps. We also provide additional analysis on the relation-
ship between ad types and the view hierarchy of Android
apps from the perspective of user interaction which implies
the user engagement, one of the most significant evaluation
indexes for Android apps.

Overall, we successfully extract 838 unique APIs from
207 ad networks, which are identified in a dataset of 277,616
apps. Our results reveal many implications for developers
and here we list some major ones:

1) The number of apps using in-app ads has increased
in recent years but 77% of the apps contain at most one ad
network, indicating that a conservative strategy is widely
accepted.

2) Developers are inclined to use two lowly aggressive
ad types: Embbedded and Popup simultaneously.

3) Too many ad networks that are placed in the same
app will dissatisfy the users and therefore lead to bad
rating. Empirically, it’s better to integrate no more than 6
ad networks into a single app.

4) A better solution for developers is to use ad libraries
with ad mediation feature when managing multiple SDKs.
Ad mediation decreases the number of ad libraries in apps
which may avoid bad ratings and improve user experience.

5) Developers may put more aggressive ads on deeper
layouts for that users who explore more activities could
have higher user engagement and may be more tolerant to
aggressive ads.

The remainder of this paper proceeds as follows: Sec-
tion 2 provides relevant background in Android third-party
ads and Section 3 provides the system design of MAdLens
as well as detailed discussion of methodology we apply
in MAdLens. Section 4 demonstrates the result of our large
scale measurement study and gives explanations as well as
implications based on the result. We describe our improved
methodology and give a comparison of results between
“with ad mediation” and “without ad mediation” in Sec-
tion 5. In Section 6, we show our analysis on the relationship
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Fig. 1: Overview of mobile ad network.

between ad types and the view hierarchy of Android apps.
Section 7 discusses the limitation of our works. Section 8
presents related work and Section 9 concludes the paper.

2 BACKGROUND

In this section, we give a brief introduction to the ecosystem
of mobile advertising and explain how third-party ad net-
works currently work. We also discuss details of mobile ad
classification as well as ad aggressiveness.

2.1 Overview of Mobile Ad Network

Generally, the current ecosystem of mobile advertising in-
volves three major participants: a publisher who shows ads
in her app to make revenue, an advertiser who pays to get
impression of her own ads and an ad network that serves
as a intermediate platform between a publisher and an
advertiser. In practice, an ad network connects the supply
side platform (SSP) to the demand side platform (DSP),
exchanging advertising impression inventory and revenue
across the ecosystem.

As a publisher, most developers monetize their apps
with third-party ad networks. This is usually implemented
by importing an ad library provided by an ad network into
an app, registering on the ad network’s website to set up
an ad account for payment, setting preferences in the ad
library to specify credentials, suitable ad contents, desired
ad frequency, layout, format and etc, and finally building
and publishing the app. Unless explicitly stated, the two
terms ad network and ad library are used interchangeably in
this paper since all ad networks that we discussed have
their correspondent ad libraries for integration. As shown
in Figure 1, an ad request is triggered by ad library when a
user browses specific parts of the app. The ad network serv-
er then receives the request, authenticates the developer’s
account, checks the parameters and responds with a desired
ad. Any impression or click on this ad will be counted by ad
network for revenue share.

2.2 Mobile Ad Network Integration in Android Apps

Ad networks often provide developers with both docu-
mentation and SDK for easy integration. The SDK usually
consists of a pre-compiled ad library and its necessary
dependencies. For Android apps, ad libraries are generally
implemented in Java and provided in compiled jar files.
Developers are required to import the ad library into the
project of their own app and interact with the ad library
with specific APIs.

1 <?xml version="1.0" encoding="utf-8"?>
2 [...]
3 <com.google.android.gms.ads.AdView
4 xmlns:ads="http://schemas.android.com/apk/

res-auto"
5 android:id="@+id/adView"
6 android:layout_width="wrap_content"
7 android:layout_height="wrap_content"
8 android:layout_centerHorizontal="true"
9 android:layout_alignParentBottom="true"

10 ads:adSize="BANNER"
11 ads:adUnitId="MY-UNIT-ID">
12 </com.google.android.gms.ads.AdView>
13 [...]

Listing 1: Banner ad implementation in XML

Most of ad networks provide a rich API surface, which
allows the developer considerable latitude in manipulating
the ad impression. However, this interaction is done either
by changing layout files or calling specific Java API method.
Listing 1 and Listing 2 give two examples of a banner ad im-
plementation with Google Admob [15]. Both examples place
an AdView to the app’s GUI for the banner ad by changing
app’s XML layout files and using Java code respectively.
Then a banner ad can be loaded where the developer wants
by calling loadAd() method of the AdView class.

1 import com.google.android.gms.ads.AdView;
2 [...]
3 AdView adView = new AdView(this);
4 adView.setAdSize(AdSize.BANNER);
5 adView.setAdUnitId("MY-UNIT-ID");
6 [...]
7 }

Listing 2: Banner ad implementation in Java

2.3 Mobile Ad Classification and Aggressiveness
An ad network usually supports more than one ad format
and developers are expected to choose those that fit best
with the design and user flow of their app. By randomly
picking up 10 popular mobile ad networks (Table 1), we can
easily draw conclusion that there is no unified classification
system for mobile ads. For research purpose, specifically,
in order to keep a consistent criterion for analyzed results,
we need to carry out a unified classification of current
advertising presentation forms in the market. We did not
arbitrarily classify them. We referred to the classification
methodologies of popular ad networks, such as Google
AdMob [16], Airpush [17] and Chartboost [18]. In this paper,
we propose a methodology of mobile ad classification based
on the behavior, UI layout and UI interaction of an ad.
Our classification methodology covers all known forms of
mobile advertising, such as, Embedded (including banner,
text, and static picture), Popup (including interstitial, and
full-screen ads), Offerwall (including offer wall and app
wall).

Generally, we classify mobile ad into 5 different types
that are described below:

1) Offerwall is the type of ad that uses a page ap-
pearing within the app to offer users rewards (e.g.
Unlocking new features) in exchange for complet-
ing some specified actions (e.g. downloading other
apps). An Offerwall ad often completely interrupts
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Fig. 2: Examples of different mobile ad types.

app’s behaviour and cannot be ignored by users.
Figure 2(a) is a typical Offerwall ad that we identified
in an Android app.

2) Popup is the type of ad that uses a new pop-up
windows in front of current app’s GUI to display
its contents. Some popup ads are full screen like
interstitial ad, while others are not. While Popup
ads interrupt app’s behaviours, most of them can
be closed by users by clicking on the close button. A
typical Popup ad is shown in Figure 2(b).

3) Notification is the type of ad that uses the notifi-
cation mechanism to display its contents (Shown in
Figure 2(c)). It is displayed in the system’s notifi-
cation area rather than inside the app. Technically,
an Notification ad are still active after the app is
closed since it uses notification pushing mechanism.
Like any other daily used notifications (e.g. SMS),
by default Notification ads are displayed while the
same ringtone is played. Besides, users often have
no idea from which app a Notification ad is pushed,
therefore have troubles to turn it off.

4) Floating is the type of ad that appears in front of the
GUI of current app with a floating window (Shown
in Figure 2(d)). It usually just occupies a small part
of the screen, but can still be seen outside the app.

5) Embedded (Shown in Figure 2(e)) stands for a
type of ad which embeds its contents into current
window of the app. It covers a variety of different
ad types listed in Table 1, such as banner, video
and etc. In general, embedded ads are user friendly
because they rarely interrupt app’s user flow or
only interrupt for a short time and usually can be
ignored, skipped or closed.

