
NetShield: Massive Semantics-based Vulnerability
Signature Matching for High-speed Networks

Zhichun Li§ Gao Xia† Hongyu Gao§ Yi Tang† Yan Chen§ Bin Liu† Junchen Jiang† Yuezhou Lv†

§ Northwestern University † Tsinghua University, China

Abstract – Accuracy and speed are the two most impor-
tant metrics for Network Intrusion Detection/Prevention Systems
(NIDS/NIPSes). Due to emerging polymorphic attacks and the
fact that in many cases regular expressions (regexes) cannot cap-
ture the vulnerability conditions accurately, the accuracy of existing
regex-based NIDS/NIPS systems has become a serious problem.
In contrast, the recently-proposed vulnerability signatures [10, 29]
(a.k.a.data patches) can exactly describe the vulnerability condi-
tions and achieve better accuracy. However, how to efficiently ap-
ply vulnerability signatures to high speed NIDS/NIPS with alarge
ruleset remains an untouched but challenging issue.

This paper presents the first systematic design of vulnerability
signature based parsing and matching engine, NetShield, which
achieves multi-gigabit throughput while offering much better ac-
curacy. Particularly, we made the following contributions: (i)
we proposed a candidate selection algorithm which efficiently
matches thousands of vulnerability signatures simultaneously re-
quiring a small amount of memory; (ii) we proposed an auto-
matic lightweight parsing state machine achieving fast protocol
parsing. Experimental results show that the core engine of Net-
Shield achieves at least 1.9+Gbps signature matching throughput
on a 3.8GHz single-core PC, and can scale-up to at least 11+Gbps
under a 8-core machine for 794 HTTP vulnerability signatures.

1. INTRODUCTION
Keeping networks safe has been a grand challenge for the current

Internet. The outbreak of the Conficker worm/botnet [2] at the end
of 2008 shows that remote exploits are still a major threat tothe
Internet today. The Conficker worm mainly exploited a WINRPC
remote code execution vulnerability (MS08-067), infected9 ∼ 15
million hosts [2]. For such attacks, network-based Intrusion Detec-
tion/Prevention Systems (NIDS/NIPSes) are of critical importance
because they protect the enterprise or an ISP as a whole including
the users who do not apply patches or host-based defense schemes
for various reasons (reliability, overhead, conflicts,etc.). Operating
on routers/gateways, NIDS/NIPS can prevent attacks such asthe
Conficker worm from spreading.

Two metrics are extremely important for signature-based
NIDS/NIPS: accuracy and speed. Accuracy is of particular impor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’10,August 30–September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

tance, especially for an NIPS that throttles the connections which
are identified as malicious by matching pre-defined signatures. It
requires the signatures to be accurate enough, so that the NIPS can
drop the packets with full confidence. Meanwhile, NIDSes/NIPSes
have to maintain high speed. Most modern enterprises today have
1Gbps links and are moving towards 10Gbps.

1.1 State of the Art
For high speed NIDS/NIPSes, thede factostandard approach

is to employ regex (regular expression) based matching engines.
On the other hand, vulnerability signatures [9, 10, 29] havebeen
proposed, but still have not been used in NIDS/NIPSes due to the
low matching efficiency.

Regexes can be easily combined and matched simultaneously in
a single pass over the input. Given this nice feature, most commer-
cial NIDSes/NIPSes,e.g., the products from Cisco and Juniper, as
well as some open source ones,e.g., Bro [21], use a regex-based
matching engine to keep up with line speed. In such engines, each
signature is a regex. The content of a connection is treated as a
string and is matched against multiple regex signatures simultane-
ously. The latest research efforts [7, 8, 17, 25, 26, 30] assume regex
can provide enough accuracy and focus on increasing its speed
while reducing the memory occupation.

However, their assumption “regexes can provide enough accu-
racy” is questionable. Attackers have already developed polymor-
phic and metamorphic variations to evade detection [10]. Inmany
cases, the protocol/application semantics and states are required
to express the vulnerability conditions [29], which needs context-
sensitive parsing. To say the least, even context-free languages have
insufficient expressive power. Therefore, theoretically,regexes are
infeasibleto fully avoid false positives and false negatives, which
is indeed true in practice. For example, due to the complexity of
the NetBIOS/SMB/WINRPC protocol stack, it is almost impossi-
ble to write an accurate regex signature to detect the polymorphic
versions of the Blaster worm or the recent Conficker worm. Be-
sides, we also find many other similar cases in different protocols
such as HTTP and DNS.

In comparison, the seminal work [10, 29] proposed the concept
of vulnerability signatures (a.k.a., data patches [13]) that achieve
better accuracy than regex-based approaches. As advocatedin [9,
29], a vulnerability signature is based on the thorough understand-
ing of both the network protocol and the application context. It
leverages semantic information to exactly describe all thepossible
paths that exploit a vulnerability over the network.

Most previous work on vulnerability signatures focuses on auto-
mated vulnerability signature generation [10, 12]. However, how
to match a large number of vulnerability signatures efficiently has
not been well studied. To the best of our knowledge, all the exist-

Theoretical accuracy

limitation of regex

State of the

art regex sig

IDSes

NetShield

Existing

Vulnerability

sig IDSes

Accuracy
HighLow

L
o
w

H
ig
h

S
p
e
e
d

Figure 1: Comparing NetShield with existing approaches.
ing approaches [9, 22, 29] usesequential matching, i.e., matching
signatures one by one, leading to low speed.

Since a high-speed NIDS/NIPS protects a large number of di-
verse hosts, it usually has a large signature ruleset to cover all pos-
sible vulnerabilities. For example, Snort has more than 6,000 sig-
natures. Cisco IPS has about 2,000 signatures. For both systems,
even some single protocol, such as HTTP, has hundreds or even
thousands of signatures. Therefore, matching a large vulnerability
signature ruleset at high speed is a practical requirement.

In Figure 1, we compare our approach with existing ones in terms
of accuracy and speed. Due to the theoretical limitation, toimprove
the accuracy of a regex-based approach is extremely hard, ifnot
impossible. On the other hand, the existing vulnerability signature
approaches with sequential matching cause low throughput.The
key challengeis how to speed up vulnerability signature matching
with large vulnerability rulesets. Furthermore, another challenge is
to parse the traffic and to recover the protocol semantic information
fast enough for signature matching.

1.2 Our Contributions
To address the challenges above, we design and implement a vul-

nerability based NIDS/NIPS prototype (namedNetShield). Net-
Shield obtains high throughput comparable to that of the state-of-
the-art regex-based NIDS/NIPS while offering much better accu-
racy. In particular, we made the following contributions:
1) An efficient multiple signature matching scheme for a large
number of vulnerability signatures. By formulating the multi-
ple vulnerability signature matching problem, we devise a tabular
presentation of vulnerability rulesets. This promotes us to design a
novel algorithm calledCandidate Selection(in short,CS) to match
multiple vulnerability signatures simultaneously. The CSalgorithm
enables high-speed massive vulnerability signature matching with
small memory requirement. As far as we know, this is the first re-
search effort to formulate and solve the multiple vulnerability sig-
nature matching problem (§4).
2) Fast stream-fashioned lightweight parsing.We make two ob-
servations: (i) buffering and parse tree traversal are not necessary
when the parsing is solely for signature matching; and (ii) These
two overhead can be eliminated with proper design. We design
the UltraPAC, an automatic parsing state machine generator. The
generated parsing state machine can accurately parse out all the re-
quired fields avoiding unnecessary cost. Evaluation with real trace
shows UltraPAC parser is about 3∼ 12 times faster than the Bin-
PAC parser [20] (§5).
3) Evaluation and Methodology. By analyzing the vulnerabili-
ties that the Snort ruleset targets, we create the vulnerability signa-
tures for those vulnerabilities. We implement a software NetShield
prototype (§6) and release to public [4]. In §7, experimental re-
sults show that, on a single-core 3.8Ghz PC, our core engine can
achieve 6.7+Gbps parsing speed on HTTP, and 1.9+Gbps parsing
plus matching speed for 794 HTTP vulnerability signatures with
2.3MB memory for the matching data structures. On a 8-core ma-
chine we boost the matching throughput to 11+Gbps.

BIND:
rpc_vers==5 && packed_drep==’\x10\x00\x00\x00’
&& abstract_syntax.uuid==UUID_IRemoteActivation
&& abstract_syntax.version=="0.0"

BIND-ACK:
rpc_vers==5

CALL:
rpc_vers==5 && packed_drep==’\x10\x00\x00\x00’
&& opnum==0x00 && stub.RAbody.actual_length>=40
&& matchRE(stub.RAbody.buffer,

/^\x5c\x00\x5c\x00/)
Figure 2: Vulnerability signature for MS03-026.

After §7, we discuss related work in §8. Finally we present dis-
cussions and conclusions in §9 and §10 respectively.

2. BACKGROUND AND MOTIVATIONS
2.1 What Is a Vulnerability Signature?

Vulnerabilities that can be exploited remotely are the result of
faulty program logic. They may be triggered when the program
handles inputs from networks. Wanget al. first propose the con-
cept ofvulnerability signature[13, 29], and point out that protocol
semantic information is particularly useful for specifying such sig-
natures. Brumleyet al. argue that a perfect vulnerability signature
has to be a Turing machine, but unfortunately matching such signa-
tures is undecidable in general [10]. They propose to use symbolic
constraints as vulnerability signatures. Similar to theirdefinition,
in this paper, we define a vulnerability signature as a set of sym-
bolic predicates based on the protocol semantic information. This
form of vulnerability signatures can express most known vulner-
ability conditions precisely. Based on the principle of optimizing
common cases, our design mainly speeds up the matching speedof
symbolic predicate signatures. In §9, we show that NetShield can
be easily extended to support more complex cases.

