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Abstract—Botnets dominate today’s attack landscape. In this
work we investigate ways to analyze collections of malicious
probing traffic in order to understand the significance of large-
scale “botnet probes”. In such events, an entire collectionof
remote hosts together probes the address space monitored bya
sensor in some sort of coordinated fashion. Our goal is to develop
methodologies by which sites receiving such probes can infer—
using purely local observation—information about the probing
activity: What scanning strategies does the probing employ? Is
this an attack that specifically targets the site, or is the site only
incidentally probed as part of a larger, indiscriminant attack?

Our analysis draws upon extensive honeynet data to explore
the prevalence of different types of scanning, including properties,
such as trend, uniformity, coordination, and darknet avoidance. In
addition, we design schemes to extrapolate the global properties of
scanning events (e.g., total population and target scope) as inferred
from the limited local view of a honeynet. Cross-validatingwith
data from DShield shows that our inferences exhibit promising
accuracy.

EDICS—SEC-NETW Network security < SECURITY & PRI-
VACY ANALYSIS

Index Terms—Computer network security, Site security mon-
itoring, Botnet, Global property extrapolation, Honeynet, Scan
strategy inference, Situational awareness, Statistical inference

I. I NTRODUCTION
When a site receives probes from the Internet—whether basic

attempts to connect to its services, or apparent attacks directed
at those services, or simply peculiar spikes in seemingly benign
activity—often what the site’s security staff most wants to
know is not “are we being attacked?” (since the answer to
that is almost always “yes, all the time”) but rather “what is
the significanceof this activity?” Is the site being deliberately
targeted? Or is the site simply receiving one small part of much
broader probing activity?

For example, suppose a site with a /16 network receives
malicious probes from a botnet. If the site can determine that
the botnet probed only their /16, then they can conclude thatthe
attacker may well have a special interest in their enterprise. On
the other hand, if the botnet probed a much larger range,e.g.,
a /8, then very likely the attacker is not specifically targeting
the enterprise.

The answers to these questions greatly influence the re-
sources the site will choose to employ in responding to the
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activity. Obviously, the site will often care more about the
probing if the attacker has specifically targeted the site, since
such interest may reflect a worrisome level of determination
on the attacker. Indeed, such targeted attacks have recently
grown in prominence. For example, targetingNew York Times,
an attacker penetrated into the site through scanning and then
stole more than 3,000 social security numbers [1]. Yet given
the incessant level of probing all Internet addresses receive [2],
how can a site assess the risk a given event reflects?

In this work we seek to contribute to the types of analysis
that sites can apply to gauge such risks. We orient much
of our methodology with an assumption that most probing
events reflect activity frombotnets(i.e., coordinated bots) that
dominate today’s Internet attack landscape. Our approach aims
to analyze fairly large-scale activity that involves multiple local
addresses. As such, our techniques are suitable for use by
sites that deploydarknets(unused subnets),honeynets(subnets
for which some addresses are populated by some form of
honeypot responder), or in general any monitored networks
with unexpected access, for which we can detect the botnet
probing events. The main contribution of this paper is the
development of a set of techniques for analyzing botnet events,
most of which do not require the use of responders. For
simplicity, we will refer to the collection of sensors as the
site’s Sensors.

In contrast to previous work on botnets, which has focused
on either host-level observations of single instances of a botnet
activity, studies of particular captured botnet binaries [3], or
network-level analysis of command-and-control (C&C) activ-
ity [4], our techniques aim to characterize facets of large-scale
botnet probing events regardless of the nature of the botnet.
Our analysis does not require assumptions about the internal
organization and communication mechanisms employed by the
botnets. We focus on the botnet inference and characterization
through its probing behavior. In addition, our approach hasthe
significant benefit of requiring onlylocal information, although
such inferences may possibly be also achievable by using a
collaborative effort such as DShield [5], subject to with certain
limitations. We give more detailed comparisons in Section VII.

We frame the contributions of our work as follows. First, we
develop a set of statistical approaches to assess the attributes of
large-scale probing events seen in Sensors, including checking
for trends, uniformity, coordination, and hit-lists (liveness)
(Section IV). Here we mainly focus on checking a special kind
of hit-lists, liveness-aware scanning, in which the attackers try
to avoid the darknets. For trend and uniformity checking, the
statistical literature provides apt techniques, but for assessing
coordination and use of hit-lists (liveness) we needed to develop
new techniques. We confirmed the consistency of the statistical
techniques for inferring event properties with manual inspection
or visualization.

Applying such statistical testing on massive honeynet traffic
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Fig. 1. System architecture.

0%

5%

10%

15%

20%

25%

30%

35%

H
TTP V

ul
.

M
SSQ

L 
Vul

.

Sym
an

te
c 
Vul

.

VN
C
 V

ul
.

SM
B/R

PC
 V

ul
.

O
th

er
 V

ul
.

N
ot

 V
ul
.

Fig. 2. The distribution of the malicious payload discovered in
the scan events.

reveals some interesting and sophisticated botnet scan behaviors
such as hit-list scans. We then used our suite of tests to frame
the scanning strategies employed during different probe events,
from which we can further extrapolate the global propertiesfor
particular strategies.

Second, we devise two algorithms to extrapolate the global
properties of a scanning event based on a sensor’s limited
local view. These algorithms are based on different underlying
assumptions and exhibit different accuracies. But both enable
us to infer the global scanning scope of a probing event, as
well as the total number of bots including those unseen by the
Sensors, and the average scanning speed per bot (Section V).
The global scanning scope enables the site’s operators to assess
whether their network is a specific target of botnet activity, or
whether the botnet’s scanning targets a large network scope
that simply happens to include the site. The total size of botnet
estimates can help us track trends in how botnets are used, with
implications for their C&C capabilities.

Also, we find most of these probes include attacks. As shown
in Figure 2, our honeynet measurements find that about 84% of
scan events carry malicious payloads targeting vulnerabilities
of different protocols, such as SMB/RPC, MSSQL, VNC,etc.1

These attacks might be the prelude of more serious penetration;
therefore they are dangerous. Moreover, botnet scans are one
key technique employed for botnet recruitment [4]. Through
event correlation study, we also find some interesting behaviors
of how botmasters control their bots.

To validate our estimates of the global properties, we com-
pare our results with those from DShield [5], the Internet’s
largest global alert repository. We find that in 75% of cases,our
extrapolated scope is within a factor of 1.35 of the scan scope
observed in DShield data. In all the cases it is within a factor of
1.5. The results demonstrate that our approaches are accurate
enough to enable sites to make reliable inferences. Furthermore,
we emulate targeted attacks and show our approach indeed can
detect them.

II. SYSTEM FRAMEWORK
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Fig. 3. Temporal distribution of source
count for VNC.

The architecture of our
design is shown in Fig-
ure 1. The system has two
subsystems: botnet detec-
tion and botnet inference.
In this paper we focus on
the latter (righthand half
of Figure 1). All of the
steps in our system are
automated, most of them
fully so. We mainly use

1“Not Vul.” consists of instances where the honeynet received little or no
payload, or purely service testing probes.

the Honeynet sensor to drive the rest of the discussion, although
other data collecting sensors can be used as well.

A. Honeynet and Data Collection
Our detection sensor consists of ten contiguous /24 subnets

within one of Lawrence Berkeley National Laboratory’s /16
networks. We deployed Honeyd responders [6] on five of the
subnets and operated the other five completely “dark”. (We use
this latter for hit-list (liveness) detection.) The Honeydconfig-
uration is similar to that used by Panget al. in [2]: we simu-
late the HTTP, NetBIOS, SMB, WINRPC, MSSQL, MYSQL,
SMTP, Telnet, DameWare protocols, with echo servers for all
other port numbers. We evaluate our analysis techniques using
293 GB of trace data collected over two years (2006 and 2007).

