NetShield: Massive Semantics-based Vulnerability
Signhature Matching for High-speed Networks

Zhichun Li¥ Gao Xia' Hongyu Gao® Yi Tang’ Yan Chen® Bin Liu" Junchen Jiang® Yuezhou Lv'
§ Northwestern University T Tsinghua University, China

Abstract — Accuracy and speed are the two most impor-
tant metrics for Network Intrusion Detection/Preventioys@ms

tance, especially for an NIPS that throttles the connestishich
are identified as malicious by matching pre-defined sigeatutt

(NIDS/NIPSes). Due to emerging polymorphic attacks and the requires the signatures to be accurate enough, so that B¢ ¢dn

fact that in many cases regular expressions (regexes) taape
ture the vulnerability conditions accurately, the accyi@existing

drop the packets with full confidence. Meanwhile, NIDSe&'Siés
have to maintain high speed. Most modern enterprises toalay h

regex-based NIDS/NIPS systems has become a serious problem1Gbps links and are moving towards 10Gbps.

In contrast, the recently-proposed vulnerability signe$[10, 29]
(a.k.a.data patches) can exactly describe the vulnerability condi
tions and achieve better accuracy. However, how to effilyiem-

ply vulnerability signatures to high speed NIDS/NIPS witlagye
ruleset remains an untouched but challenging issue.

This paper presents the first systematic design of vulniésabi
signature based parsing and matching engine, NetShielathwh
achieves multi-gigabit throughput while offering muchteetac-
curacy. Particularly, we made the following contribution&)
we proposed a candidate selection algorithm which effilient
matches thousands of vulnerability signatures simultasigore-
quiring a small amount of memory;if we proposed an auto-
matic lightweight parsing state machine achieving fastqual
parsing. Experimental results show that the core engineeatf N
Shield achieves at least 1.9+Gbps signature matching ghpau
on a 3.8GHz single-core PC, and can scale-up to at least Jds+tGb
under a 8-core machine for 794 HTTP vulnerability signagure

1. INTRODUCTION

Keeping networks safe has been a grand challenge for thenturr
Internet. The outbreak of the Conficker worm/botnet [2] atehd
of 2008 shows that remote exploits are still a major threahéo
Internet today. The Conficker worm mainly exploited a WINRPC
remote code execution vulnerability (MS08-067), infected 15
million hosts [2]. For such attacks, network-based Insoddetec-
tion/Prevention Systems (NIDS/NIPSes) are of critical amance
because they protect the enterprise or an ISP as a wholelinglu
the users who do not apply patches or host-based defensaeshe
for various reasons (reliability, overhead, conflieti). Operating
on routers/gateways, NIDS/NIPS can prevent attacks sutheas
Conficker worm from spreading.

Two metrics are extremely important for signature-based
NIDS/NIPS: accuracy and speed. Accuracy is of particulgmdm

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGCOMM’'10,August 30-September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

1.1 State of the Art

For high speed NIDS/NIPSes, tlie factostandard approach
is to employ regex (regular expression) based matchingnengi
On the other hand, vulnerability signatures [9, 10, 29] hiasen
proposed, but still have not been used in NIDS/NIPSes duleeto t
low matching efficiency.

Regexes can be easily combined and matched simultaneously i
a single pass over the input. Given this nice feature, mosnoer-
cial NIDSes/NIPSes.g, the products from Cisco and Juniper, as
well as some open source onesy, Bro [21], use a regex-based
matching engine to keep up with line speed. In such engirzes e
signature is a regex. The content of a connection is treatea a
string and is matched against multiple regex signaturesltame-
ously. The latest research efforts [7, 8, 17, 25, 26, 30]rassegex
can provide enough accuracy and focus on increasing itsdspee
while reducing the memory occupation.

However, their assumption “regexes can provide enough-accu
racy” is questionable. Attackers have already developédyhpmr-
phic and metamorphic variations to evade detection [L0m&my
cases, the protocol/application semantics and statesegrered
to express the vulnerability conditions [29], which needsatext-
sensitive parsing. To say the least, even context-freeitzges have
insufficient expressive power. Therefore, theoreticattigexes are
infeasibleto fully avoid false positives and false negatives, which
is indeed true in practice. For example, due to the compleit
the NetBIOS/SMB/WINRPC protocol stack, it is almost impgess
ble to write an accurate regex signature to detect the palyhio
versions of the Blaster worm or the recent Conficker worm. Be-
sides, we also find many other similar cases in differentquas
such as HTTP and DNS.

In comparison, the seminal work [10, 29] proposed the cancep
of vulnerability signaturesak.a, data patches [13]) that achieve
better accuracy than regex-based approaches. As advaod&d
29], a vulnerability signature is based on the thorough tstdad-
ing of both the network protocol and the application contebtt
leverages semantic information to exactly describe alpthesible
paths that exploit a vulnerability over the network.

Most previous work on vulnerability signatures focuses oioa
mated vulnerability signature generation [10, 12]. Howgehew
to match a large number of vulnerability signatures effitiehas
not been well studied. To the best of our knowledge, all thistex

High

A tate of the~s
art regex sig
IDSes H

....................

l
Theoretical accuracy |
i limitation of regex |

Speed

Xisting
Vulnerability
sig IDSes

High

Low

Lo
W Accuracy

Figure 1: Comparing NetShield with existing approaches.
ing approaches [9, 22, 29] usequential matching.e., matching
signatures one by one, leading to low speed.

Since a high-speed NIDS/NIPS protects a large number of di-
verse hosts, it usually has a large signature ruleset ta ediveos-
sible vulnerabilities. For example, Snort has more tha@® 1g-
natures. Cisco IPS has about 2,000 signatures. For botbnsgst

BI ND:
rpc_vers==5 && packed_drep=="\x10\ x00\ x00\ x00’
&& abstract_synt ax. uui d==UUl D_I| Renot eActi vati on
&& abstract_synt ax. versi on=="0.0"
Bl ND- ACK:
rpc_vers==5
CALL:
rpc_vers==5 && packed_drep=="\x10\ x00\ x00\ x00’
&& opnumF=0x00 && st ub. RAbody. act ual _| engt h>=40
&& mat chRE(st ub. RAbody. buf f er,
/ ™\ x5¢\ x00\ x5¢\ x00/) | .
Figure 2: Vulnerability signature for MS03-026.

After 87, we discuss related work in 88. Finally we presest di
cussions and conclusions in §9 and 810 respectively.

2. BACKGROUND AND MOTIVATIONS
2.1 What Is a Vulnerability Signature?

Vulnerabilities that can be exploited remotely are the ltesiu
faulty program logic. They may be triggered when the program

even some single protocol, such as HTTP, has hundreds or everhandles inputs from networks. Waeg al. first propose the con-

thousands of signatures. Therefore, matching a large rabiiy
signature ruleset at high speed is a practical requirement.