By taking all the factors mentioned above into considera-
tion, we intuitively give different levels of aggressiveness to
each type of mobile ad based on its user experience (Table 2).
For those types of ad that can be easily ignored, skipped or
closed by user, we consider them as user tolerable and their
aggressiveness as “Low”. Otherwise, we give “High” as its
aggressiveness level. The only exception is the notification
ad. Although it can be closed or even disabled by user, it
still cause interference to user reading other notifications

TABLE 1: Supported ad format of 10 popular mobile ad
network.

Ad Network Ad Type Supported

Admob Native, Video, Interstitial.
AdColony Rich Media, Video.
Airpush App Icon, Messaging, Notifications, Offerwall.
Chartboost Content Lock, Interstitial, OfferWall, Video.
Fyber Banner, Interstitial, Native, Video.
Inmobi Banner, Native, Video, Interstitial, Rich Media.
Leadbolt Native, Video, Interstitial.
RevMob Interstitial, Video, Pop-up, Rich Media.

Startapp App Icon, Full Page Ads, InApp Ads, Interstitial,
Video.

Tapjoy Content Lock, Interstitial, Offerwall, Rewards.

because most of notification ads will eventually turn into
a notification flood. Another factor in classification is user
privacy which has always been a hot research topic. Since
the launch of GDPR (General Data Protection Regulation)
by the European Union in 2018, people have paid more
attention to personal privacy. We registered with several
popular ad networks and found that developers could con-
figure on the admin page to collect user information when
showing ads. Different ad types require different user infor-
mation, such as IMEI, GPS and WiFi. We found that low-
aggressiveness ads collect less information about users. In
general, they only collect IMEI and resolution to adjust the
placement of ads. High-aggressiveness ads may determine
whether to show videos based on WiFi connection. Some
ads also fetch a list of installed apps. For example, some
Offerwall ads are integrated to recommend other apps, and
the list of installed apps is needed to avoid a redundant
recommendation. Other ad types, such as Floating, may even
require additional permission to display over other layouts.
Our ad classification methodology takes user privacy into
consideration, as high-aggressiveness ads tend to acquire
more private information and require more permissions. We
will demonstrate the impact of different ad types on various
categories of Android applications in Section 4.

3 METHODOLOGY

In this section, we present our methodology that we apply
in MAdLens.
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TABLE 2: Aggressiveness of ad type.

Ad Type Possible to Ignore,
Skip or Close Aggressiveness

Embedded Yes1 Low
Popup Yes Low
Float Yes Low
Notification Yes High2

Offerwall No High

1 Banner ad only takes a small part of the screen, so it can be
considered as ignorable. Other embedded ads like video
ad usually can be skipped or closed.

2 Even though notification ad can be closed or disabled in
Android notification bar, we still consider its aggressive-
ness as “High” because it often affects users reading other
notifications.

3.1 System Overview
As mentioned earlier, we design and implement a system
called MAdLens, which identifies internal third-party ad
network modules from a large Android app dataset, map-
s APIs of ad networks to specific ad types, and finally
generates detailed report of all the ad information and
summaries for each app in the dataset using static analysis
techniques. Our overall approach is summarized in Figure 3.
Specifically, MAdLens works in 3 steps: module analysis,
API mapping and static analysis, which are discussed in
detail in the following subsections.

3.2 Data Collection
Before MAdLens could get to work, here we introduce our
approach for dataset collection first. For fairness, instead of
directly crawling from the web pages of Android market,
we take another approach by using Android package name
enumeration techniques based on a customized pre-defined
dictionary. The crawler randomly picks up words from the
dictionary, concatenates them into any possible package
name of an app. If the name corresponds to an existing app
in the market and the installed amount is above 10k, we will
download its APK file. In this way, our gathered apps are
all popular installations. And our Android App Dataset covers
all 48 categories of apps in Google Play. Along with an app’s
apk file, we also collect its meta info including description,
user rating and reviews. Since paid apps rarely have third-
party ads, it is unnecessary to include any of them in the
dataset. Overall, we collected 277,616 free Android apps
from Google Play market in March, 2017. We upload an
Excel file containing all app names and their meta info to
Google Drive, the shareable link is https://drive.google.c
om/open?id=13F7p0UKS E7skoxiPCTsSU4h5HywQV7B.

3.3 Ad Network Identification
The first goal of MAdLens is to automatically identify all
existing ad networks from each app in the dataset. Since
most of ad networks are widely used in Android apps,
we can assume common ad libraries are shared by many
applications and thus code clones can be detected in these
applications. Besides, an ad library, which is provided by
a certain ad network, is a relatively independent piece of
code in apps because there are usually only a few API
calls across the boundaries between an ad library and other
parts of the app. Based on the two important observations,
we leverage the technique described in [19] [20] to detect

Report
Android App 
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Ad Network SDK 

Documentation

Module 

Analysis

API Mapping

Static 

Analysis

Ad Network 

Dataset

Ad Network 

API Dataset

Fig. 3: Overview of MAdLens.

TABLE 3: Feature statistics in ad network API dataset.

Embedded
Ad

Popup
Ad

Floating
Ad

Notification
Ad

Offerwall
Ad Total

Number
of APIs 4071 200 10 29 51 697

1 APIs of embedded ad are found in both in Java code (299 APIs) and
XML (108 APIs) layout resource files in apps (Listing 1 and Listing 2).

these frequently used but relatively independent modules
in apps. Clustering techniques are employed when measur-
ing the coupling of different modules and finally, clusters
are mapped to ad libraries, which are associated with ad
networks. We refer the process described above as module
analysis in our system.

In total, we identify over 200 unique ad networks from
our dataset, however, only 164 of them have documentation
available. Our goal is to perform a comprehensive third-
party in-app ads analysis which requires semantic infor-
mation at API level. In addition, the documentations can
help developers place ads in a recommended way. Those
SDKs without documentation also increase the difficulty for
developers to configure ad networks. So we only add the
164 unique ad networks into our Ad Network Dataset.

3.4 Ad Network API Mapping

Since there is no unified ad classification system available at
present, we propose methodology of mobile ad classification
based on the behavior, UI layout and UI interaction of an ad.
To investigate various ad types adopted by apps at a large
scale, it is necessary to have the “API mapping” information
which includes all the correspondent ad network APIs to
specific ad types. Obviously, it is impossible to automate
this task since ad APIs are not always well documented,
so we have to manually test all relevant APIs from 164
ad networks and map them to the 5 ad types we defined
in Section 2.3. This is a non-trivial task that requires huge
effort. For those ad libraries with detailed documentation,
we write test cases to verify each APIs to make sure that it
maps to the a correct ad type. For those undocumented ad
libraries we identified from apps, we do API mapping by
setting hooks to suspicious APIs with reverse engineering
techniques and interacting with the host app to observe its
behavior. Overall we get 697 unique ad APIs (Shown in
Table 3) and add them into our Ad Network API Dataset. On
average, each ad network has 4.25 ad APIs.
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3.5 Ad Detection

With the two datasets that generated from last two steps,
now it is possible to detect different types of ads from
different ad networks in Android apps. Recall that there are
two approaches for ad APIs to integrated into an app, either
in resource file (e.g. xml) or in Java code (See Section 2.2).
To get a complete result, both resource files and Java code
need to be analyzed thus we leverage on Androguard [21],
an lightweight opensource reverse engineering tool for An-
droid in static analysis. For resources files, we first decom-
pile the apk file with Androidguard to get all the Android
layout files, then parse all the XML nodes and match them
with our 2 datasets. Similarly, for java code, smali code is
generated by Androguard after decompiling the apk file and
we again match the smali code with the 2 datasets. Note
that the code of the ad library itself must be filtered before
the code matching process because self-reference to ad APIs
may exist inside the code of ad libraries.