To recover the protocol semantic information, we need to parse
the input. In addition, a protocol state machine (a.k.a., vulnera-
bility state machine in [29]) is required for adjusting the protocol
states when sending/receiving differentprotocol data units (PDUs).
PDUs are the atomic data units that are sent between two appli-
cation endpoints. A PDU can be dissected into multiple protocol
fields. Here, afield means a sub-sequence of bytes inside the PDU
with certain semantic meaning or functionality. For a multi-PDU
protocol, the protocol parser associates the related PDUs to differ-
ent sessions. The PDUs in one session correspond to a single in-
stance of the protocol state machine. The predicates of vulnerabil-
ity signatures are defined on the sequence of PDUs in one session,
one for each PDU. They are written as a set ofconditionsbased
on the PDU’s protocol fields. If all the predicates required by the
vulnerability signature are true, the signature ismatched.
An example for illustration: As an example, we consider the
MS03-026 vulnerability exploited by the Blaster worm. It isa
stack buffer overrun vulnerability in the WINRPC protocol.WIN-
RPC is a stateful protocol. A typical WINRPC call starts witha
BIND PDU from the client side, asking to bind to a particular API.
The server receives the request and responds with the BIND-ACK
PDU for acknowledgement. After that, the client issues a remote
function call (CALL PDU) usingopnum as the ID of the function,
followed by the required parameters. If the length of the buffer
actual_length is longer than 40, a buffer overrun will be trig-
gered. Figure 2 shows the corresponding vulnerability signature1.
Since the signature captures the vulnerability conditionsexactly,
it can stop the Blaster worm in addition withall possibleexploits
(including future ones) of this vulnerability.

Moreover, given vulnerability signatures are more expressive,
the number of signatures can be reduced when covering the same
1It is the same as the one generated in ShieldGen [13].

Protocol

Identification

Core Engine

Rule Compiler

Vulnerability

Ruleset

Traffic

Capture

TCP

Reassembly

Protocol

Spec.

Protocol

Parser

Individual

Matchers

CS Algorithm

UltraPAC

Figure 3: NetShield System Architecture.

vulnerability set. This is especially true for complex binary pro-
tocols, which is harder to use regex to express. For example,on
average 1.2 Snort HTTP signatures can be reduced to one vulnera-
bility signature, but for WINRPC the ratio is as high as 67.6:1. To
some extent, this reduction also helps to improve the performance
of signature matching.

2.2 Only Relying on Regex Is Insufficient
Can we accurately express vulnerability signatures in regexes

only? The answer isno. The reason is twofold.
Regex cannot achieve accurate parsing:Fundamentally, to re-
cover protocol semantics requires context-sensitive parsing. Regex
language is a special subset of context-free language. Thus, in the-
ory, it lacks the expressive power to accurately parse complex pro-
tocol grammars. In practice, real world protocols are sophisticated
enough to render regex incapable. For example, the HTTP pro-
tocol encodes the length of chunked HTTP body in another field.
Regexes fail to identify the boundary of the body in this case. In
the DNS protocol, DNS labels can be either a string with variable
length or a pointer. Regexes cannot dereference a pointer. There
are similar cases in SSL, SNMP and other protocols.
Regex cannot help with multi-field matching: Regexes assume
the input as one single raw byte string. In contrast, vulnerability
signatures need to match multiple protocol fields in different data
types (number or strings) and combine the matching results to make
the decision. For the multi-PDU protocols, the protocol state ma-
chine further adds another layer of complexity. It is very hard to
extend any regex approaches for vulnerability signatures.

We argue that, although regexes are useful,only relying on them
is not enough. NIDS/NIPS vendors also realize this problem and
add limited semantic processing power to their products. However,
these add-ons are relatively ad-hoc and work as “patches” tothe
systems. These systems are still limited by the regex engines and
cannot take the full benefit of vulnerability signatures. Inthis paper,
we advocate that asystematic and clean slatedesign is necessary
for protocol parsing and vulnerability signature matching.

3. NETSHIELD FRAMEWORK
Figure 3 depicts the framework of NetShield. There are efficient

hardware techniques for traffic sniffing [3], TCP reassembly[14]
and protocol identification (classify the traffic to different applica-
tion protocols) [5]. Our work is focused on the design an efficient
core engine for matching vulnerability signatures rather than build-
ing a full-featured NIDS/NIPS, which requires an additional heavy
hardware/software engineering effort.

For each application protocol, we invoke the correspondingpro-
tocol parser which is generated by UltraPAC (our automated parser
generator) from the protocol specification. Provided the required
protocol fields, the matching engine matches all the vulnerabil-
ity signatures for the given protocolsimultaneously. The proto-
col parser and the matching engine are tightly coupled and work
in a pipelined fashion. Whenever a protocol field is parsed, it is
immediately sent to the matching engine where the incremental
matching process is invoked. The pipelined processing helps re-
duce the memory consumption, processing delay and maximizethe

throughput. A full-featured NIDS/NIPS also needs to handleproto-
col normalization. The current design of UltraPAC only considers
the application-level reassembly normalization. Encoding normal-
ization can be incorporated to our design but will remain as part of
the future work.

4. EFFICIENT MATCHING DESIGN
We first formulate the vulnerability signature matching prob-

lems. After analyzing the nature of the problem, we present the
idea of ourCS (Candidate Selection) algorithm, followed by the
attack resilience analysis and the further enhancement to the ba-
sic scheme. Finally, we extend our algorithm to the multiplePDU
(Protocol Data Unit) cases. Moreover, in this paper, we use signa-
ture and rule interchangeably.

4.1 The Vulnerability Signature Matching
Problem

Characteristics and challenges of vulnerability signature
matching: Five major characteristics make the vulnerability sig-
nature matching problem unique: (i) NIDSes/NIPSes have to keep
per-flow state as minimum as possible, because they need to sup-
port a large number of sessions and avoid state-holding attacks.
Buffering a PDU or even a single string-type field is uneconom-
ical (up to hundreds of KB) and sometimes is subject to state-
holding attacks (§4.3). Many variable-length string fieldsdo not
have length upper-bounds defined in the protocol. Bufferingthem
is dangerous because an attacker can generate crafted traffic with
very long fields to overwhelm the NIDS/NIPS. Moreover, we want
to make the decision as soon as possible; thus, it is better toparse
a PDU (or a partial PDU) and match the signatures in a streamline
fashion, instead of waiting for all the fields available together. (ii)
Vulnerability signatures require integer range checking or string
length checking. Handling arbitrarily overlapping rangesis non-
trivial. (iii) In a signature, different operations, such as integer
range checking, string matching and regex matching, operate on
different fields and have different nature. It is hard to combine
them. (iv) For NIDSes/NIPSes, when multiple rules match a single
session, the reporting order of matched rules does not matter. This
behavior is different from firewall rules. (v) We have to handle the
field dependencies as well as a large number of fields. Furthermore,
different signatures may depend on a different set of fields.

These five characteristics in the same time are also researchchal-
lenges. For example, (i) requires us to design a scheme keeping the
per-flow memory usage as small as possible. (ii) and (iii) make the
problem a hard multi-field matching problem.
Tabular signature representation: To tackle the problem, we
convert the set of signatures to a two-dimensional table, namely
signature table. This transformation is thekeyto unlock the poten-
tial of matching multiple vulnerability signatures simultaneously.

We take two steps to achieve this. First, we normalize signa-
tures to only use&& (AND). Any signature that uses|| (OR) op-
erator is split into multiple signatures. Second, we convert the
normalized signatures to the signature table. Each unique two-
tuple (<fieldname> <operator>) is a matching dimension (called
amatcher), where<fieldname> is a protocol field (defined in §2.1)
and<operator> is the corresponding operator. For example, the
(filename ==) is a matcher defined by the filename field in the
HTTP URI and the exact string matching operator. Different sig-
natures may require different right operands for the filename field,
e.g., filename==“header.php” or filename==“ads.cgi”. One excep-
tion is that some protocol fields may form associative array (Perl
Hash). For example, the HTTP headers are name and value pairs,
which can be treated as an associative array. First, the nameof a
header needs to be matched. If it is matched, we then match the

RuleID RB Matcher 1 Matcher 2 Matcher 3 Matcher 4 Matcher 5
Method == Filename == Filename RE VARS ==RE Headers ==LEN

1 1 DELETE * * * *
2 1 TRACE * * * *
3 1 POST header.php * * *
4 2 * ads.cgi * name=“file"; value∼ “.* \.\./" *
5 2 * awstats.pl * name=“configdir"; value∼ “.*7C" *
6 2 * fp40reg.dll * * name=“host"; len(value)>300
7 3 * * .*\.id[aq]$ * *
8 4 * * * name=“name"; value∼ “.*GLOBAL" *
9 5 * * * * name=“User-Agent"; len(value)>512

Table 1: A simplified example with nine HTTP signatures on fivematchers (matching dimensions).

value condition. Although it is possible to treat them as separate
matchers, we find that treating them as a single matcher is easier
since most of rules have binding relationships between the names
and values.