In Figure 1, we compare our approach with existing ones mser
of accuracy and speed. Due to the theoretical limitatioirmfrove
the accuracy of a regex-based approach is extremely handy if
impossible. On the other hand, the existing vulnerabilignature
approaches with sequential matching cause low throughphé
key challengéas how to speed up vulnerability signature matching
with large vulnerability rulesets. Furthermore, anothealtenge is
to parse the traffic and to recover the protocol semanticimfdion
fast enough for signature matching.

1.2 Our Contributions

To address the challenges above, we design and implemeht a vu
nerability based NIDS/NIPS prototype (namd@tShield). Net-
Shield obtains high throughput comparable to that of theesté
the-art regex-based NIDS/NIPS while offering much bettzua
racy. In particular, we made the following contributions:
1) An efficient multiple signature matching scheme for a larg
number of vulnerability signatures. By formulating the multi-
ple vulnerability signature matching problem, we devisalautar
presentation of vulnerability rulesets. This promotesouddsign a
novel algorithm callec€Candidate Selectiofin short,C'S) to match
multiple vulnerability signatures simultaneously. The&&orithm
enables high-speed massive vulnerability signature riragchith
small memory requirement. As far as we know, this is the fast r
search effort to formulate and solve the multiple vulndithbsig-
nature matching problem (84).
2) Fast stream-fashioned lightweight parsingWe make two ob-
servations: 4) buffering and parse tree traversal are not necessary
when the parsing is solely for signature matching; aiig These
two overhead can be eliminated with proper design. We design
the UltraPAC, an automatic parsing state machine generatoe
generated parsing state machine can accurately parse the eg-
quired fields avoiding unnecessary cost. Evaluation wigh trace
shows UltraPAC parser is about~312 times faster than the Bin-
PAC parser [20] (85).
3) Evaluation and Methodology. By analyzing the vulnerabili-
ties that the Snort ruleset targets, we create the vuligyadigna-
tures for those vulnerabilities. We implement a softwaréStesld
prototype (86) and release to public [4]. In 87, experimerga
sults show that, on a single-core 3.8Ghz PC, our core engine c
achieve 6.7+Gbps parsing speed on HTTP, and 1.9+Gbps garsin
plus matching speed for 794 HTTP vulnerability signaturdth w
2.3MB memory for the matching data structures. On a 8-core ma
chine we boost the matching throughput to 11+Gbps.

cept ofvulnerability signaturg13, 29], and point out that protocol
semantic information is particularly useful for specifyisuch sig-
natures. Brumlegt al. argue that a perfect vulnerability signature
has to be a Turing machine, but unfortunately matching sigrtas
tures is undecidable in general [10]. They propose to uséelm
constraints as vulnerability signatures. Similar to thufinition,

in this paper, we define a vulnerability signature as a seywof-s
bolic predicates based on the protocol semantic informatfithis
form of vulnerability signatures can express most knowmet
ability conditions precisely. Based on the principle ofinyzing
common cases, our design mainly speeds up the matching speed
symbolic predicate signatures. In 89, we show that Net8luah
be easily extended to support more complex cases.

To recover the protocol semantic information, we need tegar
the input. In addition, a protocol state machirsek(a, vulnera-
bility state machine in [29]) is required for adjusting th@focol
states when sending/receiving differendtocol data units (PDUS)
PDUs are the atomic data units that are sent between two-appli
cation endpoints. A PDU can be dissected into multiple maito
fields. Here, dield means a sub-sequence of bytes inside the PDU
with certain semantic meaning or functionality. For a m&lbU
protocol, the protocol parser associates the related PDdigfer-
ent sessions. The PDUs in one session correspond to a smgle i
stance of the protocol state machine. The predicates oéxaibri-
ity signatures are defined on the sequence of PDUs in oneaessi
one for each PDU. They are written as a setofiditionsbased
on the PDU'’s protocol fields. If all the predicates requirgctiie
vulnerability signature are true, the signatureniatched
An example for illustration: As an example, we consider the
MS03-026 vulnerability exploited by the Blaster worm. Itas
stack buffer overrun vulnerability in the WINRPC protoc@VIN-
RPC is a stateful protocol. A typical WINRPC call starts wéth
BIND PDU from the client side, asking to bind to a particula®lA
The server receives the request and responds with the BINR-A
PDU for acknowledgement. After that, the client issues aatem
function call (CALL PDU) usingppnumas the ID of the function,
followed by the required parameters. If the length of thefdyuf
act ual _I engt his longer than 40, a buffer overrun will be trig-
gered. Figure 2 shows the corresponding vulnerability atigye .
Since the signature captures the vulnerability conditiexactly,
it can stop the Blaster worm in addition wittll possibleexploits
(including future ones) of this vulnerability.

Moreover, given vulnerability signatures are more expvess
the number of signatures can be reduced when covering the sam

LIt is the same as the one generated in ShieldGen [13].

Protoéﬁ
Spec.

13
UltraPAC

Vulnerability
Ruleset

v
Rule Compiler|

* [Indiidual

EI‘> Traffic TCP || Protocol ||| Protocol Matchers
Capture| |Reassembly| |Identification|[| Parser

CS Algorithm

Core Engine
Figure 3: NetShield System Architecture.

vulnerability set. This is especially true for complex hinaro-
tocols, which is harder to use regex to express. For exarople,
average 1.2 Snort HTTP signatures can be reduced to oneaaulne
bility signature, but for WINRPC the ratio is as high as 6X.6fo
some extent, this reduction also helps to improve the pedoce

of signature matching.

2.2 Only Relying on Regex Is Insufficient

Can we accurately express vulnerability signatures inxege
only? The answer iso. The reason is twofold.

Regex cannot achieve accurate parsingFundamentally, to re-
cover protocol semantics requires context-sensitivempgriegex
language is a special subset of context-free language., Trhtree-
ory, it lacks the expressive power to accurately parse cexrlo-
tocol grammars. In practice, real world protocols are sstptated
enough to render regex incapable. For example, the HTTP pro-
tocol encodes the length of chunked HTTP body in another.field
Regexes fail to identify the boundary of the body in this cdse
the DNS protocol, DNS labels can be either a string with \Aeia
length or a pointer. Regexes cannot dereference a pointereT
are similar cases in SSL, SNMP and other protocols.

Regex cannot help with multi-field matching: Regexes assume
the input as one single raw byte string. In contrast, vulniéta
signatures need to match multiple protocol fields in diffiergata
types (number or strings) and combine the matching resufteke
the decision. For the multi-PDU protocols, the protocotestaa-
chine further adds another layer of complexity. It is verychto
extend any regex approaches for vulnerability signatures.