In comparison with other Android reverse engineering
tools, one of Androguard’s major advantages is its resistance
to apk obfuscation and hardening. Androguard successfully
decompiles 98% of Android apps in our measurement. For
those apps which try to hide their code behaviours by
adopting app hardening techniques, we characterize them
with summary information extracted from the apk file (e.g.
numbers of Android activities in code and mainifest file,
numbers of Java class and instructions, etc), and eliminate
them from our dataset.

4 DATA ANALYSIS AND RESULTS

To understand the status quo of how in-app ads are in-
volved in the real-world apps, we conducted a large-scale
measurement study of in-app ad libraries among the apps
from Google Play. Specifically, we collected a total number
of 277,616 apps during March 2017. We performed both
manual and static analysis on those real-world apps across
tens of app categories to better understand the preference of
developers in in-app ad selection from various angles.

4.1 The Trend in the Number of Ad Libraries Embedded
in an App

We estimate the trend in the number of ad libraries embed-
ded in an app. The last update time of an app indicates
the year in which the latest version of the app comes onto
the market. We examine whether there exists a positive
correlation between the number of ad libraries hosted by
an app and its last update year. In Figure 4, we use boxplots
to demonstrate the correlation. For each box, its bottom cor-
responds to the number of ad libraries per app on the 25th
percentile, its top corresponds to the ad library number on
the 75th percentile, and the line across the box corresponds
to the ad library number in the median. These boxplots
show that the apps in the years 2008 and 2009 barely have
ads, 25% of the apps released in the years from 2010 to 2014
host at least one ad library. Besides, 50% and 25% of the apps
released in the recent years from 2015 to 2017 host at least
one or two ad libraries, respectively. Thus the figure presents
a clear trend that the number of ad libraries embedded in
an app increases with the year.

Fig. 4: The trend of the number of ad libraries along with
year.
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Fig. 5: CDF of the number of ad libraries embedded in an
app.

One interesting question is to see how many ad libraries
a developer usually places in her app nowadays. Figure 5
shows the cumulative distribution function (CDF) of the
number of ad libraries embedded in an app. Up to 37.8%
of the apps do not contain any ads, which is surprising
given the fact that developers profit from their apps mainly
by accommodating ads in their apps. The percentages of
apps partnering with one ad library, two ad libraries, and
three libraries are about 33%, 10%, and 5%, respectively.
This indicates that most apps only involve one or two ad
libraries. One possible explanation is that developers avoid
to place too many ads1 in apps since displaying ads may
affect user experience, hurdle the promotion of the app, and
finally decrease the revenue of the developers.

Implication 1: Developers have more choices about ad
networks than several years before. Most developers are
conservative about ad placement in their apps given the
observation that about 71% of the apps contain at most one
ad library.

4.2 Prevalence of Ad Types in an App

We also examine the popularity of each of the five mobile ad
types among 277,616 apps. Figure 6 shows a breakdown of
the apps by the ad type involved. We can see that 62.2% of
the apps in our dataset contain at least one ad type, which
is reasonable since after all advertising is one of the most
important monetization ways for ad developers. An app
could contain multiple types of ads, and 8.5% of the apps
accommodate more than two out of the five types of ads.

1. Note that the number of ad libraries included in an app is propor-
tional to the number of ads displaying on the app.
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Fig. 7: Top 10 categories with the most apps.

Embedded and Popup are among the most popular ad types,
and up to 61.7% and 55.1% of the apps contain those two
types of ads, respectively. Furthermore, these two ad types
usually appear in one app simultaneously, and more than a
half (54.7%) of the apps are found to contain both ad types.
Offerwall is the third popular ad type, which is observed in
8.2% of the apps. Notification and Floating ad types are the
two least popular, with less than 1% of the apps containing
them.

Implication 2: Statistically, developers include two lowly
aggressive ad types, Embedded and Popup, simultaneously in
more than a half of their apps. In contrast, the two highly
aggressive ad types including Offerwall and Notification are
not popular.

4.3 Prevalence of Ad Types in the Apps of the Top 10
Categories

Based on the category tag associated with each app,
the apps we collected fall into 48 categories. The top
10 categories with the most apps are shown in Figure
7. It can be seen that apps are quite dispersed across
categories. The number of apps in the top 3 three categories,
Education, Business, and Lifestyle, only occupy less
than 10% each, respectively. The rest popular categories
include Entertainment, Tools, Music & Audio,
Personalization, Books & Reference, Travel &
Local, and Casual. Up to 57.1% of the apps fall under the
categories out of the top 10 ones.

We further study the prevalence of the five ad types
in the apps of the top 10 categories, which is helpful for

developers to learn popular practices for placement of dif-
ferent kinds of ads in the corresponding popular categories.
Figure 8 provides the details about the ad placement in the
top categories. Note that for each app category, the figure
provides the percentages of apps in this category which
host: 1) ads, 2) ads of more than two different ad types,
3) both Embedded and Popup ads, 4) Embedded ads, 5) Popup
ads, 6) Notification ads, 7) Offerwall ads, and 8) Floating ads.
Please check the legend of the figure for the meaning of each
column.

Percentage of apps with ads. Among the top 10 cat-
egories, Business, Education and Tools apps are the
least likely to contain ads, with 39.6%, 48.0%, and 48.5%
having ads, respectively. Section 4.2 shows that 62.2% of the
apps contain ads in overall. One reason why these three
categories of apps have the below average percentages is
that those apps are mainly utility tools and too many ads
may distract or even annoy users. In contrast, about 74% to
87% of the apps in the four categories, Entertainment,
Personalization, Music & Audio, and Casual, con-
tain ads.

Implication 3: The likeliness of an app containing ads
depends on the app category to which it belongs, to some
extent. The business or utility apps are much less likely
to contain ads than the entertainment or casual apps. The
app categories featuring young audience usually contain
the most ad libraries maybe because of the ad-tolerance
characteristic of young people. Thus, developers may decide
the ad placement issue based on the category of their apps.

Percentage of apps accommodating at least three types
of ads. App developers could place multiple types of ads
in their apps for maximizing the profit. The figure shows
that the percentage of such apps is not high. Only 1.1% of
Business apps are embedded with at least three types of
ads, while the Casual apps have the largest likeliness, with
23.6% accommodating at least three ad types.

Embedded ads and Popup ads. Embedded ads turn out
to be the most popular ad types, which is true across
all categories. 39.6% to 85.7% of the apps in the top 10
categories contain Embedded ads. Popup ads are quite pop-
ular too. Interestingly, the figure shows that a significant
proportion (from 36.8% to 71.5%) of the apps across all the
top categories contain both Embedded ads and Popup ads.

Notification, Offerwall, and Floating ads. Comparative-
ly, these three kinds of ad types are much less popular than
Embedded and Popup ad types. Offerwall ad type is observed
across all top categories, and up to 23.8% of Casual apps
contain Offerwall ad type. In contrast, the Notification and
Floating ads are trivial. Casual apps have the largest per-
centage to contain Notification ads, with a value of 0.4%,
Floating ads mostly appear in Lifestyle apps, occupying
only 2.9%.

Implication 4: The two lowly aggressive ad types, Em-
bedded and Popup, are popular with apps in nearly all
categories. The highly aggressive ad type, Offerwall, is some-
what popular. Developers could consider placing these three
types of ads on their apps.
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Fig. 8: Breakdown of the apps in the top 10 categories by the ad type.

4.4 Correlation between in-app Ads and User App Rat-
ings

Intuitively, a user could be annoyed by an app embedded
with too many ads. Thus it is interesting to examine whether
there indeed exist the cause-effect relationships between
in-app ads and user ratings. We explore the question by
studying the correlation between the number of ad libraries
contained in an app and the ratio of users who give bad
ratings for the app. Users can rate apps in the Google Play
by giving stars. A score with five stars means that a user is
very satisfied, while a score with only one star means that a
user is extremely dissatisfied. We calculated the percentage
of the users who give one star as the ratio of bad ratings.
Figure 9 depicts such a correlation. It clearly shows that the
ratio of bad user ratings increases along with the number of
ad libraries. Bad ratings received on apps with 7 ad libraries
or more increase significantly compared to those received
by apps with 6 ad libraries or fewer.