B. Botnet Detection Subsystem
We define abotnet eventas a group of coordinated bots

probing the target network with the same goal, where “same
goal” means that the probes use the same protocol(s) and, if
visible, protocol/session semantics. We define asessionas a set
of connections between a pair of hosts with a specific purpose,
perhaps involving multiple application protocols. Sessions oc-
cur when the botmaster commands the bots to probe in a similar
fashion, reflecting the same underlying bot software. (Previous
works [4], [7] suggest this is indeed the case.) Since the events
of interest reflectcoordinatedbot activity, we presume that the
botmaster commands the bots to probe in the same time frame.

This behavior manifests as a large number of unique sources
arriving at the detection sensor in a short time window for a
given protocol or protocol/session semantics. Worms or mis-
configurations can also manifest such traffic spikes. Therefore,
we need to further differentiate types of probing. For example,
Figure 3 shows source arrival counts for VNC (TCP port 5900)
for the year 2006, where each point represents the number of
sources within a six-hour interval. Large spikes correspond to
scanning from worms, botnets, or misconfigurations.

We identify the botnet events from the traces using three
steps. First, through traffic classification we separate thetraffic
by different protocols or protocol/session semantics. Second,
for each stream of traffic, we identify large spikes of unique
source arrivals, which correspond to worm, botnet or misconfig-
uration events. Lastly, we separate worm and misconfiguration
events from botnet events.
Traffic Classification: Attack traffic can have complex ses-
sion structures involving multiple application protocols. For
example, the attacker can send an exploit to TCP port 139
which, if successful, results in opening a shell and issuingan
HTTP download command. In general, the application protocol
contacted first is emblematic of the probing goal, so we label
the session with the first protocol used. Doing so provides
consistent labelling for those connection attempts where the
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honeynet did not respond, for which we only observe the initial
SYN packets. We aggregate the connections into sessions using
an approach similar to the first step algorithm by Kannanet
al. [8]. We consider all those connections withinTaggreg of
each other as part of the same session for a given pair of hosts.
We used the same threshold,Taggreg = 100 seconds, and found
that this appeared to correctly group the majority of connections
between any given pair of hosts.

For application protocols not commonly used, the average
background radiation noise is low and thus we can employ
port numbers to extract event traffic. However, noise is usually
quite high for more popular protocols, requiring further dif-
ferentiation. Assuming that we observe at least one successful
session from each sender, we can use the payload analysis of
that session to separate it from other traffic. We use a similar
approach for theRadiation-analysummaries proposed in [9].
Event Extraction: By detecting large spikes of unique source
counts asevents, we can gain insight of botnets, worms and
misconfigurations. Formally, the problem is to recover the
signal in a noisy time series. Potentially, many signal detection
and reconstruction techniques can be used. Here, we use a
simple semi-automated approach to discover the events.

We define the noise strengthN as the typical unique source
count in the absence of events. We calculateN as the median
of unique source counts ofTN time intervalsbeforethe event.
We define signal strengthS as the peak unique source count
arrival X minus the noise strengthN , i.e., S = X − N , and
define the signal-to-noise ratio asSNR= S

N
= X−N

N
= X

N
− 1.

In this paper we use a six-hour time intervals. Since after we
extract an event we refine it into smaller time intervals, thetime
interval select here does not influence the final results much.
We useTN = 120 (30 days) andSNR ≥ 50 to identify the
events.

We calculate the unique source count of every time inter-
val, and perform event extraction using time series analysis.
While many general statistical signal detection approaches
might be applied here, we currently extract the events semi-
automatically. We first automatically identify and extractthe
rough boundaries of events, and then manually refine the event
starting and ending times.

We automatically extract potential events as follows: for a
given time interval, we calculate the median of the previous
TN intervals and theSNR. For those spikes exceeding ourSNR
threshold, we extend the range untilS ≤ ωN where ω is a
tunable parameter controlling the amount of the signal tailto
include in the event. For multiple events within one time series,
we extract the events iteratively, starting with the event with
largestSNR.

After extracting an event, we further refine it by re-scalingit
into smaller time intervals and recalculating the unique source
counts. We use manual analysis and visualization techniques at
this point to refine the event starting and ending times.
Misconfiguration and Worm Seperation: We separate mis-
configurations from worms and botnets based on the presump-
tion that botnet scans and worms will contact a significant range
of the IP addresses in the sensor, whereas events with few
hotspots repeatedly targeted are more likely due to miscon-
figurations. We use two metrics to separate misconfiguations
from other events. The address hit ratio,NE/ND, whereNE

is the number of destination addresses involved in the event
andND is the number of destination addresses in the honeynet,
should be much smaller for misconfigurations than for botnet

sweeps or worms. Secondly, the average number of sources
per destination address should be much larger for misconfig-
urations. If the first metric is below a given threshold while
the second crosses a given threshold, we consider the event to
be a misconfiguration; otherwise it is classified as a worm or
botnet event. We found that almost all misconfiguration events
are due to P2P traffic, as analyzed in [10].

In general, probing from worms (self-propagating processes)
can look very similar to that from botnets (processes under
a common C&C), and indeed the line between the two can
blur depending on the nature of the commands that botmasters
issue to their bots. For our purposes, we identify and removeas
worms those events that exhibit an exponential growing trend
(per the technique developed in [11]) and deem the remainder
as botnet probing events.
C. Botnet Inference Subsystem

For botnet probing, there are numerous scanning strategies
that attackers can potentially use. Identifying the particular
approach can provide a basis to infer further properties of
the events and perhaps of the botnets themselves. We refer
to these strategies asscan patterns, and undertake to develop a
set of scan-pattern checking techniques to understand different
dimensions of such strategies: (i) monotonic trend checking,
(ii) hit list checking, (iii) uniformity checking, and (iv) depen-
dency checking. For details, see Section IV. Once we identify
a probing event’s scan pattern, we then use the scan pattern to
extrapolate global properties of the event. We focus on two of
the most common scan patterns: uniform random scanning, and
uniform hit-list (liveness) scanning. We confirm their common
use both from botnet source code analysis (Section III-A) and
experimental observations (Section VI). We then extrapolate the
global properties, such as the global scan scope and the global
number of bots, using techniques developed in Section V.

III. D ESIGN SPACE OF BOTNETSSCAN PATTERNS
In this section we analyze different facets of how bots—and

thus, in aggregate, botnets—scan a target range of addresses.
We refer to different scan strategies as differentscan patterns,
where each reflects a unique set of characteristics.
A. Bot Source Code Study

By analyzing the source code of five popular families of
bots [7], [12], we studied different dimensions of scan strategies
employed by botnets. Our findings confirm those in [12], but
we studied scan patterns for each family in greater detail.

Overall, we find they employ simple scanning strategies.
Each supports bothGlobal scanning (a specified address block)
and Local scanning (relative to each bot’s address). None
of the five directly automates hit-list (liveness) scanning, but
an attacker can potentially achieve this via two steps: first,
scanning to gather a list of live addresses/blocks; and then
specifying these at the command line. By hit-list (liveness)
scanning, we refer to an event for which the attacker appears
to have previously acquired a specific list of targets. Such
scans may heavily favor the use of “live” addresses (those
that respond) to “dark” (non-responsive) addresses. In addition,
most bot families support (uniformly)RandomandSequential
scanning of the designated addresses or blocks.

Our dataset analysis accords with the above capabilities:
most scanners we observe either use simple sequential scanning
(IP address increments by one between scans) or independent
uniform random scanning. We do observe more sophisticated
monotonic trends (address incrementing byk), but very in-
frequently. We also observe botnets using hit-list (liveness)
scanning quite frequently.