We argue that, although regexes are usefaly relying on them
is not enough. NIDS/NIPS vendors also realize this problech a
add limited semantic processing power to their productsvéver,
these add-ons are relatively ad-hoc and work as “patchetfigo
systems. These systems are still limited by the regex esgind
cannot take the full benefit of vulnerability signaturestHis paper,
we advocate that aystematic and clean slatiesign is necessary
for protocol parsing and vulnerability signature matching

3. NETSHIELD FRAMEWORK

Figure 3 depicts the framework of NetShield. There are effici
hardware techniques for traffic sniffing [3], TCP reassenjh4)
and protocol identification (classify the traffic to diffeteapplica-
tion protocols) [5]. Our work is focused on the design an &ffit
core engine for matching vulnerability signatures rathantbuild-
ing a full-featured NIDS/NIPS, which requires an additiomeavy
hardware/software engineering effort.

For each application protocol, we invoke the correspongitag
tocol parser which is generated by UltraPAC (our automasedgy
generator) from the protocol specification. Provided tlouired
protocol fields, the matching engine matches all the vulsiera
ity signatures for the given protocsimultaneously The proto-
col parser and the matching engine are tightly coupled ant wo
in a pipelined fashion. Whenever a protocol field is parsed; i
immediately sent to the matching engine where the increahent
matching process is invoked. The pipelined processingshedp
duce the memory consumption, processing delay and maxtimze

throughput. A full-featured NIDS/NIPS also needs to hamuito-
col normalization. The current design of UltraPAC only ddess
the application-level reassembly normalization. Encgodinrmal-
ization can be incorporated to our design but will remainas f
the future work.

4. EFFICIENT MATCHING DESIGN

We first formulate the vulnerability signature matching kpro
lems. After analyzing the nature of the problem, we preseat t
idea of ourC'S (Candidate Selection) algorithm, followed by the
attack resilience analysis and the further enhancemeritetdoa-
sic scheme. Finally, we extend our algorithm to the multpzU
(Protocol Data Unit) cases. Moreover, in this paper, we igeas
ture and rule interchangeably.

4.1 The Wulnerability Signature Matching
Problem
Characteristics and challenges of vulnerability signatue
matching: Five major characteristics make the vulnerability sig-
nature matching problem unique) NIDSes/NIPSes have to keep
per-flow state as minimum as possible, because they neegb+o su
port a large number of sessions and avoid state-holdingkatta
Buffering a PDU or even a single string-type field is uneconom
ical (up to hundreds of KB) and sometimes is subject to state-
holding attacks (84.3). Many variable-length string fietts not
have length upper-bounds defined in the protocol. Buffetiirggn
is dangerous because an attacker can generate crafted iffi
very long fields to overwhelm the NIDS/NIPS. Moreover, we wan
to make the decision as soon as possible; thus, it is betjmarse
a PDU (or a partial PDU) and match the signatures in a streamli
fashion, instead of waiting for all the fields available tthgpe. (1)
Vulnerability signatures require integer range checkingstoing
length checking. Handling arbitrarily overlapping rangeson-
trivial. (i7¢) In a signature, different operations, such as integer
range checking, string matching and regex matching, operat
different fields and have different nature. It is hard to corab
them. ¢v) For NIDSes/NIPSes, when multiple rules match a single
session, the reporting order of matched rules does not maties
behavior is different from firewall rulesv) We have to handle the
field dependencies as well as a large number of fields. Funtrer;
different signatures may depend on a different set of fields.

These five characteristics in the same time are also reselaath
lenges. For examplej)(requires us to design a scheme keeping the
per-flow memory usage as small as possihlg.gnd ¢i:) make the
problem a hard multi-field matching problem.

Tabular signature representation: To tackle the problem, we
convert the set of signatures to a two-dimensional tableyeha
signature table This transformation is thieeyto unlock the poten-
tial of matching multiple vulnerability signatures simareously.

We take two steps to achieve this. First, we normalize signa-
tures to only us&& (AND). Any signature that usel$ (OR) op-
erator is split into multiple signatures. Second, we contiee
normalized signatures to the signature table. Each uniegoe t
tuple (<fieldname> <operator-) is a matching dimension (called
amatche), where<fieldname> is a protocol field (defined in §2.1)
and <operator- is the corresponding operator. For example, the
(filename ==) is a matcher defined by the filename field in the
HTTP URI and the exact string matching operator. Differegt s
natures may require different right operands for the filemdield,

e.g, filename=="header.php” or filename=="ads.cgi". One excep
tion is that some protocol fields may form associative arfesri(
Hash). For example, the HTTP headers are name and value pairs
which can be treated as an associative array. First, the pame
header needs to be matched. If it is matched, we then match the

RulelD |RB Matcher 1 Matcher 2 Matcher 3 [Matcher 4 Matcher 5
Method ==|Filename ==|Filename RE|VARS ==RE Headers ==LEN
1 1 |DELETE [* * * *
2 1 |TRACE * * * *
3 1 [POST header.php |* * *
4 2 |* ads.cgi * name="file"; value~ "“*\ .\./" *
5 2 |* awstats.pl |* name="configdir"; valuev “.*7C" *
6 2 | fp40reg.dil |* * name="host"; len(value}300
7 3 [* * F\.dlagls |* *
8 4 |* * * name="name"; value- “*GLOBAL" |*
9 5 [* * * * name="User-Agent"; len(valug)512

Table 1: A simplified example with nine HTTP signatures on fivematchers (matching dimensions).

value condition. Although it is possible to treat them asasafe
matchers, we find that treating them as a single matcher isreas
since most of rules have binding relationships between émees
and values.

For N signatures defined oA matchers, we build & x K
table. This applies to both the single PDU and the multipl&JPD
case. A row represents a signature, a column representshenat
and a cell represents the right operand of the matcher onighe s
nature. If the signaturg does not depend on matchemwe use a
wildcard “*” to indicate in the cell. Since botV and K are large,
the signature table is usually sparse and has many wildcakds
simplified example is given in Tablé 1This example includes five
matchers on four protocol fields. Here, operater™ means exact
matching, operatorRE” regex-matching, OperatorL'EN’ string
length checking.VARS is the list of variable assignments (name
and value pairs) in the HTTP URVARS andHeader s can be
treated as associative arrays; thus, they are four tuples.
SPMSM: To simplify the discussion, we first define the single PDU
multiple signature matching problem (SPMSM)—given a set of
signatureS = {51, Sa, ...} and a PDUP, find the signatures i§
that matchP. Once solving SPMSM, we extend the solution to the
multiple PDU case in §4.5.

Hardness of SPMSM:lIt is known that general multidimensional
range search oveN ranges inK dimensions (NKQUERY) has
Q((log N)* ') worst-case time with linear memory, 6r(N*)
memory for linear search time [11]. This problem can be reduc
to the SPMSM problem (runtime excluding the constructiome).
Therefore, the SPMSM problem’s worst case bound will beastle
as bad as that of the NKQUERY problem. This implies for the
worst case rulesets it is impossible to have a fast lineag tilgo-
rithm.

Observation on real world rulesets: Since the worst case rulesets
have bad theoretical results, we study the nature of redBwole-
sets, because, after all, the attackers do not have comeoltbe
vulnerabilities in a ruleset. Vulnerabilities are solelgtermined
by the bugs in programs. To design an algorithm with goodgoerf
mance on real-world rulesets is still very important.