Implication 5: Developers are expected to avoid embed-
ding too many ad libraries into an app, empirically no more
than 6, which otherwise would dissatisfy the app users and
result in bad ratings.

4.5 Ad Network Choice for Apps in the Different Stages
of Their Lifecycles

To maximize the revenue, apps in the different stages of
their lifecycles may consider different ad networks. Among
the metadata information associated with an app, the down-
loads of an app could best indicate the stage of the lifecycle in
which the app currently is, at least to some extent. A newly
released app typically has few downloads and an app that
has been on the app market for a while usually has more
downloads.

We examined the correlation between downloads of
an app and the number of ad networks that the app is
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Fig. 10: Ad network choice for apps in different lifecycle
stages.

partnering with. Figure 10 depicts such a correlation for all
277,616 apps in our dataset. The x axis denotes the logarithm
of the downloads of per app, and the y axis denotes the
number of ad networks used per app on average. The curve
in the figure shows that statistically the average number
of ad networks used by an app has a positive correlation
with the downloads of the app. Specifically, an app with
10 downloads uses 0.84 ad networks on average and an
app with 1 million downloads adopts 2.79 ad networks on
average. That is, a new app usually uses less ad networks
and a relatively old app tends to use more ad networks.
Since the number of ad networks is reasonably proportional
to the number of ads displayed on the app, we could say
that a new app tends to display less ads than an old app.

Implication 6: A developer is suggested to use at most
one ad network when her app is still at the initial stage and
could start using more (2 or 3) ad networks when the app
becomes popular, reflected by its downloads.
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Fig. 9: Correlation between the ad library number in an app and the ratio of bad ratings for the app.
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Fig. 11: Ad type choice for apps in different lifecycle stages.

4.6 Ad Type Choice for Apps in the Different Stages of
Their Lifecycles
Similarly, we examined the correlation between downloads
of an app and the number of ad networks of each ad type
that the app is partnering with. Figure 11 depicts such a
correlation for each of the 5 ad types. One observation is that
statistically Embedded and Popup are the two most popular
ad types for apps with any number of downloads; in con-
trast, Notification and Floating are the two least popular ad
types, with negligible percentages; Offerwall is only popular
with the apps with tremendous downloads. Overall, the
average number of ad networks of each ad type used per
app increases with the downloads of apps.

Implication 7: As the statistical results of the large
dataset suggest, we recommend that a developer mainly
places Embedded and Popup ads on her app in whatever
lifecycle stage, and could start to place Offerwall ads when
her app has many enough downloads.

4.7 Impact Analysis of the Aggressiveness of the Ads
Hosted by an App
As mentioned before, ad types are classified into two
categories: low-aggressiveness and high-aggressiveness. It
would be interesting to evaluate the impact of different

levels of aggressiveness of the ads on other performance
metrics of apps. We choose Pearson correlation coefficient
to perform correlation analysis.

As a measure of the linear correlation between two vari-
ables, the value of Pearson correlation coefficient is between
+1 and -1, where 1 is total positive linear correlation, 0 is
no linear correlation, and -1 is total negative linear corre-
lation [22]. Table 4 lists the computed Pearson correlation
coefficients.

The table shows that the number of low-aggressiveness
ad types and the number of high-aggressiveness ad types
included in an app have extremely strong positive cor-
relation between each other, which suggests that an ap-
p usually includes these two aggressiveness-levels of ads
simultaneously. In addition, both of them have relatively
strong positive correlation with the number of ad networks
used of the app, which is reasonable given that the two ad
types of ad networks combined make the total number of
ad networks. Surprisingly, the levels of aggressiveness have
no correlations with other metrics of the apps including
downloads and ratings. One possible reason is that apps
in the different stages could host both aggressiveness-level
ads for maximum profit, and app ratings could be affected
by many factors and not only by the aggressiveness of the
ads in the app.

Implication 8: Developers are recommended to use both
low-aggressiveness ads and high-aggressiveness ads at the
same time for maximizing their revenues.

5 AD MEDIATION

Recently, developers tend to use a new feature called ad
mediation which simplifies the integration of multiple ad
libraries in Android apps. This new feature utilizes a me-
diation engine which selects a third-party ad library by
invoking its ad API based on some preconditions during
an ad request. To use ad mediation, developers first need to
embed all the ad libraries they need to make sure that all
API invocations from the mediation engine are successful.
Our analysis in previous sections do not take the ad me-
diation feature into consideration, therefore all the API calls
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TABLE 4: Pearson correlation coefficients

# ad
networks

# low-aggressiveness ad
types

# high-aggressiveness ad
types

Downloads Ratings

# low-aggressiveness ad
types

0.568934 1 0.999974 0.004088 0.038284

# high-aggressiveness ad
types

0.686385 0.999974 1 0.004583 0.03201

invoked by ad mediation are added into the result set. How-
ever, there are some cases where developers do not need
all the third-party ad libraries supported by ad mediation
or they just forget to embed a few ad libraries, resulting
in invalid ad API invocations. Such API invocations never
request ads so they should not be counted in our analysis.

To eliminate the inaccuracy caused by ad mediation, in
this section, we first introduce the overview of mobile ad
mediation showing how it works, then propose a method
for ad mediation libraries detection. After successfully i-
dentifying ad mediation libraries, we also update our ad
network API dataset used in previous sections. Finally,
we repeat our analysis on 277,616 apps with the updated
ad network API dataset and compare with the results in
Section 4.

5.1 Overview of Mobile Ad Mediation
Ad mediation is popular in mobile in-app advertising toady.
An ad mediation library allows a developer to coordinate
various ad libraries in an application and display ads from
one of the ad networks based on factors such as ad availabil-
ity and value. Ad mediation also reduces SDK bloat. Having
a lot of SDKs integrated can slow down apps and affect per-
formance. The more SDKs in an app, the more unpredictable
and inconsistent the app’s user experience will be. Instead
of manually integrating multiple ad networks, a mediation
solution requires just one SDK, aggregating all those ad
networks inside it. This saves developers coding time and
minimizes the SDK bloat. According to the introduction of
Google AdMob Mediation [23], AdMob mediation platform
can manage up to 33 ad networks.

Figure 12 describes how mobile ad mediation works
when adding mediation feature into ad networks. First
the user launches the app and triggers an ad request. The
mediation platform then receives the user’s parameters.
Later the mediation platform’s optimization engine sequen-
tially sends the parameters to its mediated ad libraries by
invoking the corresponding ad APIs in the order of revenue
from high to low. Once an ad is returned, the sending
process ends and the returned ad must be the highest-
paying one which is served to the user finally. Ad mediation
increases fill rates, maximizes ad revenue, and simplifies
the SDK integration process, therefore making it a better
solution for developers to monetize their apps. The main
advantages [24] of using ad mediation is to centralize access
to ad networks with just one SDK, instead of managing
various different SDK integrations directly.

5.2 Ad Mediation Library Detection
Previous analysis scan smali code for all the ad API calls
tagged with 1© 2© 3© as shown in Figure 12. However, a
successful ad request requires developers to integrate ad
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Fig. 12: Overview of mobile ad mediation.

library SDK 1,2,3 in the app. If any of them doesn’t exist,
an “SDK not found” error will occur indicating the API call
is invalid. In order to filter these invalid ad API calls from
previous result set, we need to detect ad libraries with ad
mediation feature and validate the integration of ad library
SDKs that used by mediated ad networks. Next we describe
how we improve our approach for more accurate results.