3



B. Features of Botnet Global Scan Patterns
There is a large design space for botmasters when developing

scan strategies, but we expect the following features to usually
manifest:

• Cover the target scope fully.Botmasters may want to
scan every address within the target scope.

• Distribute the load based on bots’ capabilities.
• Low communication overhead for coordination.
• Scan detection evasion.Botmasters may want bots to
avoid aggressive scanning of a small address range, to
avoid easy detection and blocking by IDS/IPS systems.

• Redundancy.Since the bots in a botnet can readily be
lost due to detection or due to the host computer going
offline, the botmaster will prefer instructing multiple
bots to scan the same addresses.

Given these desired features, a simple and effective approach
is to ask each bot to independently scan the specified range
in a random uniform fashion. Doing so can achieve the scan
detection evasion, low communication overhead, and load dis-
tribution, while also providing good coverage and redundancy.
This approach is also simple to correctly implement. In the
source code analysis we find the most popular such one
implemented to date (four out of five bot families implemented
this strategy). Most of the events we found in our datasets are
close to uniform scanning. For the hit list cases we observed,
we also found that it is likely to observe uniform scans of live
IP blocks.
Advanced Scanning Strategies:

Independent uniform scanning, where each source indepen-
dently scans the given range, is not optimal in either coverage
or redundancy. For example, ifd scans are sent out uniformly
to d address, the coverage is only(1 − 1/d)d ≈ 0.68. We
can address this shortcoming by the addition of coordination
between the scanning sources. That is, make the senders have
certain negative dependencies so that the senders can incur
fewer scan collisions.

An advanced scanning strategy, called “worm scan permuta-
tion”, was proposed in the context of worm propagation [13].
In that strategy, each worm uses the same predefined key to
permute the IP scope, and then randomly chooses a starting
point in the permutation sequence. The worm scans until it
discovers a vulnerable host that has already been compromised,
at which point it randomly chooses a new start point within the
permutation sequence.

But the above strategy is optimized for worms and does
not consider the usage of C&C channel of botnets. Using the
botnet C&C for coordination, we frame new scan strategy,
advanced botnet permutation scan(ABPS). Each bot permutes
the whole IP address scope in the same way based on a key
from the botmaster. Then drawing upon the bots’ capabilities,
the botmaster divides theφ replicates of the permuted IP scope
across all of the bots. This can achieve much better coverage
and redundancy. We simulate and evaluate this strategy in our
evaluation.

In general, there can be many different ways to design
collaborative scanning for botnets, even with relatively small
communication overhead as ABPS achieves. Such strategies
tend to have very good coverage, resilience to scan detection,
and redundancy in the presence of failure. Although currently
not yet prevalent, we still consider this issue and develop a
dependency-checking scheme to detect them (Section IV-D).
This can help us monitor whether botnets have adopted more
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advanced coordination approaches.

IV. PROPERTYCHECKING OF BOTNET SCAN PATTERNS
In this section we develop a set of analysis algorithms. Each

is designed to check a single dimension of characteristics in the
scan pattern. Then we combine the characteristics of an event
to construct the scan pattern in use, as shown in Figure 4.

We first classify the scan traffic pattern into monotonic, par-
tially monotonic and non-monotonic trends. For non-monotonic
trend, we assess the possible use of a hit-list or random-
uniform scanning (even distribution of scans across the portion
of the sensor space). Finally, for random-uniform pattern we
test whether the senders can be modeled as independent.

A. Monotonic Trend Checking
Question: Do senders follow a monotonic trend in their

scanning?
Monotonically scanning the destination IP addresses (e.g.,

sequentially one after another) is a scan strategy widely used
by network scanning tools. In our evaluation, we did find a few
events that use the monotonic trend scanning. Furthermore,for
random events, the monotonic trend checking can help filter
out the noises caused by the non-bot scanners.

For each sender, we test for monotonicity in targeting by
applying the Mann-Kendall trend test [14], a non-parametric
hypothesis testing approach. In our study, we set the signif-
icance level to 0.5%, since a higher significance level will
introduce more false positives and we need to check thousands
of sources. In our evaluation, we manually check the statistical
power and find it high enough to detect weak trends. The
intuition behind this test is that if the data have a monotonic
trend, the aggregated sign value(>→ 1; =→ 0; <→ −1.) of
all the consecutive value pairs would be out of the range the
randomness can achieve.

We label an entire event as having amonotonic trendif more
than 80% of senders exhibit a trend. We instead label the event
asnon-monotonicif more than 80% of senders do not exhibit
a trend. We label the remainder aspartial monotonic.

B. Hit-List (Liveness) Checking
Question: Do the bots use a target hit-list (list of live IP

blocks) for scanning?
By hit-list (liveness) scanning, we refer to an event for which

the attacker appears to have previously acquired a specific list of
targets. Hit-list is often employed by sophisticated botmasters
to achieve high scan efficiency. It is important for the network
administrators to know whether they are in the hit-list, which
indicate whether they will be scanned again and again. We
detect the use of a hit-list based on the observation that such
scans should heavily favor the use of “live” addresses (those
that respond) to “dark” (non-responsive) addresses.

To this end, we operate half of our sensor region in a live
fashion and half dark. If we observe an event only in the
Honeynet portion, this provides strong evidence that the scan
used a hit list. However, one consideration is event “pollution”
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(sources that actually are background noise rather than part of
the botnet). We do not require acompleteabsence of darknet
scanning, instead test for the prevalence of honeynet scansover
darknet scans significantly exceeding what we would expect.

Figure 5 compares an hit-list (liveness) event (WINRPC-
070625) versus a random-uniform event (VNC-060729). To
distinguish between two such cases, we define the ratio of the
number of senders which target the darknet (md) over those of
the honeynet (mh) asθ = md

mh
. Then we test whetherθ crosses

a given threshold. Our evaluation suggests the results are not
sensitive to the threshold we choose.

Note that for the events that require application-level analysis
to separate the activity from the background traffic (e.g.,
different types of HTTP probing), sources in the event will
necessarily be restricted to the honeynet because application-
level dialog requires responses that the darknet cannot provide.
In this case we can still perform an approximate test, by testing
the volume of traffic seen concurrently in the darknet using the
same port number. Doing so, may miss some hit-list (liveness)
events, however, because we tend to overestimate the amount
of activity the botnet exhibits in the darknet.

Other factors hardly cause an significant imbalance between
the darknet and the Honeynet (a smallθ), except the one in
which an attacker chooses a small scan range that happens to
include only the Honeynet addresses. However, even if this
occurs we would also (if it does not reflect previous scanning,
i.e., is not a hit-list) expect it to occur equally often the other
way around,i.e., including only darknet addresses, which have
not been observed over two years.

In the 203 events we analyzed, we find 33 (16.3%) hit-list
(liveness) events. To our knowledge, this is the first empirical
confirmation of the extensive use of hit-list (liveness) scanning.

C. Uniformity Checking
Question: Does an event uniformly scan the target range?
A natural technical for bots is to employ uniform random

scanning across the target range. Testing whether the scans
are evenly distributed in the honeynet sensor can be described
as a distribution checking problem. We employ a simpleχ2

test, which is well-suited for the discrete nature of address
blocks. Forχ2 test, when choosing the number of bins, a key
requirement is to ensure that the expected valueEi for any bin
should exceed 5 [15]. Accordingly, given that our events have
at least several hundred scans in them, we divide the 2,560
addresses in our Honeynet into 40 bins with 64 addresses per
bin. We then use theχ2 test with a significance level of 0.5%,
which work well in our evaluation in Section VI-B.

D. Dependency Checking
Question: Do the sources scan independently or are they

coordinated?
Sophisticated scanning strategies can introduce correlations

between the sources in order to control the work that each

contributes more efficiently. In Section III-B, we describea
more efficient coordinated scheme ABPS (Advanced Botnet
Permutation Scanning) based on permutation scanning will
induce negative correlations in the targeting among the sources
(they try to “get out of each other’s way”).