For N signatures defined onK matchers, we build aN × K

table. This applies to both the single PDU and the multiple PDU
case. A row represents a signature, a column represents a matcher,
and a cell represents the right operand of the matcher on the sig-
nature. If the signaturej does not depend on matcheri, we use a
wildcard “*” to indicate in the cell. Since bothN andK are large,
the signature table is usually sparse and has many wildcards. A
simplified example is given in Table 12. This example includes five
matchers on four protocol fields. Here, operator “==” means exact
matching, operator “RE” regex-matching, Operator “LEN” string
length checking.VARS is the list of variable assignments (name
and value pairs) in the HTTP URI,VARS andHeaders can be
treated as associative arrays; thus, they are four tuples.
SPMSM: To simplify the discussion, we first define the single PDU
multiple signature matching problem (SPMSM)—given a set of
signatureS = {S1, S2, . . .} and a PDUP , find the signatures inS
that matchP . Once solving SPMSM, we extend the solution to the
multiple PDU case in §4.5.
Hardness of SPMSM:It is known that general multidimensional
range search overN ranges inK dimensions (NKQUERY) has
Ω((log N)K−1) worst-case time with linear memory, orO(NK)
memory for linear search time [11]. This problem can be reduced
to the SPMSM problem (runtime excluding the construction time).
Therefore, the SPMSM problem’s worst case bound will be at least
as bad as that of the NKQUERY problem. This implies for the
worst case rulesets it is impossible to have a fast linear time algo-
rithm.
Observation on real world rulesets:Since the worst case rulesets
have bad theoretical results, we study the nature of real-world rule-
sets, because, after all, the attackers do not have control over the
vulnerabilities in a ruleset. Vulnerabilities are solely determined
by the bugs in programs. To design an algorithm with good perfor-
mance on real-world rulesets is still very important.

After examining a protocol field against a given matcher for all
the signatures in the ruleset, the signatures that match theprotocol
field on the matcher except those with wildcard are calledcandi-
dates. Our observation is that, for a real world vulnerability ruleset,
most matchers are selective,i.e., producing small candidate sets.

The observation is made by studying real-world vulnerabili-
ties, mainly the vulnerability signatures corresponding to Snort
and Cisco rulesets. String-related matchers are selective, because
strings used in signatures are usually long and unique. For the
number-related matchers, in most cases this observation still holds.
However, it is not true for some matchers that are not crucialto the

2Please note that since we reduce the number of matchers from 31
to 5 for simplifying the example, these rules are not 100% accurate
and can only be used as illustration.

signatures and are used solely for reducing false positives, e.g., the
matcher for checking the WINRPC version field. In other words,
they are not rule filters but traffic filters. Fortunately, theprotocol
fields of such non-selective matchers usually take little space,e.g.,
four bytes or less. We can always buffer the fields and match them
later. In §4.2.3, we show that buffering and matching them later
will reduce the matching overhead.

4.2 The Candidate Selection Algorithm
Based on the characteristics of vulnerability signature matching

and the observation from real-world rulesets, we design theCS

algorithm that want to keep the per-flow state small. We adopta
decomposition design,i.e., to match each matcher separately and
then combine the results. For each matcher, we search the candi-
dates for all the rules simultaneously. The key challenge ishow to
efficiently merge candidates from different matchers.

One possible approach is to use bit-vector to encode matching
results. However, for a large ruleset,e.g., 1000 signatures, it needs
1000 bits (125 bytes) per connection, which is memory inefficient.
Alternatively, we propose theCS algorithm. By exploiting the rule
order, theCS algorithm tracks the rules with “*” cases without
explicit states, and thus saves the per-flow memory usage. The
CS algorithm only needs to track a small number of candidates for
each matcher. We match each matcher separately upon the protocol
field’s arrival and then iteratively merge the possible candidate rules
to produce the final result. Our experiments show theCS algorithm
has good throughput and memory usage.

The CS algorithm consists of the pre-computation to decide rule
order, the pre-computation to decide matcher order and the runtime
process. The pre-computation helps reduce the overhead at run-
time. We assume the protocol field arriving order as the matcher
order when we introduce rule ordering in §4.2.1. We defer thede-
scription of matcher ordering to §4.2.3, because it requires a deep
understanding of the candidate selection process at run time shown
in §4.2.2.

4.2.1 Pre-Computation: Deciding the Rule Order
Based on the characteristic (i) mentioned in §4.1, we exploit the

degree of freedom in signature ID order. The key advantage of
rule ordering is to track the don’t care cases implicitly andsave the
per-flow states.

We useMi to denote theith matcher,i.e., theith column in the
signature table. We call the rules that do not have wildcard in Mi

the rulesrequiring Mi. Algorithm 1 shows the rule ordering pro-
cess.R is initialized as the complete list of rules. We iterate over

Algorithm 1RuleOrdering()
R is the list of rules;
For Mi in AllMatchers

RBi ← the rules inR requiringMi;
R← R−RBi;

Endfor
NR← [];
For i from 1 toK append the rules inRBi to NR;
Return NR;

RB1: 1 2 3

Matcher 1: (Method,==)

S1= {3}

RB1: 1 2 3 RB2: 4 5 6

PDU={Method=POST, Filename=fp40reg.dll, VARs: name="file"; value~".*\.\./.*",

 Headers: name="host"; len(value)=450}

Matcher 2: (Filename, ==)

S2 = S1 A2+B2 = {3} {}+{6} = {}+{6} = {6}

RB1: 1 2 3 RB2: 4 5 6

Matcher 3: (Filename, RE)

S3 = S2 A3+B3 = {6} {}+{} = {6}+{} = {6}

RB3: 7

RB1: 1 2 3 RB2: 4 5 6 RB3: 7 RB4: 8

Matcher 4: (VAR, ==RE)

S4 = S3 A4+B4 = {6} {4}+{} = {6}+{} = {6}

RB1: 1 2 3 RB2: 4 5 6 RB3: 7 RB4: 8 RB5: 9

Matcher 5: (Headers, ==LEN)

S5 = S4 A5+B5 = {6} {6}+{} = {6}+{} = {6}

Don’t care of Matcher 1

Don’t care of Matcher 1-2

Don’t care of

Matcher 1-3

Don’t care of

Matcher 1-4

Figure 4: Rule ordering and candidate selection process of
rules in Table 1.
each matcher. At the beginning of theith iteration, the remain-
ing rules inR have wildcards in all the previous matchersM1 to
Mi−1. We select all the rules inR that requiringMi to construct
RBi, which is theith rule block. We remove the selected rules
from R before the next iteration starts. Finally, we concatenate the
RBi to form the list of ordered rules. Table 1 shows the rules after
rule ordering. the RB column is the rule block ID. For example, the
rules 1–3 require Matcher 1, so they form the first rule block.Then,
because the rules 4–6 require Matcher 2, they form the secondrule
block.

DataType Operation Implementation
number exactly match balanced binary search tree
number range check balanced binary search tree
string exactly match trie
string regular expressioncombined DFA
string length checking balanced binary search tree

Table 2: Typical implementations of different matchers.

4.2.2 Runtime Process
In this section, we first illustrate the method to obtain the candi-

date rules for a single matcher. After that, we propose the iterative
approach to combine the candidate rules among multiple matchers.
At last, we analyze the complexity of the algorithm.
Single Matcher Matching: For each matcher (column) in the sig-
nature table, we check the conditions (cells) requiring that matcher
simultaneously by using a searching data structure. For example,
when checking which string in different conditions (cells)is equal
to the stringX, we can build a trie in pre-computation and lookup
the stringX in the trie simultaneously. As shown in Figure 4, for
matcher 1 (method ==), we look up the string “POST” in the trie,
and decide rule 3 matches based on Table 1. In Table 2, we describe
the example implementations for all types of matchers.

One exception is that, if in a signature the right operand of a
matcher is a protocol field (a variable) rather than a constant, we
have to match it separately instead of using the implementations in
Table 2. Nevertheless, we can still add the result to the candidate
set and follow the same candidate selection process (§4.2.2). Fortu-
nately, For the real-world vulnerabilities, those cases are very rare.
Thus, the performance will not degrade much. In such a case, the
right operand field has to be buffered beforehand. To our knowl-
edge, in all existing cases, the fields are integers, so the buffer over-
head is not high.
Candidate Selection Process:After matching a matcher, we iter-
atively combine the results with previous matchers’ together effi-

Algorithm 2CandidateSelection_Runtime()
S ← φ; T ← 0;
encode don’t care information into bitmapMAP ;
For Matcheri in AllMatchers

MatchMatcheri and getAi andBi;
T ← T + |RBi|;
S ← Otimes(S, Ai, Matcheri, MAP);
appendBi to S;
If (S == φ And T == N) Return φ;

Endfor
Return S;
FunctionOtimes(S,A,MID,MAP) //⊗ operator

NS ← φ;
For RuleID in S

If (MAP [RuleID][MID]==1)
If (RuleID ∈A) addRuldID to NS;

Else
addRuleID to NS;