We improve our methodology for detecting in-app ads
in Android apps by using function call graph instead of
simply scanning smali code. As mentioned in Section 3.5,
to detect ads we scan the generated smali code line by
line and match the specific statements of API calls. Such
approach suffers from an accuracy problem because ad
libraries may have self-call and mediation behaviors, and
some mediated ad API may lead to an invalid call into
an empty function body, resulting in false positives for in-
app ad detection. To eliminate such false positives in our
previous results, we take a callgraph-based approach. The
call relationship of the target ad API function can be clearly
captured in the function call graph, thus improving the
accuracy of ad detection. Although developers are likely to
use various common obfuscation techniques like Identifier
renaming, Reflection, and Encryption (IRE) to protect their
source code [25], however, class names of most third-party
ad libraries do no support obfuscation due to compatibil-
ity reasons. As for the dynamically loaded third-party ad
libraries, developers embed them in two ways. In the first
situation, developers actually use the reflection mechanism.
We can detect such ad libraries through function call graph.
In the second situation, third-party ad libraries download
the jar packages from the remote server and embed the
SDKs. We cannot handle this case by static analysis. There is
a solution that we dynamically run the apps and randomly
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click on the screen to trigger the ads. We can use the UI-
based methodology proposed in [26] to detect the triggered
ads. In the meanwhile, we capture the network flow and
analyze which ad network the requested ad belongs to. We
leave this dynamic detection for future work. Based on call
graph of Android apps and the extracted layout files in APK
files, we redesign MAdLens to detect Android in-app ads
by taking ad mediation into consideration. Our improved
approach refines the results in Section 4 and it includes the
following steps:

Step 1: Package name extraction for ad mediation.
Based on our observation, we find that when an ad

API is invoked by an ad mediation, the node representing
this API in the call-graph always has no child node. That
is because the library code of the ad API is not actually
imported. So we utilize the pseudo-code in Algorithm 1
to extract the package names of the functions that invoke
such APIs. Specifically, if the package name of the invoking
function is not same as the package name of the invoked API
(coming from different ad libraries), we record the package
name and mark it as ad mediation. Finally, we put all the
package names of ad mediations into an ad mediation list,
and update our Ad Network API Dataset (See Section 3).

Algorithm 1 Get Ad Mediation Package Name

Input: Apk files of Android apps |A|
Output: Ad mediation name list |M |

1: procedure GETADMEDIATIONNAME(|A|)
2: initialize ad mediation name list |M | with φ;
3: for all apk files Ai in |A| do
4: for all ad APIs Ii in Ai do
5: Ni ← function call graph node of Ii
6: if Ni has no child function node then
7: Mi ← ad library name which invokes Ii
8: Si ← ad library name of Ii
9: if Mi 6= Si then

10: |M | ←Mi

11: end if
12: end if
13: end for
14: end for
15: return |M |
16: end procedure

Step 2: Call graph scanning.
In this step, we search the function call graph to find

the third-party ad libraries embedded in Android apps by
matching the package names in our Ad Network API Dataset.
Given a function node in the call graph of an app, we
first check whether this node has any sub function node.
An empty child node set indicates that the corresponding
API of this node is actually mediated by an ad adapter and
its ad information results depend on the ad mediation. So
we ignore these ad APIs in our result. On the contrary, if
the child node set is not empty, we next check its parent
function node set. 1) If parent node doesn’t belong to any
ad libraries, indicating the corresponding ad API is directly
invoked by an Android app in a regular way as depicted
in Figure 13, we then add the name of the ad library and
the ad types of the ad API to Regular Result Set. 2) If the

parent node belongs to the same ad library with the ad API,
again we simply ignore the ad API in our result. 3) If the
parent node belongs to a different ad library from the ad
API, indicating this API is called by an ad mediation, we
then add the ad mediation name and the ad types of the ad
API to the Mediation Result Set.

Step 3: Merging the results. After we obtain the Reg-
ular Result Set and the Mediation Result Set, we take the
intersection of the ad types in these two result sets. Then
we respectively append the ad library name in the Regular
Result Set and the ad mediation name in the Mediation Result
Set with the merged ad types to generate our Final Result Set.
Our research reveals the fact that developers may choose
only a few of the ad types when integrating ad mediation
into their apps although the mediation adapter class often
supports nearly all types of APIs that provided by other ad
networks. As shown in Figure 14, in the Mediation Result
Set, the ad library A supports the embedded and the popup
ad types while the ad library B just supports the embedded
ad type. Because the ad library A is mediated by the ad
library B, there exists only one ad type (embedded) in the
application.

App
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① Invoke ad API
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Fig. 13: Invoke ad API in a
regular manner.
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Fig. 14: Invoke ad API in a
intermediate manner.

Step 4: Ads in the layout file. As a final step, we
decompile Android apks to get Android layout files and
parse all the XML nodes with our Ad Network API Dataset.
Later, we extract the advertisements inserted in layout files
and append these ad information to the final result set.

5.3 Updating Ad Network API Dataset
As described in Section 5.2, in order to find API calls from
ad mediation to third-party ad library in the function call
graph, we need the package names of ad libraries with ad
mediation feature and the smali code of these API calls.
Previous Ad Network API Dataset only has the package
names of the third-party ad libraries and the smali code of
their ad APIs. In this section, we discuss about updating our
Ad Network API Dataset by adding information related to ad
mediation.

We collect all the ad APIs corresponding to the nodes
in function call graphs which have no subfunction node.
These APIs are expressed in smali code that contain a class
name and a method name. Then we leverage Androguard
again to search all the relationship of the function calls with
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the class name and the method name in the smali code as
the parameters. Note that we filter an invoking relationship
when the invoked and the invoking package name are
the same. Generally a package name of an ad mediation
includes keywords “mediation” or “adapter”, for example,
com.google.ads.mediation and com.facebook.ads.internal.adapters.
But we find some particular cases where the API code
is dynamically fetched from ad servers when the app is
running. In this situation, we cannot infer which ad types
are integrated in the app. However, we only find 142 of our
277,616 Android apps with dynamic code loading feature, so
we ignore these apps in our result. For the newly discovered
ad libraries, we search their SDK documentations and add
the supported APIs into our Ad Network API Dataset.

Previous dataset contains 164 ad networks and 697 ad
APIs, and we update it to 207 ad networks and 838 ad APIs
(Shown in Table 5). Of 207 unique ad networks, we find
64 ad networks with mediation feature. On average, each
ad network has 4.05 ad APIs. With the updated Ad Network
API Dataset, we perform a large scale ad detection on our
previous Android App Dataset by following the above-
mentioned four steps.

5.4 Comparison of Results

This section gives a comparison of the results between with
ad mediation and no ad mediation introduced. We estimate
the impact of ad mediation feature on ad libraries and ad
types.

Figure 15 depicts the CDF of the number of ad libraries
embedded in an app when using our methodology to detect
ad mediations. Statistics show that the percentage of apps
which do not contain any ad increases from 37.8% to 44.77%.
This reflects that it is inaccurate to simply scan the smali
code of apps. In some cases, we may only find the integrated
third-party SDK embedded by the ad mediation, but the ad
APIs are not invoked indeed. In our improved methodology,
these situations correspond to empty function bodies so we
can skip adding these ad APIs to the result set. However,
the percentages of apps partnering with one ad library and
three libraries decrease to 32.45% and 3.47% respectively.
Recall that implication 5 suggests developers not to embed
too many ad libraries into an app, which otherwise would
dissatisfy the app users and lead to bad ratings. Ad media-
tion can centralize access to ad networks with just one SDK,
instead of integrating various different SDKs directly, thus
decrease the number of ad libraries contained in android
apps.