Since traditional approaches only work in linear dependence
or two-variable cases, we develop a new hypothesis testing
approach. To test for such coordination, we use the following
hypothesis test. The null hypothesis is that the senders act
in a uniform, independent fashion (where we first test for
uniformity as discussed above); while the alternative hypothesis
is that the senders do not act in an independent fashion. If an
event comprisesn scans targetingd destinations in a uniform
random manner, we can in principle calculate the distribution
of the number of destinations that receive exactlyk scans,
Zk. We then reject the null hypothesis if the observed value
is too unlikely given this distribution (we again use a 0.5%
significance level).

Theorem 1:If n scans targetd addresses in a uniform
independent manner, the number of addressesZ0 (k = 0) which
do not receive any scan follows the probability distribution
function:

P (z0) =

(

d

z0

)

× Stirling2(n, d − z0) × (d − z0)!/dn

Proof: There aredn total ways to distribute then scans
into d addresses. Among them, supposeX0 ways exhibitz0

addresses receiving zero scans (i.e., z0 empty slots). We then
have the overall probability of observingz0 empty slots to be
P (z0) = X0/dn.

We now show that for a givenz0, the following holds:

X0 =

(

d

z0

)

× Stirling2(n, d − z0) × (d − z0)! (1)

For d addresses, there are
(

d
z0

)

configurations from which to
choose whichz0 addresses receive zero scans. Each such con-
figuration hasz0 addresses with zero scans andd−z0 addresses
receiving a non-zero number of scans. Stirling2(n, m) denotes
the number of ways of partitioning a set ofn element into
m nonempty sets [16]. Consider after partitioning then scans
into d − z0 sets, we have(d − z0)! ways to map the sets
to the addresses. Therefore, for each configuration we have
Stirling2(n, d − z0) × (d − z0)! ways to distribute then scans
into d − z0 addresses. This then establishes Eqn 1
Note, we also validated this formula using Monte Carlo simu-
lations with and without introduced correlations.

V. EXTRAPOLATING GLOBAL PROPERTIES

We now turn to the problem of estimating a botnet event’s
global scope (target size, participating scanners) based only on
local information. This task is challenging because the size of
the local sensor may be very small compared to the whole
range scanned by a botnet, giving only a very limited view
of the scanning event. For our estimation, we considered eight
global properties, as shown in Table I.

For both uniform-random and uniform-hit-list (uniform-
liveness) scanning, the uniformity property enables us to con-
sider the local view as a random sample of the global view.
Thus, the operating system (OS), autonomous system (AS), and
IP prefix distributions observed in local measurements provide
an estimate of the corresponding global distributions (bottom
three rows). However, we need to consider that if bots exhibit
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Property name uniform uniform estimation
scanning hit list method

Global target scope Yes Yes indirect
Total # of bots Yes Yes indirect
Total # of scans Yes Yes indirect
Average scan speed per bot Yes Yes indirect
Coverage hit ratio Yes No direct
Sender OS distribution Yes Yes direct
Sender AS distribution Yes Yes direct
Sender IP prefix distribution Yes Yes direct

TABLE I
GLOBAL PROPERTIES INFERRED FROM LOCAL OBSERVATIONS.

heterogeneity in their scanning rates, then the probability
of observing a bot decreases for slower-scanning ones. The
scanning rate heterogeneity mentioned above introduces a bias
towards the faster bots for these distributional properties. By
extrapolating the total number of bots, however, we can roughly
estimate the prevalence of this effect. It turns out that, inall of
our analyzed events, by extrapolating the global bot population,
we find that more than 70% of the bots that are globally
involved in the scanning during the event duration appear at
the local sensor.2 Thus, the bias is relatively small.

The “coverage hit ratio” gives the percentage of target IPs
scanned by the botnet. As this metric is difficult to estimate
for hit-list (liveness) probing, we mainly consider uniform
scanning, for which certain destinations are not reached due
to statistical variations. For uniform scanning, we can directly
estimate this metric based on the coverage in our local sensor.

In the remainder of this section we focus on the four remain-
ing properties, each of which requires indirect extrapolation.

A. Assumptions and Requirements
To proceed with indirect extrapolation, we must make two

key assumptions:
First, the attacker is oblivious to our sensors and thus sends

probes to them without discrimination.This assumption is fun-
damental to general honeynet-based traffic study, (cf. the probe-
response attack developed in [17] and counter-defenses [18]).
A general discussion of the problem is beyond the scope
of this paper. However, since we assume our technique is
mainly used by a single enterprise or a set of collaborating
enterprises, we need not release sensing information to the
public, which counters the basic attack in [17]. Moreover,
we can employ counter-defense techniques such as random
shuffling [18] without influencing the extrapolation. With this
assumption, we can treat the local view as providing unbiased
samples of the global view.

Second,each sender has the same global scan scope.This
should be true if all the senders are controlled by the same
botmaster and each sender scans uniformly using the same set
of instructions.

We argue that these two fundamental assumption likely
apply to any local-to-global extrapolation scheme. In addi-
tion, we check for one general requirement before applying
extrapolation, namely consistency with the presumption that
each sender evenly distributes its scans across the global
scan scope. This requirement is valid for the dark regions
shown in Figure 4 (Section IV above),i.e., both uniform
random scanning and random permutation scanning, regardless
of whether employing a hit-list. Therefore, prior to applying
the extrapolation approaches, we test for consistency with
uniformity (via methodology discussed in Section IV), which

2The high percentage of bots appearing at the local sensor arises due to the
fact that probing events continue long enough to expose majority of the bots.

Approach Properties Affected Require IPID
by botnet or port #
dynamics continuity

Both # of bots No No

Approach I
Global target scope No Yes
Total # of scans No Yes
Average scan speed per bot Yes Yes

Approach II
Global target scope Yes No
Total # of scans Yes No
Average scan speed per bot Yes No

TABLE II
ADDITIONAL ASSUMPTIONS AND REQUIREMENTS.

many of the botnet scan events pass (80.3%). Of course there is
the usual “arms race” here between attackers and defenders.If
our techniques become widely used, then attackers will modify
their probing traffic to skew the defenders’ analysis. We adopt
the view common in network security research that there is
significant utility in “raising the bar” for attackers even if a
technique is ultimately evadable.

There are some additional requirements specific to certain
extrapolation approaches, as listed in Table II. Botnet dynamics,
such as churn or growth, can influence certain extrapolationap-
proaches. Accordingly these approaches work better for short-
lived events. Approach I, as discussed in section V-C, requires
continuity of the IP fragment identifier (IPID) or ephemeral
port, which holds for botnets dominated by Windows or MacOS
machines (in our datasets we found all the events are dominated
by Windows machines). We use passive OS fingerprinting to
check whether we can assume that this property holds.
B. Estimating Global Population

Table III shows the notation we use in our problem formula-
tion and analysis, marking estimates with “hat”s. For example,
ρ̂ represents the estimated local over global ratio,i.e., ratio
of local sensor size comparing to the global target scope of
the botnet event, and̂G represents the estimated global target
scope. In addition, we defineM , the total number of bots
that participate in the scanning during the time windowT . M
includes all scanning bots regardless of whether they are active
during the entire time windowT .