Endif
Endfor
Return NS;

ciently. We defineAi, Bi andSi as follow. After matching the
arrived protocol field against the corresponding matcherMi, we
obtain the set of candidates asAi + Bi. Ai is the candidates of
Mi from RB1 . . . RBi−1, i.e., the rule blocks shared with previ-
ous matchers.Bi is the candidates ofMi from RBi, i.e., the rule
block extended byMi solely. No candidate is from the rule blocks
later thanRBi becauseMi has wildcards on those rule blocks.Si

is the set of rule candidates after matching matcherM1 . . . Mi. For
Si, we only need to care theRB1 . . . RBi, because the rules after
RBi all have wildcards forM1 . . . Mi. S1 can be directly obtained
by matching the arrived protocol field againstM1 on rule block
RB1. In general, we use the iterationSi = Si−1 ⊗ Ai + Bi to
obtainSi from Si−1. SinceSi−1 is also fromRB1 . . . RBi−1, we
need to mergeSi−1 andAi by using a special operation⊗. ⊗ is a
“special” set intersection with wildcard support. For eachelement
e in Si−1, two ways lead it toSi−1 ⊗ Ai: eithere don’t careMi

(has a wildcard) ore in Ai. SinceBi andSi−1 ⊗ Ai are from dif-
ferent rule blocks, they are mutually exclusive. We simply append
Bi to getSi (achieve set union+). In Figure 4, the arrows show
how we obtain theS1 to S5 upon the corresponding protocol field
arrives. The whole PDU is given at the beginning of the figure.
For instance, from Table 1 we know, “POST” will match rule 3, so
S1 = {3}. Next, we check “fp40reg.dll” against the second col-
umn (matcher) in Table 1. When it matchesRB1, we getA2 = φ,
and when it matchesRB2 we getB2 = {6}. Then we calculate
S2 = S1 ⊗A2 + B2. S1 = {3}, and rule 3 requiresM2 but not in
A2; therefore,S1 ⊗ A2 = φ. Finally, we getS2 = {6}.

In Algorithm 2, |RBi| represents the number of rules inRBi.
The bitmapMAP encodes 0 if a cell in the signature table is a
wildcard; otherwise 1. To check whether an element inAi set can
be achieved inO(1) by hash table or TCAM, or inO(log(|Ai|)) by
balanced binary search tree. One optimization we add is that, if the
candidate set from all signatures (T == N) is already empty, we
stop the matching right away, before applying the others matchers.
Complexity Analysis: We analyze the complexity of Algorithm 2.
In the iterationSi = Si−1 ⊗Ai + Bi, Ai reduces the size ofSi−1

by filtering out some elements, andBi enlarges theSi−1 to get
Si. BecauseSi−1 ⊗ Ai andBi are mutually exclusive, appending
Bi to Si has negligible overhead. This shows another advantage
of our scheme that is to decouple the candidate set addition and
deletion. The main overhead of the iteration comes fromSi−1⊗Ai

which is O(|Si−1|). Therefore, we can use the average of|Si|
(i ∈ [1, N − 1]) as the metric to optimize the speed. We denote
it asavg(|Si|). As long as we manageavg(|Si|) to be small, the

overhead will be small. We find|Bi| can be used to bound the
avg(|Si|). |Si| ≤

Pi

j=1
|Bj |, soavg(|Si|) ≤

PN

j=1

N−j

N−1
|Bj |.

The proof is in our tech. report [19]. The bound is not tight, but it
gives us a hint that the matchers at beginning are more crucial since
their |Bi| contribute more toavg(|Si|). In our evaluation (§7.2),
we findavg(|Si|) < 1.5 andmax(|Si|) < 8 in all the rulesets and
traces we evaluate.

ForN signatures defined onK matchers, in the worst case rule-
set,avg(|Si|) may haveO(N) candidates, requiringO(K × N)
operations in total. However, based on our observation (§4.1),
a matcher will usually only have no more thanC candidates
((|Ai|+ |Bi|) ≤ C), whereC is a small constant. In that case, we
can getO(K) speed, indicating theCS algorithm can be very fast.
This has been confirmed in our scalability experiment in §7.2.2.

4.2.3 Pre-Computation: Deciding Matcher Order
In general, putting more selective matchers upfront will improve

the performance. SupposeMj is not selective,i.e., |Aj + Bj | =
|Aj | + |Bj | is large. LargeBj is worse than largeAj , since it
enlargesSj and produces large overhead for the next iteration. By
arrangingMj later, more rules are covered by other matchers. Thus
|Bj | will be reduced.

Although matcher reordering can reduceavg(|Si|), it will bring
buffering overhead and increase the memory usage per connection.
If we match the matchers in the order decided by the field arriv-
ing order, we do not need to buffer any protocol field. In §5.3 we
study eight popular protocols, and find that the protocol fields will
arrive at an order decided by the protocol. A single field may cor-
respond to multiple matchers; we can put the most selective ones
first without additional buffering. In other cases, we have to buffer
certain protocol fields because we want to match their matchers
later. Since keeping per-flow states small is important, we need to
balance between the reduction ofavg(|Si|) and the buffer usage.
Here, we assume a limited buffer size (BufLen), and try to mini-
mizeavg(|Si|). The buffer can be re-used for different fields with
non-overlapping buffer-occupation time. However, This problem is
NP-Hard (by reducing Knapsack problem to this problem, proven
in our tech. report [19]).

Given the problem is NP-Hard, we propose a greedy algorithm
(Algorithm 3) to improve the worst case performance as much as
possible. We only reorder the matchers when necessary (the worst
case|Bi| larger than the predefined thresholdMaxB and when the
buffer size allows). The functionestmaxB(Mi) returns the worst
case (largest)|Bi| when Mi is considered as the next matcher.
EstmaxB(Mi) can be calculated in pre-computation. For number
fields, we can buffer them directly. However, for the string fields
with unbounded length, currently we choose to not buffer them,
because the overhead can be too costly.

4.3 Attack Resilience Analysis
We consider two possibilities—attacks specific to the NetShield

system and attacks general to any stateful NIDS/NIPS. The perfor-
mance of NetShield is determined by the signature ruleset and the
complexity of protocol parsing. In fact, attackers have no control
over either the ruleset or the protocol design, but with the ability
to generate the worst case traffic to slow down the processingby
introducing more candidates.

To show attack resilience, we demonstrate Algorithm 3 with
MaxB = 10 andBufLen = 10. For WINRPC, we reorder two
number-fields using a five-byte buffer. After reordering, wecan
prove, even under the worst case traffic,avg(|Si|) bounded by the
maximum number of vulnerabilities with the same UUID, because
the UUID field is required by all the signatures and very selective.
In our evaluation WINRPC rulesetavg(|Si|) ≤ 3. For HTTP, we

Algorithm 3MatcherOrdering ()
OrderM ← φ;
BUF ← φ;
For Mi in AllMatchers

While (BUF is not empty)
find Mj in BUF with minimumestmaxB(Mj);
If (estmaxB(Mj) ≤MaxB)

removeMj from BUF , and appendMj to OrderM ;
Else

Break;
Endif

Endwhile
If (estmaxB(Mi) ≤MaxB)

appendMi to OrderM ;
Else

appendMi in BUF ;
While (len(BUF) > BufLen)

find Mj in BUF with minimumestmaxB(Mj);
removeMj from BUF , and appendMj to OrderM ;

Endwhile
Endif

EndFor
Return OrderM ;

find no reordering is necessary. Since it is hard to prove a bound for
HTTP, we generate the worst case traffic to evaluate it. It turns out
that to generate the worst case traffic is a NP-Hard problem (proven
in our tech. report [19]). We use a greedy approach to maximize the
|Si| at each step. The result shows that the approximate worst case
traffic can achieve about 68.4% of the throughput of normal traces,
which demonstrates that theCS algorithm works reasonably well
under the worst case traffic.

Stateful NIDSes/NIPSes all subject to state holding attacks.
Then, the key metric is how many connections (states) can
be sustained. Including NetShield, most payload inspection
NIDS/NIPSes only create states for successful connectionswith
application payloads. Thus, IP spoofing does not work here. Eval-
uation shows that our design needs on average 28 bytes/connection
for HTTP and 32 bytes/connection for WINRPC. We believe our
design is capable to handle millions of connections and thusis ro-
bust to attacks.

4.4 Algorithm Refinement
Allow a negative condition. A signature may require a negative
condition on a matcher. For example, a signature requires that the
regex “.*abc” cannot be matched on the HTTP filename field. For
such cases, we can put the signature inSi by default, and remove it
if it is matched.
Handle a list of fields. In many protocols, protocol fields may
form arrays or associative arrays. For these cases, the conditions
in signatures may need to use “any” or “all” operators. For exam-
ple, a condition requires that all the lengths of the directories in a
URI be smaller than 100. Another example would be checking if
any of the lengths of directories is larger than 100. “All” can al-
ways be expressed by “not” and “any”. Thus, in our design, we
just model “not” and “any”. The “any” cases are quite common in
the vulnerability signatures. For “any” cases, we check each of the
elements of the array with the matcher to accumulateAi andBi.
Some rules may require multiple “any” conditions on the samear-
ray to be met simultaneously (an AND relationship). In that case,
we just treat each such condition as a separate matcher, and use the
CS algorithm to merge them.
Handle the mutually exclusive fields.We treat the matchers re-
lated to mutually exclusive fields as a group. If one of the mutually
exclusive fields is present, we know all the other fields will not ap-
pear. Thus, we can directly delete all the candidates belonging to

them. Then, we skip the whole group of matchers and continue
with the next matcher not in the group.