Implication 9: It is better for developers to use ad li-
braries with ad mediation feature when managing multiple
SDKs. Ad mediation not only reduces developers’ burden
in embedding multiple ad libraries, but also decreases the
number of ad libraries in apps which may avoid bad ratings
and improve user experience.

Table 6 shows the decrease of the percentage of apps
containing different ad types. As demonstrated in the table,
the percentage of apps having more than 2 ad types de-
creases from 8.5% to 6.15%. Meanwhile, the percentages of
apps containing Embedded, Popup and Offerwall ads go down
by 10.35%, 20.11% and 1.27% respectively. This also proves
the accuracy of our methodology which can eliminate the
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Fig. 15: Comparison of CDF of the number of ad libraries
embedded in an app.

TABLE 6: Comparison of percentages of apps containing ad
types.

Ad Type Percentage with
no ad mediation

Percentage with
ad mediation

Embedded 61.7% 51.35%
Popup 55.1% 34.99%
Offerwall 8.2% 6.93%
More than 2 ad types 8.5% 6.15%

ad APIs that are not invoked indeed. Among them, the
percentage of apps containing Popup drops the most. The
reason could be that while the mediated third-party ad
libraries support multiple ad types such as Embedded and
Popup, the ad mediation only provides Embedded ads. In this
situation, there is only one ad type, Embedded, in the result
set.

Implication 10: When selecting ad libraries with ad
mediation feature, it’s better for developers to compare the
supported ad types between different ad mediations, which
helps developers meet their needs for multiple ad types to
maximize their benefits.

6 APP VIEW HIERARCHY AND AD TYPES

In previous sections, we have analyzed the ad types from
several aspects such as percentages and bad ratings. We
want to explore more with the ad types from the perspective
of user interaction which implies one of the most important
evaluation indexes for Android apps, the user engagement.
In this section, we target at the relationship between the
view hierarchy of Android apps and the ad types.

6.1 User Engagement of Android Apps

Android apps are mainly written in Java. The Java code is
compiled to compressed bytecode in a .dex file. The byte-
code runs in the Dalvik virtual machine, a virtual machine
similar to the Java Runtime Environment (JRE). Apart from
Java, some applications are also allowed to be written in
native code. Android apps are composed of components
containing four types: activity, service, broadcast receiver, and
content provider. Content providers manage the access to
data while services are running in background. Broadcast
receivers receive system events (such as reboot completed or
an SMS received, and so on) from registered system services.
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TABLE 5: Comparison of feature statistics in ad network API dataset with and without ad mediation.

Ad Mediation

Number of APIs Ad Type
Embedded

Ad
Popup

Ad
Floating

Ad
Notification

Ad
Offerwall

Ad Total

With Ad Mediation 4811 260 10 30 57 838
Without Ad Mediation 407 200 10 29 51 697

1 APIs of embedded ad are found in both in Java code (356 APIs) and XML (125 APIs) layout
resource files in apps (Listing 1 and Listing 2).

1. Login

Activity

2. Home Page

Activity

3. Item

Activity

1 2 3

Input username and 

password, then login in

Switch to Search Tab

 and type in keywords
Select in the item list

Fig. 16: Activity transition diagram showing the interaction
with the popular Android app, Instagram.

Whenever a system event is triggered, except some special
cases for instance broadcast abortion, the code specified
in the broadcast receiver is run to respond to the system
service. As Android apps are GUI-centric, a typical Android
app consists of separate screens corresponding to activity
components, which is functionally equivalent to windows
in a conventional desktop GUI [27].

When interacting with an app, users transit between
different activities by navigating typical GUI elements, such
as toast (popups), text boxes, text view objects, list items,
and progress bars. In Figure 16, we describe how users
interact with a popular Android app, Instagram. On the
top we give the textual explanation of users’ actions, in
the middle we have a real screenshot, and on the bottom
we draw the transitions between the activities. Initially the
app is in the Login Activity. When the user inputs her
username and password and login in, the app transits to
the Home Page Activity (another different screen). Then
the user switches to the Search Tab (the same screen) and
searches for items by typing in item keywords. After the
user presses down on the screen, the layout changes to show
the details of the selected item as the app transits to the Item
Activity.

Measuring the mobile KPIs [28] helps developers gain
the best insights on their apps, optimize effectively, and
generate more revenue. One of the best mobile KPIs is
to measure how many screens the users visit each time
they use an Android app, and how they interact with
those screens. It’s usually a good indication when the users
engage with a significant number of screens per session, as
this shows that an app is interactive and useful to people.
As illustrated in the last paragraph, the activity transitions
naturally form a graph. From the perspective of graph
search, if we regard the Login Activity as the start node,
users who explore the Item Activity go more deeply in the
activity transition graph than those who just explore the
Login Activity. The deeper the users navigate in an Android

app, the more screens the users visit (users who explore
the Item Activity also explore the Login Activity and the
Search Tab of the Home Page Activity). In conclusion, users
with high engagement and interaction usually explore more
deeply in the activity transition graph.

6.2 Depth of Ads in App View Hierarchy

In this section we present the two elements of our method-
ology: Static Activity Transition Graph, which displays the
view hierarchy of an Android app, and Ad API Call Locat-
ing, whose main goal is to trace which activity an ad API call
occurs. Combining the Static Activity Transition Graph and
the generated activity name of the Ad API Call Locating,
we use graph search algorithm to map the location of the
activity, where the ad API call occurs, in the view hierarchy
of an Android app. We first give the definition of the Static
Activity Transition Graph, and then introduce how the Static
Activity Transition Graph is constructed. Next we show how
to trace the activity name where the ad API call is located
and finally how we map the two elements to get the depth
of the occurrence of the ad API call.

Static Activity Transition Graph. The Static Activity
Transition Graph (SATG) [29] is a graph GS = (VS , ES)
where the set of vertices, VS , represents the app activ-
ities, while the set of edges, ES , represents possible ac-
tivity transitions. SATG helps understanding programs as
it provides a view hierarchy of the high-level application
work flow. SATG is automatically extracted from Android
apps using static analysis (to be specific, taint analysis). The
programming model of Android apps is based on callbacks
in response to user interactions or background services
invoked by the Android framework, which differs from the
traditional model based on main function. If the transition
from activity A to activity B is caused by user interaction, the
methods in call graph associated with A indirectly invoke
B. The transition is implemented in a generic intent passing
logic. Consequently, to get a SATG, the construction process
can be achieved by data-flow analysis, or specifically, taint
tracking. Take the transition between the A and B activities
as an example, we taint B when setting up taint analysis. If
the taint analysis can find an actual invocation path starting
from A, it means that activity A reaches B, so an A to B
edge is drawn in the SATG. Activity transition is realized
based on Intent objects. As described in the official Android
documentation [30], an Intent is an abstract description of an
operation to be performed. It can be used with startActivity
method or other similar methods like startActivityForResult
and startActivityIfNeeded to launch an activity by passing the
intent as a parameter, or with startService and bindService
method to communicate with a background service by
sending broadcast messages. Intent can be thought of as
the glue between activities. We now illustrate how to use
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taint tracking to construct a SATG. Initially, the data-flow
analysis tags Intent object declarations as taint sources. Then
the taint tracking looks for the tagged sinks: startActivi-
ty, startActivityForResult, and startActivityIfNeeded. With the
tagged sources and sinks, the taint tracking checks whether
tainted sinks are reachable from sources. For all the detected
(source, sink) pairs by the taint tracking, an edge is added in
the SATG. Generally speaking, the principle for constructing
the SATG is to test the reachability from Intent declaration
points as sources to activity launch requests as sinks.