If ρ is small, many senders may not arrive at the sensor at
all. In this case, we cannot measureM directly. Instead, we
extrapolate the total number of bots using:

m1

M
=

m12

m2
(2)

based on the following reasoning. We can split the address
range of the sensor into two parts. Since the senders observed in
each part are independent samples from the total populationM ,
Equation 2 follows from independence. For example, suppose
there are totalM = 400 bots. In the first half sensor, we see
m1 = 100 bots, which is1/4 of the total bot population.
Consider the second half as another independent sensor, so
the bots it observes form another random sample from the
total population. Then we have a1/4 chance to see if there
is a bot already seen in the first half. If the second half
observesm2 = 100 bots too, the shared bots will be close
to m12 = 100/4 = 25. Since in Equation 2 we can directly
measurem1, m2, and m12, we can solve forM , the total
number of bots in the population. This is a variation of a general
approach used to estimate animal populations known asMark
and Recapture. Since them1,m2 and m12 are measured at
exactly the same time window3, the estimated total population

3Mark and Recapture requires the “close” system assumption since the two
visits do not happen in the same time, which is different here.
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T Event duration observed in the local sensor
d Size of the local sensor
G Size of global target scope
ρ Local over global ratiod/G
M Total # of senders in the global view inT
m Total # of senders in the local view inT
m1 # of senders in the first half of the local view inT
m2 # of senders in the second half of the local view inT
m12 # of overlapped senders ofm1 andm2 in T
R Average scanning speed per bot
RGi Global scanning speed of boti
Ti Time between first and last scan arrival time from boti
ni Number of local scans observed from boti in T
∆tj Inter-arrival time between thej and j + 1 scans
Q Local total # of scans inT

TABLE III
TABLE OF NOTATIONS.

M is the number of bots of the botnet in the time window.

C. Exploiting IPID/Port Continuity
We now turn to estimating the global scan scope. We

investigated two basic strategies: first, inferring the number of
scans sent by sources in between observations of their probes at
the Honeynet (Approach I ); second, estimating the average bot
global scanning speed using the minimal inter-arrival timewe
observe for each source (Approach II , covered in Section V-D).

Approach I is based on measuring changes between a
source’s probes in the IPID or ephemeral port number. We pred-
icate use of this test on first applying passive OS fingerprinting
to identify whether the sender exhibits continuous IPID and/or
ephemeral port selection. This property turns out (see below) to
hold for modern Windows and Mac systems, as well as Linux
systems for ephemeral ports.

IPID continuity. Windows and MacOS systems set the 16-
bit IPID field in the IP header from a single, global packet
counter, which is incremented by 1 per packet. During scan-
ning, if the machine is mainly idle, and if the 16-bit counter
does not overflow, we can use the difference in IPID between
two observed probes to measure how many additional (unseen
by us) scans the sender sent in an interval. (The algorithm
becomes a bit more complex because of the need to identify
and correct IPID overflow/wrap, as discussed below. We also
need to take into account the endianness of the IPID counter.)

A potential problem that arises with this approach is re-
transmission of TCP SYN’s, which may increment the IPID
counter even though they do not reflect new scans. For a
given sender whose global target scope isG, let x be the
percentage of live addresses that return SYN/ACK packets,
and thus will usually not involve retransmission. Letk be
the retransmission count determined by the sender’s OS (i.e.,
total number of attempts made before giving up). Ideally, we
need to reduce the estimated global scan rate by a factor of
k × (1− x) + x = k − (k − 1)× x. We can observek directly
from the sender.x, however, is hard to estimate. Assuming that
the probability of hitting a live IP address (x) is very low, we
can approximatex = 0 for a first order estimation; therefore,
we divide the global scan rate byk.

Ephemeral port number continuity. We have inspected
the source code for five popular families of botnets. All of
them let the operating system allocate the ephemeral source
port associated with scanning probes. Again, these are usually
allocated by sequentially incrementing a single, global, counter.
As with IPID, we then use observed gaps in this header field to
estimate the number of additional scans we did not see. (In this
case, the logic for dealing with overflow/wrapping is slightly

more complex, since different OSes confine the range used for
ephemeral ports to different ranges. If we know the range from
the fingerprinted OS, we use it directly; otherwise, we estimate
it using the range observed locally,i.e., the maximum port
number observed minus the minimum port number observed.)

IPID and ephemeral port number continuity validation.
In a controlled experimental environment, we installed five
versions of Windows, one of MacOS X, and two versions
of Linux, each in a different virtual machine. We then ran
Nmap on each to generate scans, confirming that all but Linux
(2.4/2.6) exhibit continuity of IPID (with Win98 and NT4
incrementing it little-endian, but Win2000, WinXP, Win2003,
and MacOS X using network order) and that all 8 systems
allocated the ephemeral ports sequentially.

For all the botnet events in the two-year Honeynet dataset,
OS fingerprinting (via thep0f tool) indicates the large majority
of bots run Windows 2000/XP/2003/Vista (85%), enabling us to
apply both IPID and ephemeral port number based estimation.
We also know that the proportion of Windows 95/98/NT4
is very low (0.8%), and only for those cases we need to
switch the byte order. (These percentages match install-based
statistics [19].)

NAT effects on IPID and ephemeral port continuity.Since
NATs can potentially alter IPID and ephemeral ports, we test
three popular home routers in this regard—Linksys, Netgear
and D-Link, which comprise more than 70% of the home router
market [20]. We use Nmap to send the scans from hosts behind
these NATs and examine whether their IPID or ephemeral
ports changed. For all three, IPID remains unchanged, and
for a single scanner behind the NAT, the ephemeral port also
remains unchanged. For multiple scanners behind the NAT, the
ephemeral port numbers of the first sender remain unchanged,
though for the D-Link router the ports of additional scanners
become arbitrary.

Even though IPID remains unchanged, the intermingling of
multiple IPID sequences for a single apparent source address
renders extrapolation of scanning speed impractical. Techniques
exist for detecting the presence of multiple sources behinda
NAT (also based on IPID), but these require observing a large
portion of the traffic from the NAT [21], which is impracticalin
our case. However, given that we usually have a large number
of distinct sources, we can restrict our analysis to those cases
that exhibit strong linearity for either IPID or ephemeral port
numbers, which avoids conflating patterns in these arising from
multiple sources aliased to the same public IP address. In our
evaluation, we find that on an average 463 senders maintain
linearity in IPID and/or ephemeral port numbers for an event;
thus, they can be used for extrapolation purpose.

Global scan speed estimation.As the IPID and ephemeral
port number approaches work similarly, here we discuss only
the former. We proceed by identifying the top sources origi-
nating in at least four sets of scanning. We test whether (after
overflow recovery) the IPIDs increases linearly with respect to
time, as follows. First, for two consecutive scans, if the IPID
of the second is smaller than the first, we adjust it by 64K.
We then try to fit the corrected IPIDi and its corresponding
arrival time ti, along with previous points, to a line. If they
fit with correlation coefficientr > 0.99, it reflects consistency
with a near-constant scan speed, and the sender is a single host
rather than multiple hosts behind a NAT. When this happens,
we estimate the global speed from the slope.

It is possible that multiple overflows might occur, in which
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case the simple overflow recovery approach will fail. However,
in this case the chance that we can still fit the IPIDs to a line is
very small, so in general we will discard such cases. This will
create a bias when estimating very large global scopes, because
they will more often exhibit multiple overflows.

Sources that happen to engage in activity in addition to
scanning can lead to overestimation of their global scan speed,
since they will consume IPID or possibly ephemeral port
numbers more quickly than those that might be simply due
to the scanning. To offset this bias, when we have both IPID
and ephemeral port estimates, we use the lesser of the two.
Furthermore, in our evaluation, for the cases where we can
get both estimates, we check the consistency between them,
and found that IPID estimates usually produce larger results,
but more than 95% of the time within a factor of two of the
ephemeral port estimate. (Clearly, IPID can sometimes advance
more quickly if the scanner receives a SYN-ACK in response
to a probe, and thus returns an ACK to complete the 3-way
handshake.)