4.5 Extension to Multiple PDU Matching
Most simple multiple PDU protocols do not have transition loops

in their protocol state machines. We can directly extend thesingle
PDU CS algorithm to these protocols. Without transition loops, the
fields arrive sequentially, which is similar to a single PDU case. For
the protocols with transition loops, we need to make an enhance-
ment. Basically for each transition loop, the protocol goesback
to a previous state and resends certain PDUs. We use the concept
of checkpoints to save the scenarios of the candidate selection pro-
cess, so that when it jumps back to an old state, we can restorethe
checkpoint and start from there again. What we need to save in
the checkpoints are the candidate setSi of the last matcher of the
previous PDU and the position of the buffer at that instant.

5. AUTOMATIC LIGHTWEIGHT PARS-
ING

We need protocol parsing to recover the protocol fields for vul-
nerability signature matching. However, manually building proto-
col parsers is tedious and error-prone. We design and implement
UltraPAC, an efficient automated protocol parser generator. Ultra-
PAC generates C++ code for protocol parsing, given a program-like
protocol description. The generated parser is specially designed
for signature matching and is much faster than the state of the art.
Meanwhile, it is general enough to handle all protocol and language
features supported by BinPAC [20].

5.1 Stream Parser For Signature Matching
For the ease of description, we make some definitions as follows:

each PDU corresponds to a protocol parse tree (concrete syntax
tree), which is a hierarchy of protocol fields. The leaf nodesof the
parse tree correspond to simple data objects, including numbers and
strings. The inner nodes correspond to more complex data objects,
such as arrays of numbers, strings or C-like “struct” or “union”.
We define the leaf nodes asbasic fieldsand the inner nodes ascom-
pound fields.

BinPAC [20] and GAPA [9] are two major efforts towards build-
ing yacc-like tools fortree parsergeneration,i.e., the parser that re-
construct the protocol parse tree. Both use recursive descent parsers
(top-down parsers).

However, we are targeting at the protocol parsing problem solely
for signature matching. Thestream parseris sufficient for this
purpose,i.e., the parser that recovers protocol fields consecutively
from a input stream. We make three important distinctions.

First, a parsed field is used once by the matching engine and
never used again. The parser does not have to preserve a copy
of it anywhere. Second, we only need to parse the fields which
are either directly required by the vulnerability signature match-
ing (Type-I fields) or indirectly required for parsing Type-I fields
(Type-II fields), e.g., theheader.qdcount field in DNS proto-
col that specifies how many question records the PDU has. Third,
Type-I and Type-II fields are basic fields in dominant cases, as
demonstrated in Figure 2. We further validate this observation
by studying the vulnerabilities targeted by Snort and related litera-
ture [9, 10, 13, 29].

5.2 Limitation of Existing Work
The BinPAC parser is faster than the GAPA one, so we focus

our analysis on BinPAC. We divide the major overhead into three
parts: (a) buffer management, the cost to copy network traffic into
the buffer and expand/shrink buffer at runtime, (b) parse tree traver-
sal, the cost to construct and take down tree nodes and the recursive

Variable
derive

VariableVariable

Figure 5: The building blocks of parsing state machine.

descent parsing function calling, and (c) protocol field extraction,
the cost to compute the field length, record starting and ending po-
sition, update parsing state,etc.

BinPAC is not optimal for our protocol parsing purpose,i.e., for
signature matching. Ideally, overhead (a) should be removed, since
the parser only needs to record and return the starting and ending
position of the protocol field, even in the rare case where onefield
is separated in several packets. Overhead (b) is also unnecessary
because the parser does not need to construct the complete view of
the protocol parse tree. A much simpler approach to search along
the traffic for the wanted basic field is sufficient in dominantcases.
When a compound field is needed in signature matching, it can be
constructed from the basic ones. However, it happens very infre-
quently and does not affect the overall performance significantly.
For overhead (c), the extraction of all compound fields can beelim-
inated due to the same reason.

Unfortunately, these overheads are by designinherentto BinPAC
parser, and thus cannot be removed by implementation optimiza-
tion. Since there is no restriction on what the parsed fields are used
for, BinPAC parser must handle the worst case where the whole
protocol parse tree is required by other components in the system.
As a result, itmustpreserve a copy of the parsed fields, traverse the
protocol parse tree and parse all nodes.

5.3 Proposed Parsing State Machine
We devise the parsing state machine (called PSM later on) to

achieve stream parsing and to eliminate the identified unnecessary
overhead to the maximum extent. Please see§ 7.2.1 for the experi-
mental results.

We have studied eight popular protocols: HTTP, FTP, SMTP,
eMule, BitTorrent, WINRPC, SNMP and DNS. We find three com-
mon relationships among fields:sequential, branch and loop.
Sequential fields appear in the PDU one after another in a fixed
order. For fields with branch relationship, one and only one will
appear. A condition calledbranch variablecontrols the branch. A
loop field will appear repeatedly in the PDU until atermination
conditionis satisfied. In addition, Type-II fields might derive pars-
ing variables which control the parsing process.

Based on these findings, we propose the PSM. A state is the basic
field that is being parsed. The state transition marks the endof
parsing the previous field and the start of parsing the next one in the
PDU. Before quitting a state, it will derive the parsing variables, if
any. We show the four basic building blocks of protocol parsing
state machine in Figure 5. A PSM is a combination of these basic
building blocks.
An Example. In Figure 6 we illustrate a simplified PSM for WIN-
RPC protocol. We merge the fields which are not related to Type-I
and Type-II fields asmergei fields to save space.

The parser continuously fetches the length of current field and
moves the offset pointer in the input data segment accordingly. For
example, to parse the WINRPC header, the offset pointer increases
by 1, 1, 1, 1, 4, 2, 6 in each parsing step, respectively. Sincethe
ptype andfrag_length are needed as parsing variables, they
are loaded into variables (Ri). If ptype == BIND_ACK, we
can directly jump over the remaining payload (field merge3) in the
PDU byfrag_length− 16 bytes. Ifptype == BIND, we go
through the parsing states in the lower right part of the graph.

1 rpc_ver_minor

R4

20*R4

R2++

R2 R3

R2 ‹- 0

R3 ‹- ncontext

Header BindR0

R0

R1-16

Bind

Bind-ACK

R1

Bind-ACK

1 rpc_vers

1 pfc_flags

1 ptype

2 frag_length

4 packed_drep

6 merge1

1 n_tran_syn

2 ID

16 UUID

1 padding

tran_syn

4 UUID_ver

1 ncontext

8 merge2

3 padding

merge3

Figure 6: A simplified parsing state machine for the WINRPC
protocol (not considering RPC reassembly).

5.4 Automatic Parsing State Machine Gener-
ation

Binpac

Frontend

Protocol

Description

Abstract

Syntax

Tree

Converting

Engine

Parsing

State

Machine

Code

Generator

��������

��	�
� � ��

��
� ��������

��������

��	�
� � �
�

��
� ��������

�

Generated

Code

Figure 7: Workflow of UltraPAC.

We leverage on the frontend of BinPAC and reuse the BinPAC
language. After that, our customized converting engine produces
the parsing state machine (PSM) for the input protocol. Figure 7
shows the workflow of UltraPAC. The code generation step is
straight forward, so we omit detailed description due to space lim-
itation.

5.4.1 Acquiring Abstract Syntax Tree
The first component reads a program-like description of the pro-

tocol format, and constructs the abstract syntax tree (AST)out of it.
An AST is a tree-like representation of abstracted protocolformat.
Note that it is different from a protocol parse tree. An AST gives
out all the ways that a legal PDU can possibly be built. It can be
determined by the protocol format description. On the contrary, a
protocol parse tree states how a given PDU is assembled from ba-
sic fields. It can only be determined during the runtime of a parsing
process.

We reuse BinPAC to acquire the AST. BinPAC constructs the
AST of a protocol in memory before it generates C++ code of the
parser. We keep the AST for further processing and discard the
code generation part. Accordingly, we keep the BinPAC language
for the protocol description.

5.4.2 Converting into PSM
A converting engine further converts the AST into the PSM. This

process is illustrated in Algorithm 4.
In Algorithm 4, root is the root node of the AST, which repre-

sents the whole PDU.S is the internal node space maintained by
UltraPAC. It contains all nodes that are to be processed.Record,
Case and Array are the three possible types of a parent node.
They indicate sequential, branch and loop relationship among its
children, respectively. The loop relation is handled as a special case
of branch relation, where the next protocol field is either the current
field itself or the subsequent field of the parent. At the end ofeach
iteration, we add the logic of how to derive the parsing variables
into the PSM, so that the actual value of the parsing variables can
be determined during runtime using the logic. The iterationstops
when the node space contains only leaf nodes in the AST.

UltraPAC can essentially handle arbitrarily complex protocol
format, since it supports sequential, branch and loop relation
among fields. One caveat is that attribute constraints,e.g., field

Algorithm 4 ParsingStateMachineGeneration()
S ← {root}
While ∃n, n ∈ S andn is inner node

children← the set ofn’s children
S ← S − n

S ← S ∪ children

If n is of RECORD type
assign sequential ordering amongchildren

Elseif n is of CASE type
assign branch ordering amongchildren

branch variable controls the branch
Else

assign branch ordering betweenchildren andnext

array terminating condition controls the branch
Endif
add logic to derive parsing variable fromn

Endwhile

length, may be applied to compound fields, whereas the PSM pro-
duced by UltraPAC works directly on basic fields. We tackle this
problem by breaking and distributing such attributes to theproper
children basic fields. It’s feasible because the set of children fields
is determined in the AST. In addition, we have studied the BinPAC
language and found that all the supported attributes can be properly
distributed, while preserving the original functionality.