After examining a protocol field against a given matcher for a
the signatures in the ruleset, the signatures that matcprttecol
field on the matcher except those with wildcard are catleddi-
dates Our observation is that, for a real world vulnerabilityesiét,
most matchers are selectives., producing small candidate sets.

The observation is made by studying real-world vulnerabili
ties, mainly the vulnerability signatures correspondingSnort
and Cisco rulesets. String-related matchers are seleti@ause
strings used in signatures are usually long and unique. Heor t
number-related matchers, in most cases this observatiomosds.
However, it is not true for some matchers that are not cruoittie

2please note that since we reduce the number of matchers from 3
to 5 for simplifying the example, these rules are not 100%ieate
and can only be used as illustration.

signatures and are used solely for reducing false positvgsthe
matcher for checking the WINRPC version field. In other words
they are not rule filters but traffic filters. Fortunately, fvetocol
fields of such non-selective matchers usually take littecepe.qg,
four bytes or less. We can always buffer the fields and matimth
later. In §4.2.3, we show that buffering and matching theterla
will reduce the matching overhead.

4.2 The Candidate Selection Algorithm

Based on the characteristics of vulnerability signaturéctriag
and the observation from real-world rulesets, we designise
algorithm that want to keep the per-flow state small. We adopt
decomposition design,e., to match each matcher separately and
then combine the results. For each matcher, we search tlie can
dates for all the rules simultaneously. The key challendmvs to
efficiently merge candidates from different matchers.

One possible approach is to use bit-vector to encode matchin
results. However, for a large rulesetg, 1000 signatures, it needs
1000 bits (125 bytes) per connection, which is memory inieffic
Alternatively, we propose th€'S algorithm. By exploiting the rule
order, theC'S algorithm tracks the rules with “*” cases without
explicit states, and thus saves the per-flow memory usage Th
C'S algorithm only needs to track a small number of candidates fo
each matcher. We match each matcher separately upon toegrot
field’s arrival and then iteratively merge the possible ¢datt rules
to produce the final result. Our experiments show(itsealgorithm
has good throughput and memory usage.

The CS algorithm consists of the pre-computation to deaitke r
order, the pre-computation to decide matcher order andititeme
process. The pre-computation helps reduce the overheadhat r
time. We assume the protocol field arriving order as the neaitch
order when we introduce rule ordering in 84.2.1. We deferdire
scription of matcher ordering to §4.2.3, because it reguiréleep
understanding of the candidate selection process at rundiimown
in§4.2.2.

4.2.1 Pre-Computation: Deciding the Rule Order
Based on the characteristig) (nentioned in 84.1, we exploit the
degree of freedom in signature ID order. The key advantage of

rule ordering is to track the don't care cases implicitly aage the
per-flow states.

We usel; to denote théth matcherj.e., theith column in the
signature table. We call the rules that do not have wildcari/
the rulesrequiring M;. Algorithm 1 shows the rule ordering pro-
cess. R is initialized as the complete list of rules. We iterate over

Algorithm T RuleOrdering()
Ris the Tist of rules;
For M; in AllMatchers
RB; < the rules inR requiring M;;
R «— R — RB;;
Endfor
NR—];
For i from 1 to K append the rules iR B; to NR;
Return N R,

PDU={Method=POST, Filename=fp40reg.dll, VARs: name="file"; value~".*\\\./.*",
Headers: name="host"; len(value)=450}

| RB:123 | |
Matcher 1: (Method,==) Don't care of Matcher 1

Si= {3}
| RBi1 23 RBy4 5 6 | |

Don’t care of Matcher 1-2

Matcher 2: (Filename, ==)

S;=81®A+B, = {3}®@{}+{6} = {}+{6} = {6}

\ RB:1 2 3 \ RB,:4 5 6 ‘RB3:7‘ \
Matcher 3: (Filename, RE) Don't care of
Matcher 1-3
S; =5 ®@As+B; = {6} ®{}+{} = {6}+{} = {6}
\ RB:1 2 3 \ RB:4 5 6 ‘RB3:7‘RB4:8‘ \
Matcher 4: (VAR, ==RE) Don’t care of
Matcher 1-4

S4=S; ®A4+Bs = {6}@{4}+{} = {6}+{} = {6}

| RB:123 | RBy4 56 |RBy7|RByS8|RBs9

Matcher 5: (Headers, ==LEN)

. Ss =S4 ®AstBs = {6}®{6}+{} = {6}+{} = {6}
Figure 4: Rule ordering and candidate selection process of
rules in Table 1.
each matcher. At the beginning of thh iteration, the remain-
ing rules in R have wildcards in all the previous matchevs to
M;_1. We select all the rules i that requiring)M; to construct
RB;, which is theith rule block. We remove the selected rules
from R before the next iteration starts. Finally, we concateriage t
RB; to form the list of ordered rules. Table 1 shows the ruleg afte
rule ordering. the RB column is the rule block ID. For examie
rules 1-3 require Matcher 1, so they form the first rule blddhken,
because the rules 4—6 require Matcher 2, they form the secibed
block.

DataType
number
number

Operation
exactly match
range check

Implementation
balanced binary search tree
balanced binary search tree

string exactly match [trie
string regular expressigrcombined DFA
string length checking |balanced binary search tree

Table 2: Typical implementations of different matchers.

4.2.2 Runtime Process

In this section, we first illustrate the method to obtain thadi-
date rules for a single matcher. After that, we propose #ratitve
approach to combine the candidate rules among multiplelraegc
At last, we analyze the complexity of the algorithm.

Single Matcher Matching: For each matcher (column) in the sig-
nature table, we check the conditions (cells) requiring tiatcher
simultaneously by using a searching data structure. Fanpba
when checking which string in different conditions (ceilsequal

to the stringX’, we can build a trie in pre-computation and lookup
the stringX in the trie simultaneously. As shown in Figure 4, for
matcher 1 (method ==), we look up the string “POST” in the, trie
and decide rule 3 matches based on Table 1. In Table 2, walukescr
the example implementations for all types of matchers.

One exception is that, if in a signature the right operand of a
matcher is a protocol field (a variable) rather than a constaa
have to match it separately instead of using the implemientatn
Table 2. Nevertheless, we can still add the result to theidatel
set and follow the same candidate selection process (§4Fb&u-
nately, For the real-world vulnerabilities, those casesvary rare.
Thus, the performance will not degrade much. In such a chse, t
right operand field has to be buffered beforehand. To our know
edge, in all existing cases, the fields are integers, so tifierfmver-
head is not high.