Global scan scope extrapolation.With the ability to es-
timate the global scan speed, we finally estimate the global
scan scope. Since we know the local scope, the problem is
equivalent to estimate the local over global ratioρ. Suppose
in a botnet event there arem senders seen by the sensor, for
which we can estimate the global scan speedsRGi of a subset
of size m′. For senderi (i ∈ [m′]), we know Ti (duration
during which we observe the sender in the Honeynet) andni

(number of observed scans). We use the linear regression as
we discussed before to estimate theRGi which is also quite
accurate. The main estimation error comes from variation ofthe
observedni from its expectation. Definêρi = ni

RGi·Ti
for each

sender. Senderi’s global scan speed isRGi. Globally during
Ti, it sends outRGi · Ti scans.ni is the number of scans we
see if we sample fromRGi · Ti total scans with probabilityρ.
Therefore,ρ̂i is an estimator ofρ. If we aggregate over all the
m′ senders, we get

ρ̂ =

∑m′

i ni
∑m′

i RGi · Ti

(3)

In the following Theorem 2 and Theorem 3, we prove that
ρ̂ provides an unbiased estimator ofρ and exhibits greater
accuracy than̂ρi, which is based on only one sender. In our
approach, we usêρ to estimate the global scan scope that a
botnet targeted.

Theorem 2:ρ̂ is an unbiased estimator forρ.
Proof:

E(ρ̂) = E(

∑m′

i ni
∑m′

i RGi · Ti

) =
E(

∑m′

i ni)
∑m′

i RGi · Ti

=

∑m′

i E(ni)
∑m′

i RGi · Ti

As we mentioned,ni is the number of scans we see if we
sample fromRGi · Ti total scans with probabilityρ, which
follows a binomial distribution. Hence we haveE(ni) = ρ ·
RGi · Ti. Therefore,

E(ρ̂) =

∑m′

i ρ · RGi · Ti
∑m′

i RGi · Ti

= ρ ·

∑m′

i RGi · Ti
∑m′

i RGi · Ti

= ρ

Theorem 3:V AR(ρ̂) = ρ·(1−ρ)
P

m′

i
RGi·Ti

< V AR(ρ̂i), i.e., the

accuracy ofρ estimator when aggregating over allm′ senders
is higher than that of each and every single sender.

Proof:

V AR(ρ̂) = V AR(

∑m′

i ni
∑m′

i RGi · Ti

) =

∑m′

i V AR(ni)

(
∑m′

i RGi · Ti)2

Similar as before sinceni follows a binomial distribution, we
haveV AR(ni) = ρ · (1 − ρ) · RGi · Ti. Therefore,

V AR(ρ̂) =

∑m′

i ρ · (1 − ρ) · RGi · Ti

(
∑m′

i RGi · Ti)
2 =

ρ · (1 − ρ)
∑m′

i RGi · Ti

On the other hand,

V AR(ρ̂i) = V AR(
ni

RGi · Ti

) =
V AR(ni)

(RGi · Ti)
2 =

ρ · (1 − ρ)

RGi · Ti

Therefore,V AR(ρ̂) < V AR(ρ̂i)
Average Scan Speed Per Bot.After extrapolatingρ andM ,

we estimate the average scan speed per bot using:
Q

R · T · M
= ρ (4)

HereQ is the number of scans received by the sensor in timeT ,
which should reflect a portionρ of the total scans. We estimate
the total scans byR ·T ·M , whereR is the average scan speed
per bot. This formulation assumes that each bot participates in
the entire duration of the event, which is more likely to hold
for short-lived events.

Limitations. Note that the above techniques can fail if
attackers either craft raw IP packets or explicitly bind thesource
port used for TCP probes. Thus, the schemes may lose power
in the future. However, crafting raw IP packets and simulating
a TCP stack is a somewhat time consuming process, especially
given most bots (85+%) we observed run Windows, and in
modern Windows systems the raw socket interface has been
disabled. Empirically, in our datasets we did not find any case
for which the techniques did not apply.

D. Extrapolating from Interarrival Times
For Approach II , we estimate global scanning speed (and

hence global scope, via estimatingρ from an estimate ofR
using Equation 4) in a quite different fashion, as follows.
Clearly, a sender’s global scan speeds provides an upper
bound on the local speed we might observe for the sender.
Furthermore, if we happen to observe two consecutive scans
from that sender, then they should arrive about∆t = 1/s
apart. Accordingly, the minimum observed∆t gives us a lower
bound ons, but with two important considerations:(i) the
lower bound might be too conservative, if the global scope
is large, and we never observe two consecutive scans, and
(ii) noise perturbing network timing will introduce potentially
considerable inaccuracies in the assumption that the observed
∆t matches the interarrival spacing present at the source.
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Fig. 6. Top 30 estimate speeds of Event
VNC-060729.

We proceed by consid-
ering all m senders, other
than those that sent only
a single scan. We rank
these by the estimated
global scan rate they im-
ply via ŝ = 1/∆̂t, where
∆̂t is the minimum ob-
served interarrival time for
the sender. Naturally, fast
senders should tend to re-
flect larger estimated speeds, which we verified by comparing
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Targeted # of kinds of Events
Service vul./probes
NetBIOS/SMB/RPC 7 81
VNC 1 39
Symantec 1 34
MS SQL 1 14
HTTP 2 13
Telnet 1 12
MySQL 1 6
Others 4 4
total 18 203

TABLE IV
THE SUMMARY OF THE EVENTS.

∆̂t of each sender with how many scans we observed from
it. We find that generally the correlation is clear though with
considerable deviations.

Using the fast senders’ speeds to form an estimate of the
averagescanning speed may of course overestimate the average
speed. On the other hand, our technique aims at estimating a
lower bound. Thus, it is crucial to find a balanced point among
the possible estimates. We do so by presenting the different
sorted estimates from which the analyst chooses the “knee”
of the resulting curve,i.e., the point with smallest rankk for
which an increase ink yields little change ins. Figure 6 shows
an example, plotting the top 30 maximum estimated speeds of
Event VNC-060729. From the figure we would likely select
k = 6 as the knee, giving an estimated speed 8.26.

VI. EVALUATION
We evaluate our techniques using the honeynet traffic de-

scribed in Section II-A. The total data spans 24 months and
293 GB of packet traces. Since our extrapolation algorithms
are linear algorithms, we find that our system takes less than
one minute to analyze the scan properties and to perform the
extrapolation analysis for a given event. We extract 203 botnet
scan events and 504 misconfiguration events. There were a few
moderate worm outbreaks observed during the period, such as
the Allaple worm [22].

We first present characteristics of the botnet scanning events,
followed by the botnet event correlation study. Next we discuss
results for the four botnet scan pattern checking techniques
and their validation. We finish with the presentation of global
extrapolation results and their validation using DShield,a
world-wide scan repository.

A. Basic Characteristics of Botnet Events
In Table IV, we break down 203 events according to their

targeted services. We find that most of the events target popular
services that have large install-base. We also find that 30
(14.8%) events are purely port reconnaissance without any
payloads. Another three events check whether the HTTP service
is open by requesting the homepage. The remaining (83.7%)
events target certain vulnerabilities. Therefore, these botnet
scans likely reflect attempted exploitations.

Figure 7 shows the CDF of event duration. A botnet event
can last from a few minutes to a few days. There are 36 events
that last very close to half an hour, leading to the spike in the
Figure 7. Those events target a single SMB vulnerability and
repeat daily. We find all those events share more than 35%
of the same sources. We conjecture they stem from a single
botnet, with the botmaster asking the botnet to repeatedly scan.
In Figure 8, we show the CDF of unique number of ASes per
event. Most of the bots (62.7%) come from more than 100
ASes. Only 3% of events reflect fewer than 20 ASes. This
implies that cleaning the botnets from some part of the world
(some of ASes) will not improve the situation. Also blocking
them based on AS number is very hard due to large number of
ASes involved.
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Fig. 9. Scan Pattern checking results.