5.5 Further Improvement
Multiple layer parsing. One application protocol may tunnel
through another and use the latter one as a transport layer. One
PDU body can be in multiple messages. Therefore it needs appli-
cation layer reassembly. For example, by treating WINRPC astwo
sub-protocols and using two layers of PSM, we can solve the re-
assembly problem. Once the first layer parses the header, we call
the second layer to parse the partial body and save the parsing states
as well as the offset pointer. Then, after the next message arrives,
we can continue parsing the remaining part of the PDU.
Combine the unnecessary fields.A data flow analysis can be
adopted to combine the consecutive fields that are neither Type-I
nor Type-II fields into one field whenever possible. This combi-
nation further simplifies the parsing process without affecting the
signature matching.

6. IMPLEMENTATION
6.1 Core Engine Implementation
Parsing: We implement UltraPAC partially based on BinPAC. As
shown in Figure 7, we reuse the BinPAC language and code to con-
struct the abstract syntax tree. Accordingly, we use the protocol
specification distributed with BinPAC with minor revision.We im-
plement the converting engine and code generator with about3,000
lines of C/C++ code.
Matching: We implement the three types of matchers and the CS
algorithm with about 6,800 lines of C/C++ code. We implementa
path-compressed trie for exact string matching and leverage binary
search for integer range checking. In addition, we useRagel for
regex compilation and write our own code for regex matching.

6.2 Signature Rule Language
We design a language to describe the symbolic predicate signa-

tures. We want to make it simple, intuitive and sufficient. Tothis
end, we have studied the vulnerabilities that the Snort and Cisco
rulesets target, as well as those studied in [9, 10, 12, 13, 29], and de-
velop the language features which meet the real-world needs. Here,
we briefly introduce the core features.

We support three types of Boolean operators:&&, ||, and!and
two basic data types: string and number. For the number type,we
support the following relationship operations:==,>,<,>=,<=

Identify

vulnerability

set

Get the

vulnerability

specifications

and exploits

Write

signatures

Cross

check
Snort

rulesets

Experimental

verification

vulnerability signature creation

Figure 8: Manual vulnerability signature creation.

and ! =. For the string type, we support thelen() and
match_re() functions and the exact matching== comparison.
In addition, we enable arrays and associative arrays. For instance,
dirs is an array of directories in the URI. We useany(dirs) to
represent any element of the array andlen() function to get the
array length. For associative arrays, we support the mapping op-
eration. For example,len(HTTP_Headers["Host"])>300
means that if the string length of the value corresponding tothe key
“host” in the HTTP_Headers associative array is larger than300,
the condition is true.

6.3 Vulnerability Signature Creation
It would be more objective to evaluate our approach with stan-

dardized vulnerability signature rulesets. Unfortunately, given no
available existing vulnerability rulesets or open-sourcevulnerabil-
ity signature generator, we have to manually create the vulnera-
bility rulesets on our own. To figure out which vulnerabilities we
should include in the ruleset, we target the vulnerabilities Snort
tries to detect. We focus on HTTP and WINRPC, because they cor-
respond to the two largest rule subsets of Snort ruleset. 794HTTP
and 45 WINRPC vulnerability signatures3 are manually created
based on vulnerability information of 973 HTTP and 3,519 WIN-
RPC Snort rules (11/2007 version), following the workflow shown
in Figure 8. We first identified the vulnerability CVE IDs of Snort
rules. Each CVE ID corresponds to a vulnerability, so we wrote
one rule for it. Next, we collected the vulnerability specifications
and exploit samples from various online vulnerability database and
hacker forums. We then wrote the signatures. After that, we cross
checked the signatures written by different people and found 94.8%
agreements. For the remaining 5.2% debatable ones, we set upa
vulnerable host, modified the exploits with the similar ideain [13],
and further refined the signatures.

6.4 Software Prototype and Deployment
We build a software NIDS prototype to demonstrate NetShield.

It currently runs on Windows. We have deployed the prototype
at a campus data center of Tsinghua university. We feed the live
traffic from a Cisco router that manages the university-wideweb
servers and computer labs. The average and peak traffic rate is
about 20Mbps and 106Mbps, respectively. We have continuously
run our prototype online without any identified packet loss.

7. EVALUATION
To evaluate the performance of NetShield prototype, we mea-

sure the throughput on different traces across different protocols,
networks and time. The results show that in all the traces Net-
Shield can achieve high throughput. For 794 HTTP vulnerability
signatures we can achieve 11+Gbps core engine throughput onan
eight-core machine. The UltraPAC generated parsers are about 3
∼ 12 times faster than those of BinPAC. The candidate selection
based matching is 8.8 to 11.7 times faster than sequential matching
for 794 signatures.

3sample signatures are available at the anonymized website
www.nshield.org.

7.1 Evaluation Environment and Datasets
We evaluate the NetShield prototype using two platforms: a Pen-

tium IV 3.8GHz single core PC (P4) with 4GB memory, and an
eight-core Xeon E5520 2.2Ghz (XE) with 16GB memory. The lat-
ter is mainly for evaluating the performance of NetShield onmulti-
core platforms. Because for vulnerability signature matching con-
nections are independent from each other, we dispatch the connec-
tions in traffic roughly evenly to the different NetShield core en-
gines running on different CPU cores. The experiment results sug-
gest multi-core platforms can indeed boost the performance. The
overall throughput when using the eight cores is nearly5.5 ∼ 7.1
times of the single core throughput.
Network traces: We captured traces from the aforementioned
router at Tsinghua university (TH) and the EECS departmental
gateway of Northwestern University (NU). The MIT DARPA 1998
Intrusion Detection Data Sets [1] is also used. Table 3 showssome
statistics of the traces. The NU HTTP trace exhibits much longer
average flow length than the other two HTTP traces. We find it has
less attack traffic and HTTP signalling or error replies (status code
other than 200), which have usually short flow length.

Location TH TH NU TH NU DARPA
Protocol DNS WINRPC WINRPC HTTP HTTP HTTP
Start Time 11/2007 11/2007 10/2006 05/2008 10/2006 1998
Duration 159 hours 207 days 765 days 13 hours32 hours 26 days
App layer size 1.33GB 598MB 1.33GB 15GB 3.96GB 3.89GB
Flow number 17M 681K 2.24M 2.35M 71.9K 1.83M
Avg flow len 77B 879B 596B 6.56KB 55KB 2.13KB

Table 3: The characteristics of the traces.

7.2 Core Engine Performance Analysis
Methodology: We evaluate the protocol parsing and signature
matching throughput of the proposed core engine rather than
a product-level NIDS/NIPS ,which takes much more engineer-
ing effort. Therefore, the throughputs reported are not what
a NIDS/NIPS achieves when monitoring a network link on-
line. However, if the core engine is fast, a well-engineered
NIDS/NIPS can achieve high throughput, without vulnerability sig-
nature matching being the bottleneck. Given existing commercial
regex-based NIDSes/NIPSes have already achieved high through-
put, we believe it is also achievable for vulnerability signature
based NIDSes/NIPSes.

In all the experiments, we pre-load the TCP streams after TCP
reassembly as input. Moreover, we process the connections one
after another to exclude the flow switching overhead. The re-
ported throughput is application layer throughput, not including the
TCP/IP or link layer headers.

7.2.1 Parsing Performance
We evaluate the parsing performance on both single core and

multi-core implementation.Original BinPAC is the BinPAC dis-
tributed with Bro 1.3. We run it in standalone mode rather than
combining with Bro. InOpt. (optimized) BinPAC, Instead of creat-
ing string objects and array objects fully, we only keep the current
chunk of a string or the current element in an array in the memory,
which reduce the memory copy/alloc/dealloc operations. InUltra-
PAC, we disable the “combine the unnecessary fields" optimization
(in §5.5) for fair comparison and parseeverybasic field according
to the protocol specification. The speedup ratio is calculated be-
tween UltraPAC and Opt BinPAC on the single core P4.

We evaluate three protocols: HTTP, WINRPC and DNS. HTTP
traffic is one of the dominating traffic on the Internet. WINRPC is a
multi-PDU protocol that has been heavily exploited. DNS haslow
throughput in the BinPAC paper [20]. The results are consistent
across different network traces.

Trace TH TH NU TH NU DARPA
DNS WINRPC WINRPC HTTP HTTP HTTP

Throughput(Gb/s)
Original BinPAC(P4) 0.10 1.37 1.04 2.02 13.00 1.52
Opt BinPAC(P4) 0.31 1.41 1.11 2.10 14.21 1.69
UltraPAC(P4) 3.43 16.19 12.90 7.46 44.41 6.67
Speed Up Ratio(P4) 11.2 11.5 11.6 3.6 3.1 3.9

Throughput(Gb/s)
UltraPAC(XE 1core) 3.63 19.88 12.78 7.86 42.22 6.64
UltraPAC(XE 8core) 23.75 123.18 91.09 48.67 295.09 42.31

Max. Memory 16 15 15 14 14 14
Per Conn. (Bytes)

Table 4: Parsing results.

Throughput: Table 4 shows that on the single core P4 our parsers
parse WINRPC at 13+ Gbps, DNS at 3.4Gbps and HTTP at 6.7+
Gbps. Using eight cores the throughput further increases by6 ∼
7 times. Comparing with the Opt BinPAC, we speed up binary
protocols (DNS and WINRPC) about 12 times, and a text protocol,
HTTP, about 3∼ 4 times.