Candidate Selection ProcessAfter matching a matcher, we iter-
atively combine the results with previous matchers’ togetfi-

Algorithm 2 CandidateSelection_Runtim¢)
S— ;T 0
encode don't care information into bitmag A P;
For Matcher; in AllMatchers
Match M atcher; and getA; and B;;
T — T+ |RB;|;
S « Otimeg S, A;, Matcher;, MAP),
appendB; to S}
If (S == ¢ And T == N) Return ¢;
Endfor
Return S;
FunctionOtimes(S,A,MID,M AP) [l® operator
NS — ¢;
For RuleIDin S
If (M AP[Rulel D][MID]==1)
If (RuleID €A)addRuldID to NS;
Else
addRuleIDto N S;
Endif
Endfor
Return N S;

ciently. We defined;, B; and.S; as follow. After matching the
arrived protocol field against the corresponding matchier we
obtain the set of candidates ds + B;. A; is the candidates of
M, from RB; ... RB;_1, i.e, the rule blocks shared with previ-
ous matchersB; is the candidates af/; from RB;, i.e., the rule
block extended by\/; solely. No candidate is from the rule blocks
later thanR B; becausel/; has wildcards on those rule blocks;

is the set of rule candidates after matching matder. . . M;. For
S;, we only need to care thRB; ... RB;, because the rules after
RB; all have wildcards fodM/; ... M;. Si can be directly obtained
by matching the arrived protocol field againgf; on rule block
RBs. In general, we use the iteratidh) = S;—1 ® A; + B; to
obtainS; from S;_;. SinceS;_, is also fromRB; ... RB;_1, we
need to merge;_, and A; by using a special operatian. ® is a
“special” set intersection with wildcard support. For eatdément
ein S;_1, two ways lead it toS;_1 ® A;: eithere don't careM;
(has a wildcard) oe in A;. SinceB; andS;—1 ® A; are from dif-
ferent rule blocks, they are mutually exclusive. We simpipend
B; to getS; (achieve set unior-). In Figure 4, the arrows show
how we obtain the5; to S5 upon the corresponding protocol field
arrives. The whole PDU is given at the beginning of the figure.
For instance, from Table 1 we know, “POST” will match rule 8, s
S1 = {3}. Next, we check “fp40reg.dll” against the second col-
umn (matcher) in Table 1. When it matchB®:, we getA, = ¢,
and when it matche® B, we getB; = {6}. Then we calculate
So =51 ® As + Ba. S1 = {3}, and rule 3 required/, but not in
As; therefore,S1 ® As = ¢. Finally, we getS, = {6}.

In Algorithm 2, |RB;| represents the number of rules RB;.
The bitmapM AP encodes 0 if a cell in the signature table is a
wildcard; otherwise 1. To check whether an elementjrset can
be achieved i0 (1) by hash table or TCAM, or i®(log (| A;])) by
balanced binary search tree. One optimization we add isiftiaé
candidate set from all signatureés &= N) is already empty, we
stop the matching right away, before applying the othercheas.
Complexity Analysis: We analyze the complexity of Algorithm 2.
In the iterationS; = S;—1 ® A; + B;, A; reduces the size &f;_1
by filtering out some elements, a8l enlarges theS;_; to get
S;. Becaused;—1 ® A; and B, are mutually exclusive, appending
B; to S; has negligible overhead. This shows another advantage
of our scheme that is to decouple the candidate set additidn a
deletion. The main overhead of the iteration comes ffom & A;
which is O(]Si—1]). Therefore, we can use the average| 8f|
(¢ € [1, N — 1]) as the metric to optimize the speed. We denote
it asavg(|S;|). As long as we managevg(|S;|) to be small, the

overhead will be small. We fin¢lB;| can be used to bound the
avg(|Si]). |Si| < 35—, |Bjl, soavg(|Sil) < 37T, 3=41Bil-
The proof is in our tech. report [19]. The bound is not tightt ib
gives us a hint that the matchers at beginning are more ¢gice
their | B;| contribute more tawwg(|S;|). In our evaluation (§7.2),
we findavg(|S;]) < 1.5 andmax(]S;|) < 8 in all the rulesets and
traces we evaluate.

For N signatures defined oR” matchers, in the worst case rule-
set,avg(]S;|) may haveO(N) candidates, requirin@(K x N)
operations in total. However, based on our observationlj§4.
a matcher will usually only have no more thar candidates
((JAi] + |Bi]) < C), whereC'is a small constant. In that case, we
can getO(K) speed, indicating th€'S algorithm can be very fast.
This has been confirmed in our scalability experiment in 7.2

4.2.3 Pre-Computation: Deciding Matcher Order

In general, putting more selective matchers upfront wiliove
the performance. Suppos$d; is not selectivej.e, |A; + B;| =
|Aj| + |B;| is large. LargeB; is worse than largel;, since it
enlargesS; and produces large overhead for the next iteration. By
arranging)/; later, more rules are covered by other matchers. Thus
| B;| will be reduced.

Although matcher reordering can redueey(|.S;|), it will bring
buffering overhead and increase the memory usage per diomec
If we match the matchers in the order decided by the field -arriv
ing order, we do not need to buffer any protocol field. In §56 w
study eight popular protocols, and find that the protocot§etill
arrive at an order decided by the protocol. A single field mary c
respond to multiple matchers; we can put the most selecties o
first without additional buffering. In other cases, we havéuffer
certain protocol fields because we want to match their megche
later. Since keeping per-flow states small is important, eedrto
balance between the reductiona@fg(|S;|) and the buffer usage.
Here, we assume a limited buffer sizB«f Len), and try to mini-
mizeavg(|S;|). The buffer can be re-used for different fields with
non-overlapping buffer-occupation time. However, Thistpem is
NP-Hard (by reducing Knapsack problem to this problem, gnov
in our tech. report [19]).

Given the problem is NP-Hard, we propose a greedy algorithm
(Algorithm 3) to improve the worst case performance as mch a
possible. We only reorder the matchers when necessary (it w
case| B;| larger than the predefined threshadlthx B and when the
buffer size allows). The functioastmax B(M;) returns the worst
case (largest)B;| when M; is considered as the next matcher.
EstmaxB(M;) can be calculated in pre-computation. For number
fields, we can buffer them directly. However, for the strirglds
with unbounded length, currently we choose to not buffenthe
because the overhead can be too costly.

4.3 Attack Resilience Analysis

We consider two possibilities—attacks specific to the Niigh
system and attacks general to any stateful NIDS/NIPS. THerpe
mance of NetShield is determined by the signature rulesktizmn
complexity of protocol parsing. In fact, attackers have natml
over either the ruleset or the protocol design, but with thiditg
to generate the worst case traffic to slow down the procedsing
introducing more candidates.