Ad API Call Locating. To trace which activity an ad
API is invoked or embedded, we first decompile all the
layout files, extract all the activity names and record the
main activity of an app. Then for each invoked ad API,
we search all the methods which call the ad API. After we
get the call relations, we obtain the package names of the
calling methods and match all the activity names to check if
any package name equals to an activity name. If an activity
name is found, we record the activity name and the ad API
information. Next for each ad API defined in XML layout
files, we match all the string values in layout files to check if
the package name of an ad API equals to any string value,
that is, the ad API is embedded in a layout file. If an ad
API is defined in a layout file, we read its hexadecimal
resource ID and scan the smali code of the app to look for
which method uses this resource ID. Same as the operations
with invoked ad APIs, after we get the package name of the
method and obtain the activity name, we record the activity
name and the ad API information. Finally we gather all the
results of both invoked and XML-defined ad APIs.

Breadth-First Mapping. We now show how we use
graph search algorithm to map the SATG and get the depth
of the occurrence of the ad API call. To compute the depth,
we actually want to find the shortest path between the start
node and the target node. So we employ breadth-first search
algorithm in this step. From the interactive point of view,
there are two kinds of start nodes in our methodology, the
first is the main activity defined in AndroidManifest.xml,
and the second is the registered broadcast receiver.

Algorithm 2 precisely describe the breadth-first mapping
methodology. First we construct the SATG of an Android
app (line 4) and extract the nodes representing the broadcast
receivers. But we only record those nodes which only have
outward edges as startBroadcastReceivers (line 5). Then we
fetch the main activity Mi from the AndroidManifest.xml
file in the app’s APK (line 6). For each ad API call Ci,
we get the activity Oi where Ci occurs (line 8). Next we
compute the length of the shortest path between the start
nodes and other activities which contain ad API calls. We
compute between Mi and Oi. Also we compute between
each startBroadcastReceiver and Oi in the SATG. For each
Oi, we start from Mi or a startBroadcastReceiver in the
SATG using breadth-first search. Once we’ve found that
the activity name of the current node equals to Oi’s, we
return the depth of the current node. Note that we choose
the minimum length among the computed results of Mi

and startBroadcastReceivers as the depth Di of Oi (line 9-15).
Finally, we write ad type of Ci with the depth information
Di to the result set (line 16).

Algorithm 2 Breadth-First Mapping

Input: Apk files of Android apps |A|
Output: Depths of ad API calls |D|

1: procedure BFM(|A|)
2: initialize depths of ad API calls |D| with φ;
3: for all apk files Ai in |A| do
4: SATGi ← SATG of Ai

5: |SBR|i ← Start Broadcast Receivers of SATGi

6: Mi ← main activity of Ai

7: for all ad APIs calls Ci in Ai do
8: Oi ← activity where Ci occurs
9: Di ← BFS(SATGi, Mi, Oi)

10: for each broadcast receiver BR in |SBR|i do
11: Dbr ← BFS(SATGi, BR, Oi)
12: if Dbr < Di then
13: Di = Dbr

14: end if
15: end for
16: |D| ← {ad type of Ci, Di}
17: end for
18: end for
19: return |D|
20: end procedure
21:
22: procedure BFS(Si, Node, Oi)
23: initialize a queue Q with φ;
24: initialize a visited set V with φ;
25: initialize a depth set Depth with φ;
26: Depth(Node) = 0;
27: if Node equals to Oi then
28: return Depth(Node)
29: end if
30: V← {Node}
31: put Node on Q;
32: while Q 6= φ do
33: v← head(Q) // head(Q) is the first item on Q
34: for all neighbors wi of v in Si do
35: if wi /∈ V then
36: Depth(wi) = Depth(v) + 1;
37: if wi equals to Oi then
38: return Depth(wi)
39: end if
40: V← V ∪ {wi}
41: put wi on Q;
42: end if
43: end for
44: Delete v from Q;
45: end while
46: end procedure
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6.3 Mapping Activity Transition Graph

We now proceed to presenting the implementation of our
methodology for computing the depths of the occurrences
of ad API call.

SATG. A3E [31] defines SATG and proposes an auto-
matic Android app exploration tool which contains a SATG
constructor. A3E is a static analysis tool based on Dalvik
bytecode, and it tags intent object declarations as sources
and activity life-cycle methods as sinks for the construction
of SATG. Given that the highest Android version A3E
supports is 2.3.7 (Gingerbread), it is obviously out of date
for analyzing current apps as the newest Android version
has updated to 8.x (Oreo). So we choose to write our own
code to construct the SATG instead of using their designed
constructor.

We leverage Androguard 3.1.0 (released on Mar 16, 2018)
to implement our code. First we get the call graphs of all
activities and broadcast receivers. We determine whether
a class is a broadcast receiver according to the onReceive
method. Then for each call graph of an activity class or
a broadcast receiver class, we find all the nodes labelled
with start-like invocations, for example, startActivity. Next
for such a start-like invocation, we analyze the call graph to
see which method of the class contains the occurrence of the
invocation. Finally, we scan the smali code of the method
and extract the data stored in the intent parameter register
which shows the information of the destination activity or
broadcast receiver in an activity transition relation. In this
way, we tag the activities or the broadcast receivers which
contain occurrences of start-like invocations as sources and
the activities or the broadcast receivers whose information
are passed to intent parameters as sinks for our SATG
construction.

Breadth-First Search. As mentioned before, we see the
main activity defined in AndroidManifest.xml or the broad-
cast receivers which only have outward edges as the start
node. In the beginning, we maintain a set of all broadcast
receivers. Each time we find an intent which transits to a
broadcast receiver, we delete this destination broadcast re-
ceiver from the set. After iterating all intents, the remaining
elements in the set are all start broadcast receivers. Then we
can compute the length of the path (depth) from the start
nodes to the target activity which integrates ad APIs.

With the constructed SATG using Androguard and the
activity names of ad API calls, we implemented Breadth-
first mapping using a standard breadth-first strategy: if the
current node is not our target node, we sequentially check
its neighboring nodes. This process continues until we find
our target node or there is no more node to explore.

6.4 Data Analysis and Results

Figure 17 shows the CDF of layer depths of activities, which
integrate five types of ad APIs, from main activities. In our
dataset of 277,616 apps, we only get one app embeds a
Floating ad API and we can’t find a path from the activity
which integrates this Floating ad API to the main activity.
So the percentage of layer depth for the Floating ad remains
zero in the CDF. For this reason, we just talk about other
four ad types: Embedded, Popup, Notification and Offerwall.
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Fig. 17: CDF of layer depths of activities integrating five ad
types from main activities.

As we can see, more than 95% of Embedded (95.5%), Popup
(98.3%), Notification (95.4%) and Offerwall (99.58%) ads locate
in the zero activity (main activity), the first activity and the
second activity of Android apps, which needs at least one
and two user interaction(s) respectively. The percentages of
four ad types all reach nearly 100% at the fifth layer depth
which needs at least five activity transition operations from
main activity to start the fifth activity integrating ad APIs.

Implication 11: Most ads locate in activities of first three
layer depths and almost all the layer depths of ad APIs
are no more than five. Most apps may not be designed
with deep activity transitions. However, developers had
better not put ads in activities which need more than 5
user interactions or activity transition operations. It gains
little benefit to put ads in deeper activities for that most
users may never reach such activities with very deep layers,
but these unnecessary ads will definitely make apps become
bloatwares.

We observe a big step from layer 1 to layer 2 in the CDF
curve of Offerwall, which depicts an increase by 20.9% of
Offerwall ads located in the second activity layer depth. Al-
though not obvious, Notification rises by 11.5%, which is also
greater than Embedded (10.8%) and Popup (9.3%). Compared
to low aggressiveness ad types, developers usually choose
to put a more proportion of high aggressiveness ad types in
activities needing more user interactions.