The original BinPAC’s throughput here is higher than that in
the BinPAC paper [20], because the BinPAC paper measures the
throughput with Bro together, which includes TCP reassembly and
other lower layer overhead. Our measurement excludes such over-
head.

Protocol HTTP DNS
Trace size (MB) 200 140

Parser BinPAC UltraPAC BinPAC UltraPAC
Func call # (K) 12,949 4,850 91,394 1,685

Mem copy/alloc/dealloc time 23% 6% 76% ≈0%
Table 5: Execution profiling results.

To further understand this performance boost, we profile theex-
ecution of both BinPAC and UltraPAC parser using the same sam-
ple traces. Table 5 shows: 1) UltraPAC parser heavily reduces the
number of function calls; and 2) it spends much smaller portion
of the execution time on memory copy, allocation and dealloca-
tion. Among the three major overheads of BinPAC parser (§5.2),
buffer management overheadis already minimized in our experi-
ment setting. Table 5 mainly confirms the elimination of BinPAC’s
large overhead onparse tree traversal. The elimination ofinner
nodes extractionin UltraPAC parser contributes to the remaining
of throughput increase.

Due to the smaller protocol field size, the BinPAC DNS parser
suffers from relatively larger overhead on memory operations. That
is why UltraPAC gets higher speedup ratio on DNS protocol. The
memory operation time of UltraPAC HTTP parser is incurred inthe
computation of field length.

With BinPAC design, it is not trivial to reduce this part of over-
head to a similar level as UltraPAC. We further optimize the Bin-
PAC DNS parser to remove the creation and deletion of parse tree
nodes, by reusing preallocated nodes via a linked list. Thisimple-
mentation optimization reduces the execution time by almost 50%,
but the performance is still not even close to the UltraPAC parser.
Memory Consumption: The UltraPAC parsers have to maintain
the parsing variables required in the parsing state machine. In Ta-
ble 4, we also report the maximum memory size required per con-
nection. It is no more than 16 bytes for all the three protocols.

7.2.2 Parsing + Matching Performance
Next, we evaluate the matching performance.

Candidate Set Size:We validate the observation in §4.1 (the can-
didate sets usually are small). For all protocols and traces, the max-
imum size of the candidate sets is no more than 8. The average size
is less than 1.5.
Throughput: We evaluate our candidate selection based matching
on both single core and multi-core implementation. Table 6 shows

Trace TH NU TH NU DARPA
WINRPC WINRPC HTTP HTTP HTTP

Throughput (Gb/s)
Sequential(P4) 10.68 9.23 0.34 2.37 0.28
CS(P4) 14.37 10.61 2.62 17.63 1.85
Matching Only Time
Sequential(P4) (secs) 0.0048 0.33 344.28 12.68 106.74
CS(P4) (secs) 0.0012 0.18 30.46 1.08 12.16
Speed Up Ratio(P4) 4 1.8 11.3 11.7 8.8

Throughput (Gb/s)
CS(XE 1core) 18.25 12.03 3.02 19.90 2.01
CS(XE 8core) 118.61 84.69 18.48 128.57 11.00

Avg Memory Usage 32 32 28 28 28
Per Connection (Bytes)

Avg # of Candidates 1.16 1.48 0.033 0.038 0.0023

Table 6: Parsing+Matching results.

that even on the single core P4 the CS algorithm can achieve about
11∼14Gbps for WINRPC (45 signatures) and about 1.9+Gb/s for
HTTP (794 signatures). The throughput on NU HTTP trace is
much higher, because it has much longer average flow length, and
most of the bytes are contributed by the HTTP BODY field in the
HTTP response message. The HTTP BODY field is not required by
most signatures and thus involves little matching overhead. Fully
using the eight cores can speed up matching 5.5∼ 7.1 times than
only using a single core on the XE machine, and achieve 11+Gb/s
for the 794 signatures. The throughput of WINPRC is higher be-
cause of the small number of vulnerabilities.

 4

 3.5

 3

 2.5

 2

 1.5

 1

 0.5

 800 700 600 500 400 300 200 100

T
hr

ou
gh

pu
t (

G
bp

s)
of rules used

Figure 9: Scalability to the # of
rules.

We implement the
sequential matching
with short-circuit eval-
uation, i.e., a signature
is skipped upon the
first condition that
does not meet. In
Table 6, the matching
only time is obtained
by subtracting the
parsing time from the
parsing+matching time. The speedup ratio is computed as the
matching only time of sequential matching over the matching
only time of our scheme on the P4. For HTTP, we speed up the
matching by 8.8∼ 11.7 times. For WINRPC, we speed up the
matching by a factor of two to four although there are only 45
signatures.
Scalability: Figure 9 shows the scalability of NetShield in terms
of throughput under increasing number of rules, evaluated with an
1GB TH HTTP trace. The system throughput degrades gracefully
when increasing the number of rules. This is because the through-
put mainly depends on the number of matchers,not the number of
rules. In the beginning, including more rules will add more match-
ers, and thus increases the overhead. After about 400 rules,all
matchers have been included; thus, the throughput remains stable.

DFA 5.29GB

NetShield 2.3MB
NetShield Breakdown
CS Matching 12.8KB
Trie 1.4MB
DFA 907KB
Integer Range Checking0.3KB

Table 7: Size of matching data
structures on 794 HTTP signa-
tures.

Memory Consumption
and Breakdown: There
are two types of memory
consumption: the match-
ing data structures for
representing the ruleset
shared by all the con-
nections and the memory
states maintained for each
connection. Table 7 shows
the memory usage of the matching data structure on 794 HTTP
vulnerability signatures and the breakdown. We only need about

2.3MB memory. The small memory usage is because vulnerability
signatures are defined on multiple protocol fields. Thus the corre-
sponding matching data structure for each field becomes simpler
and more memory efficient. For comparison, we also calculatethe
size of the combined minimized DFA on the same rule set derived
from Snort. We employ the same methodology used in [25]. The
result DFA size is 5.29GB.

Table 6 also shows the average memory usage per connection,
which is dominated by the parsing variables during the parsing. For
HTTP protocol, we need 14 bytes for parsing, 12 bytes for keeping
three individual matchers’ states (a field can map to severalmatch-
ers, maximum three in the HTTP case), 2 bytes (on overage) for
keepingSi, and zero byte for buffering protocol fields. For WIN-
RPC protocol, we need 15 bytes for parsing, 8 bytes for keeping
two individual matchers’ states, 4 bytes (on overage) for keeping
Si, and 5 bytes for buffering protocol fields.
Comparing With Existing Regex Approaches: While having
better accuracy than regex-based approaches, NetShield isnot
slower. One of the state-of-the-art regex approaches, XFA [25, 26],
reports that, for 863 Snort HTTP rules, it needs 36 bytes/connection
and 1.08MB to store the XFA data structures. Their earlier
work [25] shows XFA can achieve 75 seconds/GB (108Mb/s) for
the Snort HTTP signatures on a 3GHz PC. Their later work [26] is
about seven times faster (Figure 9 in [26]). Therefore, we estimate
it can achieve about 756Mbps on the 3GHz PC. On the other hand,
for 973 Snort HTTP rules, NetShield needs 28 bytes/connection
and 2.3MB on shared data structures. It can achieve1.9 ∼ 17 Gbps
for HTTP on a 3.8GHz single core P4. Due to the lack of their code,
we cannot make a direct comparison. Nevertheless, from the per-
formance metrics above, we believe the performance of NetShield
will be comparable to that of XFA. Moreover, by combining Net-
Shield with XFA, we can possibly achieve even better performance
with smaller memory requirement.

There are five reasons for NetShield to obtain similar or even
better performance comparing with regex-based approaches: (i) we
achieve fast protocol parsing; (ii) after parsing, the protocol fields
not used in signatures can be directly skipped, but regex-based ap-
proaches need to match every byte; (iii) the CS algorithm intro-
duces very little overhead; (iv) the matching operation for each
protocol field is simple; (v) multiple regex rules can be converted
to one vulnerability signature (especially for binary protocols) to
reduce the ruleset size.
Comparing With Existing Vulnerability Signature Ap-
proaches: All existing approaches [9, 22, 29] use sequential
matching. We show our scheme speeds up8.8 ∼ 11.7 times over
sequential matching for 794 signatures. We believe that thelarger
the ruleset, the bigger the speedup ratio.
Worst Case Traffic for the HTTP Ruleset: As mentioned in §4.3,
for WINRPC, we prove theCS algorithm works well even in the
worst case traffic. For the HTTP ruleset, we use the greedy algo-
rithm to generate the worst case traffic given the problem is NP-
Hard. We generate two synthetic traces with same traffic charac-
teristics, except that one is the worst case traffic but the other one
is normal. For the trace of the worst case traffic, our scheme can
achieve 64.8% of the throughput of the normal one. It shows our
scheme works reasonably well even in the worst case.

7.3 Accuracy Evaluation
Previous work [9, 13, 22, 29] has already demonstrated that vul-

nerability signature is much more accurate than existing regex-
based approaches. The results shown here are mainly to confirm
that NetShield is also able to achieve good accuracy.

First, we evaluate three WINRPC vulnerabilities Snort tries to
detect: Bugtraq 8205, Bugtraq 6005 and MS08-067 (exploitedby

the recent Conficker worm). We find some of the bit patterns in
Snort signature are not related to vulnerabilities. After we change
the bit pattern in the exploit code, the exploit still works,but Snort
cannot detect the attack and thus has false negatives. If we include
the bit patterns in normal requests, Snort will report the requests as
false positives. On the other hand, NetShield detects all the poly-
morphic variants we create from the real exploits accurately.