To show attack resilience, we demonstrate Algorithm 3 with
MaxB = 10 and Buf Len = 10. For WINRPC, we reorder two
number-fields using a five-byte buffer. After reordering, @an
prove, even under the worst case trafficg(|S;|) bounded by the
maximum number of vulnerabilities with the same UUID, besmu
the UUID field is required by all the signatures and very délec
In our evaluation WINRPC rulesetg(|S;|) < 3. For HTTP, we

Algorithm 3MatcherOrdering ()
Order M — ¢,
BUF «— ¢;
For M; in AllMatchers
While (BU F is not empty)
find M; in BUF with minimumestmaz B (Mj;);
If (estmaxB(M;) < MaxB)
IremoveMj from BUF, and append/; to OrderM;
Else
Break;
Endif
Endwhile
If (estrmaxzB(M;) < MaxB)
append)M; to Order M
Else
appendM; in BUF;
While (len(BUF') > BufLen)
find M; in BUF with minimumestmaxz B(Mj);
removeM; from BUF', and append/; to OrderM,;
Endwhile
Endif
EndFor
Return OrderM;

find no reordering is necessary. Since itis hard to prove adéar
HTTP, we generate the worst case traffic to evaluate it. fistaut

that to generate the worst case traffic is a NP-Hard probleovép

in our tech. report[19]). We use a greedy approach to maxitiiz

|S;| at each step. The result shows that the approximate worst cas
traffic can achieve about 68.4% of the throughput of nornzades,
which demonstrates that tiieS algorithm works reasonably well
under the worst case traffic.

Stateful NIDSes/NIPSes all subject to state holding agack
Then, the key metric is how many connections (states) can
be sustained. Including NetShield, most payload inspectio
NIDS/NIPSes only create states for successful connectidtis
application payloads. Thus, IP spoofing does not work heval-E
uation shows that our design needs on average 28 bytesftmme
for HTTP and 32 bytes/connection for WINRPC. We believe our
design is capable to handle millions of connections and ihus-
bust to attacks.

4.4 Algorithm Refinement

Allow a negative condition. A sighature may require a negative
condition on a matcher. For example, a signature requisstie
regex “.*abc” cannot be matched on the HTTP filename field. For
such cases, we can put the signaturg;ibby default, and remove it

if it is matched.

Handle a list of fields. In many protocols, protocol fields may
form arrays or associative arrays. For these cases, thetiomsd

in signatures may need to use “any” or “all” operators. Famax
ple, a condition requires that all the lengths of the dirgetoin a
URI be smaller than 100. Another example would be checking if
any of the lengths of directories is larger than 100. “All'hcal-
ways be expressed by “not” and “any”. Thus, in our design, we
just model “not” and “any”. The “any” cases are quite common i
the vulnerability signatures. For “any” cases, we checkeadthe
elements of the array with the matcher to accumuléeand B;.
Some rules may require multiple “any” conditions on the same
ray to be met simultaneously (an AND relationship). In thedeg

we just treat each such condition as a separate matchersaritiel
C'S algorithm to merge them.

Handle the mutually exclusive fields.We treat the matchers re-
lated to mutually exclusive fields as a group. If one of theually
exclusive fields is present, we know all the other fields will ap-
pear. Thus, we can directly delete all the candidates beigrtg

them. Then, we skip the whole group of matchers and continue

with the next matcher not in the group.

4.5 Extension to Multiple PDU Matching

Most simple multiple PDU protocols do not have transitioods
in their protocol state machines. We can directly extencsthgle
PDU CS algorithm to these protocols. Without transitiorpeahe
fields arrive sequentially, which is similar to a single PDd$e. For
the protocols with transition loops, we need to make an ergtan
ment. Basically for each transition loop, the protocol gbask

to a previous state and resends certain PDUs. We use theptonce

of checkpoints to save the scenarios of the candidate &@igmi-
cess, so that when it jumps back to an old state, we can rebi@re

1T
Tor
- e R
) {11 .
(a) Sequential (b) Branch (c) Loop (d) Derive

Figure 5: The building blocks of parsing state machine.

descent parsing function calling, and (c) protocol fieldzction,
the cost to compute the field length, record starting andngnplo-
sition, update parsing statetc.

BinPAC is not optimal for our protocol parsing purpose,, for
signature matching. Ideally, overhead (a) should be rethaiace
the parser only needs to record and return the starting agidgn

checkpoint and start from there again. What we need to save in position of the protocol field, even in the rare case wherefigte

the checkpoints are the candidate Sebf the last matcher of the
previous PDU and the position of the buffer at that instant.

5. AUTOMATIC LIGHTWEIGHT PARS-
ING

We need protocol parsing to recover the protocol fields fdr vu
nerability signature matching. However, manually buitdjroto-
col parsers is tedious and error-prone. We design and ingsiem
UltraPAC, an efficient automated protocol parser generéttira-
PAC generates C++ code for protocol parsing, given a progitan
protocol description. The generated parser is specialtjgded
for signature matching and is much faster than the stateecéith
Meanwhile, itis general enough to handle all protocol andleage
features supported by BinPAC [20].

5.1 Stream Parser For Signature Matching

For the ease of description, we make some definitions as\silo
each PDU corresponds to a protocol parse tree (concretaxsynt
tree), which is a hierarchy of protocol fields. The leaf nookthe
parse tree correspond to simple data objects, includindewsrand
strings. The inner nodes correspond to more complex daggishj
such as arrays of numbers, strings or C-like “struct” or tumii
We define the leaf nodes basic fieldsand the inner nodes asm-
pound fields

BinPAC [20] and GAPA [9] are two major efforts towards build-
ing yacc-like tools fotree parsemenerationi.e., the parser that re-
construct the protocol parse tree. Both use recursive depaesers
(top-down parsers).

However, we are targeting at the protocol parsing probleelyso
for signature matching. Thstream parseris sufficient for this
purposej.e., the parser that recovers protocol fields consecutively
from a input stream. We make three important distinctions.

is separated in several packets. Overhead (b) is also ussEye
because the parser does not need to construct the commetefvi
the protocol parse tree. A much simpler approach to seaatgal
the traffic for the wanted basic field is sufficient in domineases.
When a compound field is needed in signature matching, it ean b
constructed from the basic ones. However, it happens vény-in
quently and does not affect the overall performance sigmifig.

For overhead (c), the extraction of all compound fields caelipe-
inated due to the same reason.

Unfortunately, these overheads are by degigperentto BinPAC
parser, and thus cannot be removed by implementation gatimi
tion. Since there is no restriction on what the parsed fieldsised
for, BinPAC parser must handle the worst case where the whole
protocol parse tree is required by other components in thesy
As a result, imustpreserve a copy of the parsed fields, traverse the
protocol parse tree and parse all nodes.

5.3 Proposed Parsing State Machine

We devise the parsing state machine (called PSM later on) to
achieve stream parsing and to eliminate the identified wessry
overhead to the maximum extent. Pleasefs@R.1 for the experi-
mental results.

We have studied eight popular protocols: HTTP, FTP, SMTP,
eMule, BitTorrent, WINRPC, SNMP and DNS. We find three com-
mon relationships among fieldsiequential, branch andloop.
Sequential fields appear in the PDU one after another in a fixed
order. For fields with branch relationship, one and only oile w
appear. A condition calledranch variablecontrols the branch. A
loop field will appear repeatedly in the PDU untiltermination
conditionis satisfied. In addition, Type-II fields might derive pars-
ing variables which control the parsing process.