B. Property-Checking Results
Figure 9 shows the breakdown of the events along different

scanning dimensions. Six of the 203 events exhibit partial
monotonic trends; 16.3% reflect hit-lists (liveness); 80.3%
follow the random-uniform pattern, passing both uniformity and
independence tests.

Through manual inspection of the partial monotonic events,
we find that nearly half of the bots scan randomly and another
half of bots scan sequentially. All of these bots start to scan at
almost the same time. Perhaps they reflect two groups of bots
controlled by the same botmaster, and the botmaster asking
these two groups to use different scan strategies; but in general,
this behavior is puzzling.

After that, we test the use of hit-list (liveness) scanning.
As mentioned before, we useθ (the ratio of the number of
senders in the darknet over to those of the honeynet) to classify
the events. Out of the 106 events classified by port number,
33 reflect hit-list (liveness) scanning when usingθ = 0.5. In
fact, all have empirical values forθ < 0.01, and all of events
with θ > 0.5 haveθ > 0.85. The 97 other events use popular
ports also seen in background radiation, and thus we have to
classify them based on application-level behavior. For these,
we conservatively assume that all the senders in the darknet
using the same port number is possible members of the event,
which tends to overestimateθ. For these 97 events, we did not
find any with smallθ and most of them haveθ larger than
one. We found in all the cases, the results are insensitive tothe
threshold ofθ. In addition, none of the events only target the
darknet.

date desc ex. DShield scope ex.
2006 scope scope ratio scope

(I)(/8) (/8) (I) (II)(/8)
08-25 MSSQL 1.48 1 1.48 4.6
11-26 Symantec 0.59 0.75 0.79 0.1
11-27 Symantec 0.76 1 0.76 0.4
11-28 Symantec 0.92 1 0.92 4.0
07-23 VNC 0.63 0.9 0.7 0.9
07-29 VNC 0.63 0.87 0.72 0.9
10-31 VNC 0.80 0.80 1 0.6
08-24 NetBIOS 0.86 1 0.86 3.5
08-25 NetBIOS 1.13 1 1.13 2.5
08-29 NetBIOS 0.89 1 0.89 0.5
09-02 SMB 0.67 0.50 1.34 0.5
07-26 SMB 0.82 1 0.82 4.3

TABLE V
GLOBAL SCOPE EXTRAPOLATION RESULTS AND VALIDATION.
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34 of the 197 random events fail the test for uniformity. We
visually confirm that all of the remaining 163 events passingthe
test indeed appear uniform. Three of those that failed appear
uniform visually, but have very large numbers of scans, for
which the statistical testing becomes stringent in the presence
of a minor amount of noise. In the remaining failed cases, we
can see “hot-spot” addresses that clearly attract more activity
than others; we do not know why.

Finally, we test the 163 uniform cases for coordination, not
finding any instances at a 0.5% significance level. In addition,
we simulate the advanced botnet permutation scan (ABPS) we
proposed in Section III-B, and the dependency test accurately
detects it.

C. Extrapolation Evaluation & Validation
We validate two forms of global extrapolation—global scan

scope and total number of bots—using DShield [5], a very large
repository of scanning and attack reports.

Finding: 75% of our estimates of global scanning scope
using only local data lie within a factor of 1.35 of estimates
from DShield’s global data, and all within a factor of 1.5.

Finding: 64% of bot population estimates are within 8% of
relative errors from DShield’s global data, and all within 27%
of relative errors

For 163 uniform events, 135 reflect independent uniform
scanning and 28 reflect hit-list (liveness) scanning. For each
type we estimate either the total scanning ranges or the total
size of the hit lists, respectively. It is difficult to verifyhit-list
(liveness) extrapolations because of the difficulty of assessing
how the hit-list will align with sources that report to DShield.
However, we can validate extrapolations from the first classof
events since we find they usually target a large address range.
Due to limited data access to DShield, we have only been able
to verify 12 cases as of today, as shown in Table V.

1) Global Scope Extrapolation and Validation:We present
results from extrapolation, discuss our validation methodology,
and apply the methodology to analyze our extrapolation accu-
racy.
Global scope extrapolation results:In Table V, we show the
extrapolated scan scope we estimate from the local honeynet
comparing with the estimation we make with the DShield
data. Columnex. scope (I)shows the honeynet extrapolated
scan scope by Approach I. ColumnDShield scopeshows the
DShield based estimation. Columnscope ratiogives the ratio
of the extrapolated scan scope by Approach I over the DShield
scope. Columnex. scope (II)shows the extrapolated scan scope
by Approach II. From the results, we see that our findings are
consistent with those derived from DShield. Next, we introduce
how the DShield validation works, and then we will analyze
the accuracy of our results.
Validation Methodology: We find that most DShield sensors
have synchronized clocks (i.e., we often find significant tem-
poral overlap between our honeynet events and corresponding
DShield reports). For a given extraplation, we take two steps
for validation.

Because our extrapolation results (Columnex. scope (I)in
Table V) suggest that most global scanning scopes of botnet
events are close to a /8 in extent, in the DShield validation
we first analyze which /8’s are involved, and then further infer
actual scanning scopes within each related /8. We then sum
up the scanning scopes in all of the /8’s to produce the final
validation result.
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Fig. 10. Scope factors of the 12 events validated.

Step 1.Let X denote the /8 IP prefix of our sensor. We
first calculate the number of shared sendersN(X) between
our event data and scan logs forX from DShield. We consider
additional /8 prefixesYi if their numbers of senders shared
with the honeynetN(Yi) are larger thanN(X)/3, reflecting an
assumption that if a botnet uniformly scans multiple /8 prefixes,
each should see quite a few sources in common. ForX and
eachYi, we select the full width at half maximum (FWHM)
of the unique source arrival process as a (conservative) way
to delineate the global interval of the event. We then calculate
the time range overlap withX for eachYi; if the overlap of
Yi exceeds 50% ofX ’s interval, we consider that the botnet
scannedX andYi at the same time.

Step 2.After finding the scanned /8 networks, we estimate
the scan scope within each. Alternatively, we compute the
ratio of sensors in each network reporting the scans. There are
several limitations of DShield data. First, it does not contain
complete scan information (only a subset of scans within
a prefix are reported). Second, different sensors might use
different reporting thresholds and might not see all activity
(e.g., due to firewall filtering). Thus all these limitations makes
calibration of data a challenging job.

To assess the limitations, we check a one-week interval
around our events to find which DShield sensorsever report
a given type of activity. We treat all the reporting sensors
in one /24 network as a single unique sensor. We count the
number of sensors from different /24 networks, denoted by
Ctotal. Similarly, we count the number of unique sensors from
different /24 networks that reported scans from shared senders
of the given event, denotedCest. We reduce the noise from
the DShield data by removing sensors that only report a single
address within a /24 sensor. We then useCest/Ctotal to estimate
the fraction of a /8 networks scanned by the botnet, which
gives us a conservative estimate of the event’s total range.We
add up such fractions if there are multiple related /8 networks
discovered in the first step, indicating the results in Column
DShield scopeof Table V.
Accuracy Analysis: We define the scope factor as
max(D/H, H/D), where theD is the Dshield scope andH
is the Honeynet scope. The scope factor indicates the absolute
relative error in the log scale. The DShield data shows that
our local estimates of global scope exhibit a promising level
of accuracy. As shown in Figure 10, for Approach I, the scope
factors of 75% events are less than 1.35, and all of them are
less than 1.5. Approach II (columnex. scope II) works less
well (58% of events are within a factor of three and 92%
within a factor of six), but it may still exhibit enough powerto
enable sites to differentiate scans that specifically target them
versus broader sweeps. In our two-year dataset, we did not find
any scan events specifically targeting LBL, where the sensor
resides. Moreover, it is less likely for a research institution such
as LBL to be a target. We would presume that targeted attacks
are more likely to occur at a site with high business interest,
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such as financial corporations and well-known companies.