Furthermore, we evaluate a 10-minute “clean” HTTP trace from
TH (1.2GB). In that period, Snort generates 42 alerts while Net-
Sheild generates zero alert. We manually checked those alerts and
found they are all false positives.

8. RELATED WORK
Intrusion Detection/Prevention Systems.Snort uses the PCRE
library for regex matching guarded by a string matching based pre-
filter. However, the worst case performance is mainly decided by
the PCRE library, which is a NFA based approach and quite slow
[26]. Bro is another popular NIDS with a regex signature engine.
It can also access semantic information with an expressive policy
language, which is close to a general programming language.As
the tradeoff, it is hard to optimize its speed for detecting alarge
number of vulnerabilities.
Regular Expression Matching Engines.The current research of
regex matching focuses on improving the matching speed and the
memory efficiency [7, 8, 17, 25, 26, 30]. However, as we men-
tioned, only relying on regexes is not enough. It is very hardto
extend these approaches to handle vulnerability signatures.
Protocol Parsing. In §5, we compare NetShield parsing with Bin-
PAC [20] and GAPA [9]. Recently, Schearet al. [22] propose the
first high-speed parsing design by leveraging on string matching,
i.e., to locate the invariant string close to the required field. They
demonstrate that their system works well when considering asmall
number of vulnerability signatures with sequential matching. On
the other hand, our goal is to design an automated parser generator
that can support a large number of vulnerability signatures.
Packet Classification Algorithms.The SPMSM problem we for-
mulate is related to the classical packet classification problem but is
more complex. Both problems are defined on a set of matching di-
mensions, and allow wildcards. In [28], Taylor classified the packet
classification techniques into four categories: exhaustive search,
decision tree, tuple space and decomposition. Unfortunately, none
of them can be directly applied to the SPMSM problem due to the
five characteristics of vulnerability signature matching (§ 4.1).

Ternary Content Addressable Memory (TCAM) uses brute-force
hardware parallelism to achieve fast exhaustive search forpacket
classification. However, it remains unknown how to apply TCAM
for the SPMSM problem. For example, currently there are no
efficient ways to encode regexes used in vulnerability signatures
into TCAM. Decision tree algorithms such as HiCuts [16] and Hy-
perCuts [24] require interleaving different dimensions (i.e., com-
bining them as a big tree), which is quite impossible when deal-
ing with vulnerability signatures since the fields arrive atdifferent
time. Moreover, they need huge amount of memory when being
used with a large number of wildcards. Tuple Space based algo-
rithms [27] exploit the fact that the five tuples in packet classifica-
tion are all integers so that the tuple space is small. For vulnerabil-
ity signatures with many long string fields, the tuple space can be
very large. Also, it cannot handle regex matching which is required
by vulnerability signatures. The decomposition based approaches
are not suitable either. For example, the recursive flow classifica-
tion (RFC) [15] partitions all fields into fixed-size chunks.It is
remain unknown how to extend the scheme to work with variable-
length string fields and regular expression matchers. Bit vector ap-

proaches [6, 18] need large memory (O(N)) per connection and
high computation overhead.

9. DISCUSSIONS
When a vulnerability logic is deeply embedded in the applica-

tion, it is hard to directly use the protocol fields in the symbolic
predicates to describe the signature. In this case, we have to re-
cover the internal state of the application as the state variables and
use them in the symbolic predicates. We achieve this by inserting
into the protocol parser a function that partially reproduces the ap-
plication logic to compute and return the state variables. In this
way, we bear the extra computational overhead, but can detect all
possible vulnerabilities accurately. For example, Bugtraq ID 599
is a buffer overflow vulnerability in wu-ftpd 2.5. If a deep FTP
path is created by making new directories recursively, the buffer
will be overflowed. However, neither the path nor the path length
is a protocol field. To solve this problem, we insert a customized
function into the parser to calculate the path length, and use it in
the symbolic predicates. In all the vulnerabilities we havestudied
including those mentioned in other papers [9, 10, 13, 29], there are
only a few such cases.

Another problem is that, when applying vulnerability signatures
at network level, ambiguities might arise if we do not know the
software variances running on the hosts. It is possible thata flow
can trigger a vulnerability on variance A but not B. One solution
is to actively map the software variance and their versions on the
enterprise network [23]. We argue that, even without knowing the
exact version, vulnerability signatures of popular software will not
cause false positives since normal traffic will not trigger the vul-
nerability; otherwise the software will crash often and cannot be
popular. Furthermore, different software variances mightinterpret
the protocol slightly differently, which might cause parsing ambi-
guity. The active mapping approach can help in this case as well.

10. CONCLUSIONS
In this paper, we present NetShield, the first systematic design

of vulnerability signature based parsing and matching engine. Es-
sentially, we propose the state machine based parsing execution
model and the CS algorithm for fast matching on a large vulner-
ability ruleset. We also implement, deploy, and release theNet-
Shield prototype. The real trace evaluation demonstrates that Net-
Shield achieves similar speed to that of the current regularexpres-
sion based NIDS/NIPS while offering much better accuracy.

11. ACKNOWLEDGEMENTS
We gratefully acknowledge our shepherd, Cristian Estan, and the

anonymous reviewers for their valuable inputs on earlier versions
of this paper. This work was supported in part by US NSF CNS-
0831508, and China NSFC (60625201, 60873250), 973 project
(2007CB310701), 863 high-tech project (2007AA01Z216) andTs-
inghua University Initiative Scientific Research Program.

12. REFERENCES
[1] 1998 DARPA Intrusion Detection Evaluation Data Set.

www.ll.mit.edu/mission/communications/
ist/corpora/ideval/data/1998data.html.

[2] Conficker.
http://en.wikipedia.org/wiki/Conficker.

[3] DAG card.
http://www.endace.com/dag-8.1sx.html.

[4] NetShield Website.http://www.nshield.org.
[5] PRX Traffic Manager.http://www.ipoque.com/

products/prx-traffic-manager.
[6] F. Baboescu and G. Varghese. Scalable packet classification.

In proc. of ACM SIGCOMM, 2001.

[7] M. Becchi and P. Crowley. A hybrid finite automaton for
practical deep packet inspection. InProc. of ACM CoNEXT,
2007.

[8] M. Becchi and P. Crowley. Efficient regular expression
evaluation: Theory to practice. InProc. of IEEE/ACM ANCS,
2008.

[9] N. Borisov, D. J. Brumley, H. J. Wang, J. Dunagan, P. Joshi,
and C. Guo. A generic application-level protocol analyzer
and its language. Inproc. of NDSS, 2007.

[10] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based
signatures. InProc. of IEEE Security and Privacy
Symposium, 2006.

[11] B. Chazelle. Lower bounds for orthogonal range searching.
ii: The arithmetic model.Journal of the ACM,
37(3):439–463, July 1990.

[12] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. InProc. of ACM SOSP, 2005.

[13] W. Cui, M. Peinado, H. J. Wang, and M. Locasto. Shieldgen:
Automated data patch generation for unknown
vulnerabilities with informed probing. Inproc. of IEEE
Security and Privacy, 2007.

[14] S. Dharmapurikar and V. Paxson. Robust tcp stream
reassembly in the presence of adversaries. InProc. USENIX
Security Symposium, 2005.

[15] P. Gupta and N. McKeown. Packet classification on multiple
fields. Inproc. of ACM SIGCOMM, 1999.

[16] P. Gupta and N. McKeown. Classification using hierarchical
intelligent cuttings.IEEE Micro, 20(1):34–41, Jan 2000.

[17] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expression matching for deep packet inspection. InProc. of
ACM SIGCOMM, 2006.

[18] T. V. Lakshman and D. Stiliadis. High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching. Inproc. of ACM SIGCOMM, 1998.

[19] Z. Li, X. Gao, Y. Chen, and B. Liu. Netshield: Matching
with a large vulnerability signature ruleset for high
performance network defense. Technical Report
NWU-EECS-08-07, Northwestern University, 2009.

[20] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: A
yacc for writing application protocol parsers. Inproc. of
ACM IMC, 2006.

[21] V. Paxson. Bro: A system for detecting network intruders in
real-time.Computer Networks, 31, 1999.

[22] N. Schear, D. Albrecht, and N. Borisov. High-speed
matching of vulnerability signatures. InProc. of RAID, 2008.

[23] U. Shankar and V. Paxson. Active mapping: Resisting nids
evasion without altering traffic. InProc. of IEEE Security
and Privacy, 2003.

[24] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. Inproc. of
ACM SIGCOMM, 2003.

[25] R. Smith, C. Estan, and S. Jha. XFA: Faster signature
matching with extended automata. InProc. of IEEE Security
and Privacy, 2008.

[26] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big
bang: Fast and scalable deep packet inspection with extended
finite automata. InProc. of ACM SIGCOMM, 2008.

[27] V. Srinivasan, S. Suri, and G. Varghese. Packet classification
using tuple space search. Inproc. of ACM SIGCOMM, 1999.

[28] D. E. Taylor. Survey and taxonomy of packet classification
techniques.ACM Comput. Surv., 37(3):238–275, 2005.

[29] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: Vulnerability-driven network filters for preventing
known vulnerability exploits. InProc. of ACM SIGCOMM,
2004.

[30] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz.
Fast and memory-efficient regular expression matching for
deep packet inspection. InProc. of ANCS, 2006.