Based on these findings, we propose the PSM. A state is the basi

First, a parsed field is used once by the matching engine andfl@'dthat is belng pal_’sed. The state transiti.on marks theoénd
never used again. The parser does not have to preserve a copparsing the previous field and the start of parsing the nexirothe
of it anywhere. Second, we only need to parse the fields which PDU. Before quitting a state, it will derive the parsing wles, if

are either directly required by the vulnerability signatumatch-
ing (Type-I field$ or indirectly required for parsing Type-I fields
(Type-ll field3, e.g, theheader . qdcount field in DNS proto-
col that specifies how many question records the PDU hasd,Thir
Type-l and Type-Il fields are basic fields in dominant cases, a
demonstrated in Figure 2. We further validate this obs@mat
by studying the vulnerabilities targeted by Snort and eslditera-
ture [9, 10, 13, 29].

5.2 Limitation of Existing Work

The BIinPAC parser is faster than the GAPA one, so we focus
our analysis on BinPAC. We divide the major overhead inteehr
parts: (a) buffer management, the cost to copy network ¢radfto
the buffer and expand/shrink buffer at runtime, (b) parse traver-
sal, the cost to construct and take down tree nodes and thesiee

any. We show the four basic building blocks of protocol pagsi
state machine in Figure 5. A PSM is a combination of thesechasi
building blocks.

An Example. In Figure 6 we illustrate a simplified PSM for WIN-
RPC protocol. We merge the fields which are not related to -Type
and Type-Il fields asnerge; fields to save space.

The parser continuously fetches the length of current fieldl a
moves the offset pointer in the input data segment accasdifor
example, to parse the WINRPC header, the offset pointee@sas
by 1, 1, 1, 1, 4, 2, 6 in each parsing step, respectively. Sinee
pt ype andf rag_| engt h are needed as parsing variables, they
are loaded into variablesr(). If pt ype == BI ND_ACK, we
can directly jump over the remaining payload (field megjge the
PDU byfrag_| engt h — 16 bytes. Ifpt ype == Bl ND, we go
through the parsing states in the lower right part of thelgrap

R16 o | merge, Jmin-ACK
Bind-AC 8| merge, :
1l rpc_vers 1| ncontext [R2¢0
- R; - ncontext
1| rpc_ver_minor 3 | padding
Ry =1 ptype ¥
! : 2 1D Bind
Header 1| pfc flags =Ry n
4 od d ¢ Ry 1 | n_tran_syn
R <0 pfac el* rehp Bind\\ 1| padding Ry++
- 1]
1 - rag_leng 16/ UUID R<R;
- merger 4 | UUID_ver
20*Ry —|» | tran_syn

protocol (not considering RPC reassembly).

5.4 Automatic Parsing State Machine Gener-

ation
Abstract
Syntax
Tree

Binpac
Frontend

field_1
length = 5;
goto field_5/
field_2
length = 10;

Machine
goto field_8]
Converting

Code |-
Engine |:\‘> Generator:\,>
Figure 7: Workflow of UltraPAC.

We leverage on the frontend of BinPAC and reuse the BinPAC
language. After that, our customized converting enginelypces
the parsing state machine (PSM) for the input protocol. fEgu
shows the workflow of UltraPAC. The code generation step is
straight forward, so we omit detailed description due tacegdan-
itation.

5.4.1 Acquiring Abstract Syntax Tree

The first component reads a program-like description of the p
tocol format, and constructs the abstract syntax tree (A8TYf it.

An AST is a tree-like representation of abstracted protémwhat.
Note that it is different from a protocol parse tree. An ASVegi
out all the ways that a legal PDU can possibly be built. It can b
determined by the protocol format description. On the @mwgtra
protocol parse tree states how a given PDU is assembled faem b
sic fields. It can only be determined during the runtime of izipg
process.

We reuse BIinPAC to acquire the AST. BInPAC constructs the
AST of a protocol in memory before it generates C++ code of the
parser. We keep the AST for further processing and discard th
code generation part. Accordingly, we keep the BinPAC |aiggu
for the protocol description.

5.4.2 Converting into PSM

A converting engine further converts the AST into the PSMsTh
process is illustrated in Algorithm 4.

In Algorithm 4, root is the root node of the AST, which repre-
sents the whole PDWS is the internal node space maintained by
UltraPAC. It contains all nodes that are to be procesdeetord,
Case and Array are the three possible types of a parent node.
They indicate sequential, branch and loop relationshiprenits
children, respectively. The loop relation is handled assgisphcase
of branch relation, where the next protocol field is eitherchrrent
field itself or the subsequent field of the parent. At the endaxth
iteration, we add the logic of how to derive the parsing J@ga
into the PSM, so that the actual value of the parsing varsabéa
be determined during runtime using the logic. The iterattops
when the node space contains only leaf nodes in the AST.

UltraPAC can essentially handle arbitrarily complex poato
format, since it supports sequential, branch and loop ioglat
among fields. One caveat is that attribute constraiats, field

Parsing

State Generated

Protocol Code

Description

——

Algorithm 4 ParsingStateMachineGeneration()

S — {root}
While 3n, n € S andn is inner node
children — the set ofn’s children
S—S—n
S «— S Uchildren
If nisof RECORD type
assign sequential ordering amodgildren
Elseif n is of CASE type
assign branch ordering amongildren
branch variable controls the branch
Else
assign branch ordering betweehildren andnext
array terminating condition controls the branch
Endif
add logic to derive parsing variable from
Endwhile

length, may be applied to compound fields, whereas the PSM pro
duced by UltraPAC works directly on basic fields. We tacklis th
problem by breaking and distributing such attributes togtraper
children basic fields. It's feasible because the set of ofildields

is determined in the AST. In addition, we have studied thePBit
language and found that all the supported attributes candpepy
distributed, while preserving the original functionality

5.5 Further Improvement

Multiple layer parsing. One application protocol may tunnel
through another and use the latter one as a transport layee. O
PDU body can be in multiple messages. Therefore it needs-appl
cation layer reassembly. For example, by treating WINRPtas
sub-protocols and using two layers of PSM, we can solve the re
assembly problem. Once the first layer parses the headeralive c
the second layer to parse the partial body and save the paitsites

as well as the offset pointer. Then, after the next messagesr
we can continue parsing the remaining part of the PDU.
Combine the unnecessary fields.A data flow analysis can be
adopted to combine the consecutive fields that are neithee-Ty
nor Type-ll fields into one field whenever possible. This ceémb
nation further simplifies the parsing process without affecthe
signature matching.

6. IMPLEMENTATION

6.1 Core Engine Implementation

Parsing: We implement UltraPAC partially based on BinPAC. As
shown in Figure 7, we reuse the BinPAC language and code to con
struct the abstract syntax tree. Accordingly, we use théopod
specification distributed with BinPAC with minor revisiowe im-
plement the converting engine and code generator with éhH600
lines of C/C++ code.

Matching: We implement the three types of matchers and the CS
algorithm with about 6,800 lines of C/C++ code. We implement
path-compressed trie for exact string matching and leecbagary
search for integer range checking. In addition, we Ragel for
regex compilation and write our own code for regex matching.