Implication 12: Developers may put more aggressive
ads on deeper layouts for that users who explore more
activities could have higher user engagement and may be
more tolerant to aggressive ads.

7 LIMITATION

We acknowledge the following limitations of our methodol-
ogy.
Ad Number Approximation. Our system MAdLens takes a
static approach to analyze Android apps, so it has inherited
limitations of static analysis. MAdLens measures the number
of ads inside a certain app by counting the occurrence of
ad APIs. However, this is an approximation due to code
control flows and not every ad API can be necessarily
triggered at runtime. While dynamic approaches are capable
of capturing an app’s runtime behaviors, it is still very
challenging to analyze apps at a large scale. Besides, our
experiment shows that most ad networks have encrypted
their network traffic with servers, making it even more
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difficult for dynamic analysis to monitor ad behaviors from
network level. One possible dynamic solution is to apply
image recognition techniques in identifying ad activities on
UI, and we leave it for future work.
Android App Hardening. Although we have apply some
countermeasures to app hardening techniques by charac-
terizing these apps with code summary information (Sec-
tion 3.5), in practice this approach could not cover all the
cases and thus may lead to false negatives, which affects the
accuracy of our measurement.

8 RELATED WORKS

8.1 Mobile advertising
Mobile advertising has become a hot topic for research
recently. The privacy issues related to ad networks and
associated ad libraries have been the focus of many exist-
ing works. Grace et al. [7] study the potential risks (e.g.
privacy leakage) posed by embedded or in-app ad libraries.
Demetriou et al. [6] and Meng et al. [32] estimate the risk
associated with user data exposure to advertising libraries
in Android apps and show that malicious ad libraries can
infer sensitive information. To address the privacy concerns,
many solutions are proposed to isolate advertising from
application. Pearce et al. [4] use privilege separation to
identify advertising-related over-privilege. Shekhar et al. [5]
implement privilege separation by extracting ad services
from recompiled apps. Zhang et al. [33] provide a general
approach to isolate third-party ad libraries into a separate
process and implement privilege, display and input isola-
tion. Liu et al. [34] first use machine-learning to detect ad
libraries and then use code instrumentation to de-escalate
their privileges. Besides, to balance user privacy and mobile
advertising, Leontiadis et al. [8] propose a privacy protec-
tion framework to “achieve an equilibrium” between the
developer’s revenue and the user’s privacy based on the
establishment of a feedback control loop that adjusts the
level of privacy protection.

In addition to user privacy, Crussell et al. [9] study
mobile ad fraud perpetrated by Android apps and identify
two fraudulent ad behaviors in apps. One is requesting ads
while the app is in the background and the other is clicking
on ads without user interaction. Liu et al. [10] study a kind
of mobile ad fraud called “placement fraud” and design a
system for automated detection. Nath [11] characterize user
targeting strategies of top ad networks and measure their
effectiveness by developing a tool called MAdScope. Ad
targeting has also been discussed in [12] and [13].

Besides, some of the recent works study the impact
of ad networks on an app’s rating. Ruiz et al. [35] find
that integrating multiple ad networks can lead to negative
impact on user experience. Fu et al. [36] collect user feedback
to explain why people dislike a given app.

8.2 Online advertising
Online advertising has been studied for decades from many
perspectives with focus on security and privacy. Stone-
Gross et al. [37] describe how online advertising ecosystem
works, study the associated security issues from network
level and introduce known types of fraud, including im-
pression spam, click spam, competitor clicking, conversion

(action) spam and misrepresentation. Similarly, Xu et al. [38]
study click fraud in online advertising and provide a novel
approach for advertiser to detect and evaluate click frauds
against their campaigns.

Apart from ad fraud, other various topics have also been
discussed. Li et al. [39] study malicious activities behind
online advertising and provide mitigation using prominent
features they identify from malicious advertising nodes and
their related content delivery paths. Apostolis et al. [40]
analyze to what extent users are exposed to malicious con-
tent through online advertisements. Malicious advertising
known as malvertising, exhibit different behaviors: drive-by
downloads, deceptive downloads and link hijacking. Philli-
pa et al. [41] characterizing the value of user information
and privacy to advertising revenue by measuring network
traffic.

8.3 Ad library detection
Kuhnel et al. [25] collect publicly available ad APIs and scan
smali code of Android apps to detect ad libraries. But their
heuristics for ad libraries only recognize embedded ad type.
Liu et al. [34] propose a method to find the usage of ad
libraries in the obfuscated code and develop a system called
PEDAL to de-escalate privileges of ad libraries. Zhang et
al. [33] design a separated activity called AFrame to isolate
advertisements in Android apps. AFrame achieves process,
permission, display and input isolation for privilege restric-
tion of third-party ad libraries. However, none of them take
the ad mediation feature into consideration.

Ruiz et al. [42] analyze different versions of Android
apps collected over 12 months and explore the various ex-
penses involved in updating ad libraries. In their findings of
ad library updates, they find some ad libraries, for example
Mobclix, which add mediation capability to coordinate other
ad networks. They just know the prevalence of adding me-
diation feature, while we implement an algorithm to extract
package names of ad libraries with mediation feature.

8.4 Android apps exploration
Existing works have conducted both static and dynamic
exploration of Android apps for app analysis and testing
tasks. Rastogi et al. [27] propose a framework which can
automatically and dynamically explore the app GUI using
fuzz testing and intelligent black-box execution by feeding
a stream of random inputs. Azim et al. [29] develop a tool
to extract Static Activity Transition Graph (SATG) and adopt
a systematic exploration strategy to perform static analysis
on Android apps. Their works focus on exploring the apps
for security issues such as privacy leaks and malicious func-
tionality. While our work, leveraging Azim’s SATG which
shows the app view hierarchy, studies the implication of ad
types and app structure.

Overall, none of existing works cited in this section
analyzes the potential impact of certain ad networks or ad
types on app popularity at API granularity. To the best
of our knowledge, we are the first to provide a unified
classification of mobile in-app ads and practical guidelines
for mobile developers to monetize their apps.
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9 CONCLUSION

App monetization could be the ultimate goal of most app
developers. However, app developers lack the guidelines on
how to maximize their app revenues. In this work, we aim
to provide insights from developers about how to optimize
their app monetization with optimal ad placement choices.
To this end, we study the in-app advertising ecosystem from
a developer’s perspective.

We collected 277,616 Android apps and developed a
static analysis framework to extract ad libraries of different
ad networks from those apps. Besides, by utilizing function
call graph, we distinguish ad networks with ad mediation
feature from those without this feature which simplifies the
management of multiple ad libraries. We also abstract ad
relevant APIs inside a SDK to ad types. With the extracted
information by both manual labeling and static analysis,
we further perform a large scale measurement study and
uncover the current practice about ad placement.

We found that most developers are conservative about
ad placement and about 77% of the apps contain at most one
ad library. In addition, the likeliness of an app containing
ads depends on the app category to which it belongs.
Furthermore, embedded and popup ad types are found to
be quite popular with apps in nearly all categories. Our
results also suggest that it’s better for developers to embed
at most 6 ad libraries to avoid affecting user experience.
A better solution for developers is to use ad libraries with
ad mediation feature when managing multiple SDKs. Ad
mediation decreases the number of ad libraries in apps
which may avoid bad ratings and improve user experience.
Also, developers can learn from popular practices that they
may use at most one ad network at the initial stage of their
apps and use 2 or 3 ad networks later. From the perspective
of user interaction, developers are suggested to put more
aggressive ads on deeper layouts for that users who explore
more activities could have higher user engagement and may
be more tolerant to aggressive ads. Our research is the first
to reveal the preference of both developers and users for ad
networks with ad mediation feature and ad types.
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