2) Targeted Attack Emulation and Detection:Since we did
not discover any actual targeted attacks in the LBL dataset,
we created synthetic attacks to evaluate the power of our
approach. For each event shown in Table V, we emulated a
synthetic targeted attack using the same characteristics of that
real event (X). This includes the same number of bots as
observed inX , including the same scan duration a observed
in X . We randomly chose the scan speed for each bot and
fixed the average scan speed of all bots to be similar to the
extrapolated average scan speed ofX . During this emulation,
each bot scans uniformly randomly to the same targeted scope.
We emulate those bots scanning one of LBL’s /16 networks,
along with the honeynet sensor collecting the data. The results
show that our approach indeed correctly extrapolates the global
scan scope to be one /16 network with less than 2% of error.
This demonstrates that our approach can accurately detect
targeted attacks. We also generate synthetic events targeting
a /8 network, finding the global extrapolated accuracy similar
in accuracy to the occurrence in real events, demonstratingthe
feasibility of such emulation. The smaller targeted scope,the
more scans that our sensor will observe, and as a consequence
the higher the resulting detection accuracy. This is the reason
that the accuracy for /16 networks is much higher than for /8
networks.

3) Total Population Estimates and Validation:We assume
that our honeynet event data and the corresponding DShield
data give us two independent samples of the bot population,
which is another chance to use the Mark and Recapture
principle. We count the sources observed by DShield sensors
of IP prefix X on the same port number in the same time
window as the sources of DShield sensors. We term the number
of sources in common between our honeynet and DShield as
the shared sources. Based on the similar idea of Equation 2,
we know the fraction of the shared sources to the sources of
DShield should be equal to the ratio between bots observed in
the honeynet and total population. Since DShield sensors will
see other scanners (constituting noise) as well, we will likely
underestimate the first fraction, and consequently overestimate
the bot population. Per the results shown below, we find the
estimates very close to those we estimate locally by splitting
the sensor into two halves.

Table VI. shows the extrapolation and DShield validation
results. Columnex. #botsshows our bot population extrap-
olation constructed by splitting the sensor into two halves.
Column#bot DShieldshows the results using DShield’s global
data. Column#bots ratio gives the ratio between the two of
these. Note, we only validate the seven port number based
events (MSSQL, Symantec and VNC). The NetBIOS/SMB
events require payload analysis, which cannot validate through
DShield since it does not provide any payloads. We find our
approach is quite accurate given 64% of cases are within 8%
of relative error (|(our − DShield)|/DShield).
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Fig. 11. Extrapolated # of scans.
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Fig. 12. Extrapolated the average scan
speed.

date desc ex. #bots #bots
2006 #bots DShield ratio
08-25 MSSQL 3100 3139 0.99
11-26 Symantec 228 215 1.06
11-27 Symantec 276 373 0.73
11-28 Symantec 305 331 0.92
07-23 VNC 2752 2712 1.01
07-29 VNC 3628 3696 0.98
10-31 VNC 526 622 0.84

TABLE VI
EXTRAPOLATED BOT POPULATION RESULTS AND VALIDATION.

4) Other Extrapolation Results:Based on Approach I, we
can also infer the total number of scans and extrapolated
average scan speed in each event. In Figure 11, we show the
extrapolated total number of scans, using a log-scaled X axis.
We can see the number of scans sent by the events could differ
significantly given the duration and the number of bots differ.
Figure 12 shows the extrapolated average scan speed of the
bots, which we find to be quite low. We confirmed that scanning
tools such as Nmap generate comparable TCP scanning rates.
One underlying reasoning is as follows. On Windows platforms,
the scan rate is limited by (i) the ephemeral port number range,
and (ii) the waiting time before a closed connection tuple
can be reused. Unless these OS parameters are changed, they
necessarily bound the scanning rate. We analyzed botnet source
codes (Section III) and did not find any botnet changes to these
parameters. We might conjecture that—given the ease by which
botmasters recruit new bots—improving the efficiency of single
bots is of secondary concern. In addition, slow scanning rates
are less likely to be detected.

VII. R ELATED WORK

The work that most heavily influences us is the vision
paper of Yegneswaran and colleagues on “Internet situational
awareness” [9]. Their work outlines the general problem of
analyzing honeynet traffic to assess its significance for the
site observing it. The authors present the potential promise
of such analysis using techniques that rely considerably on
visualization. Along with [23], we aim to go substantially
further, developing a “toolkit” for analyzing particular features
of large-scale honeynet events, and devising techniques and
a general framework to automatically or semi-automatically
derive conclusions based on honeynet data.

In [24], Katti et al. propose novel approaches for evaluating
the importance of collaboration among IDSes and show that
indeed collaboration can improve detection speed and accuracy.
Their paper studied collaboration regarding targets (different
IDSes), while our study mainly focuses on the coordination of
the sources (bots).

DShield is the Internet’s largest global alert repository [5],
a collaborative effort for detecting attackers. Our appproach
does not rely on collaboration—an individual enterprise can by
itself adopt our method to understand the significance of botnet
probes. In the absence of collaboration, enterprises can keep
their detection sensor information private, lessening concerns
of pollution and detection avoidance [17]. Moreover, in our
experience, DShield data is quite noisy due to non-uniform
sensor density, which can hamper its use for inference.

While the state of the art in terms of building honeynet
systems has advanced considerably, the analysis of large-scale
events captured by such systems remains in its early stages.
The Honeynet project has developed a set of tools for host-level
honeypot analysis [25]. At the network level, Honeysnap [26]
analyzes the contents of individual connections, particularly
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for investigating IRC traffic used for botnet command-and-
control. These approaches all either focus on single instances of
activity, or on study of particular botnets over time (e.g., [4]).
In contrast, in this paper, we aim instead to understand the
significance of single, large-scale events as seen by honeynets.
Such activity by definition entails analysis integrated across a
large number of instances of the activity, but also (unlike [4])
localized in time.

Furthermore, the literature includes a number of forensic
case studies analyzing specific large-scale events, particularly
worms [27], [28]. Such case studies have often benefited from
a priori knowledge of the underlying mechanisms generating
the traffic of interest. For our purposes, however, our goal is to
infer the mechanisms themselves from a starting point of more
limited knowledge.

VIII. D ISCUSSION
To fully use our approach, an enterprise needs to allocate an

IP address block divided into a darknet and a honeynet. En-
terprises that can only deploy darknets still gain most benefits,
though without a honeynet they cannot detect hit-list (liveness)
scanning, nor employ payload analysis to further classify the
traffic using protocol/session semantics rather than simply port
numbers.

Enterprises that lack unused address blocks can still partially
take the advantage of our approach if they have blocks with
known limited access. For example, if a block does not provide
any web service, then the enterprise can use it to detect botnet
events that scan port 80. (Indeed, the enterprise could evenset
up a partial honeynet operating on just that port.)

From our experiences, ten /24 networks worked well, and
we would expect that fewer will too. This requirement should
be well within the capability of a large enterprise.

IX. CONCLUSIONS
In this paper, we develop techniques for recognizing botnet

scanning strategies and inferring the global properties ofbotnet
events. An evaluation of our tools using extensive honeynet
and DShield data demonstrates the promise our approach holds
for contributing to a site’s “situational awareness”—including
the crucial question of whether a large probing event detected
by the site simply reflects broader, indiscriminate activity; or
instead reflects an attacker who has explicitly targeted thesite.
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