6.2 Signature Rule Language

We design a language to describe the symbolic predicata-sign
tures. We want to make it simple, intuitive and sufficient. tiis
end, we have studied the vulnerabilities that the Snort aisdoC
rulesets target, as well as those studied in [9, 10, 12, 13a28 de-
velop the language features which meet the real-world netei®,
we briefly introduce the core features.

We support three types of Boolean operaté&; | | , and! and
two basic data types: string and number. For the number type,
support the following relationship operations:=,>,<,>=,<=

Identify
y vulnerability .~ __
set =~ o
/ ~
vulnerability signature creation
Get the
Snort vulnerability Write Cross | | Experimental
rulesets specifications | | signatures [| check verification
and exploits

Figure 8: Manual vulnerability signature creation.

and ! For the string type, we support tHeen() and

mat ch_re() functions and the exact matchieg= comparison.
In addition, we enable arrays and associative arrays. Btariae,
di r s is an array of directories in the URI. We uapy(di r s) to

represent any element of the array dreh() function to get the
array length. For associative arrays, we support the mgppiA

eration. For exampld,en(HTTP_Header s["Host "]) >300

means that if the string length of the value correspondirtedey
“host” in the HTTP_Headers associative array is larger tB@@,

the condition is true.

6.3 \Vulnerability Signature Creation

It would be more objective to evaluate our approach with-stan
dardized vulnerability signature rulesets. Unfortunatgiven no
available existing vulnerability rulesets or open-souramerabil-
ity signature generator, we have to manually create theevain
bility rulesets on our own. To figure out which vulnerabdgiwe
should include in the ruleset, we target the vulnerabdit8nort
tries to detect. We focus on HTTP and WINRPC, because they cor
respond to the two largest rule subsets of Snort rulesetHA9P
and 45 WINRPC vulnerability signaturesre manually created
based on vulnerability information of 973 HTTP and 3,519 WIN
RPC Snort rules (11/2007 version), following the workflovowin
in Figure 8. We first identified the vulnerability CVE IDs of &mn
rules. Each CVE ID corresponds to a vulnerability, so we @rrot
one rule for it. Next, we collected the vulnerability spezfions
and exploit samples from various online vulnerability daise and
hacker forums. We then wrote the signatures. After that, noesc
checked the signatures written by different people andd@8%
agreements. For the remaining 5.2% debatable ones, we set up
vulnerable host, modified the exploits with the similar idefl 3],
and further refined the signatures.

6.4 Software Prototype and Deployment

We build a software NIDS prototype to demonstrate NetShield
It currently runs on Windows. We have deployed the prototype
at a campus data center of Tsinghua university. We feed tke li
traffic from a Cisco router that manages the university-wig
servers and computer labs. The average and peak trafficsrate i
about 20Mbps and 106Mbps, respectively. We have contidyous
run our prototype online without any identified packet loss.

7. EVALUATION

To evaluate the performance of NetShield prototype, we mea-
sure the throughput on different traces across differeotopnls,
networks and time. The results show that in all the traces Net
Shield can achieve high throughput. For 794 HTTP vulneitgbil
signatures we can achieve 11+Ghps core engine throughpar on
eight-core machine. The UltraPAC generated parsers angt 800
~ 12 times faster than those of BinPAC. The candidate selectio
based matching is 8.8 to 11.7 times faster than sequentiahing
for 794 signatures.

7.1 Evaluation Environment and Datasets

We evaluate the NetShield prototype using two platformsera P
tium 1V 3.8GHz single core PC (P4) with 4GB memory, and an
eight-core Xeon E5520 2.2Ghz (XE) with 16GB memory. The lat-
ter is mainly for evaluating the performance of NetShieldwuiti-
core platforms. Because for vulnerability signature miaigtcon-
nections are independent from each other, we dispatch tireece
tions in traffic roughly evenly to the different NetShieldreaen-
gines running on different CPU cores. The experiment resuig-
gest multi-core platforms can indeed boost the performaiite
overall throughput when using the eight cores is neauly~ 7.1
times of the single core throughput.
Network traces: We captured traces from the aforementioned
router at Tsinghua university (TH) and the EECS departnienta
gateway of Northwestern University (NU). The MIT DARPA 1998
Intrusion Detection Data Sets [1] is also used. Table 3 stsnase
statistics of the traces. The NU HTTP trace exhibits muclyéon
average flow length than the other two HTTP traces. We findsit ha
less attack traffic and HTTP signalling or error repliest(staode
other than 200), which have usually short flow length.

Location TH TH NU TH NU [DARPA
Protocol DNS [WINRPC|WINRPC| HTTP | HTTP | HTTP
Start Time 11/2007 | 11/2007| 10/2006| 05/2008| 10/2006| 1998
Duration 159 hourg 207 days 765 dayg 13 hourg 32 hourg 26 days
App layer size| 1.33GB | 598MB | 1.33GB| 15GB | 3.96GB|3.89GB|
Flow number 17M 681K 2.24M | 2.35M | 71.9K | 1.83M
Avg flow len 77B 879B 596B | 6.56KB| 55KB |2.13KB

Table 3: The characteristics of the traces.

7.2 Core Engine Performance Analysis
Methodology: We evaluate the protocol parsing and signature
matching throughput of the proposed core engine rather than
a product-level NIDS/NIPS ,which takes much more engineer-
ing effort. Therefore, the throughputs reported are nottwha
a NIDS/NIPS achieves when monitoring a network link on-
line. However, if the core engine is fast, a well-engineered
NIDS/NIPS can achieve high throughput, without vulnerapgig-
nature matching being the bottleneck. Given existing cororak
regex-based NIDSes/NIPSes have already achieved highgtmro
put, we believe it is also achievable for vulnerability siture
based NIDSes/NIPSes.

In all the experiments, we pre-load the TCP streams after TCP
reassembly as input. Moreover, we process the connectioas o
after another to exclude the flow switching overhead. The re-
ported throughput is application layer throughput, noliding the
TCP/IP or link layer headers.

7.2.1 Parsing Performance

We evaluate the parsing performance on both single core and
multi-core implementation.Original BinPAC is the BinPAC dis-
tributed with Bro 1.3. We run it in standalone mode rathemntha
combining with Bro. InOpt. (optimized) BinPAQnstead of creat-
ing string objects and array objects fully, we only keep therent
chunk of a string or the current element in an array in the nigmo
which reduce the memory copy/alloc/dealloc operationdJltra-
PAC, we disable the “combine the unnecessary fields" optitiua
(in §5.5) for fair comparison and parseerybasic field according
to the protocol specification. The speedup ratio is caledldte-
tween UltraPAC and Opt BinPAC on the single core P4.

We evaluate three protocols: HTTP, WINRPC and DNS. HTTP
traffic is one of the dominating traffic on the Internet. WINRR a
multi-PDU protocol that has been heavily exploited. DNS loas

3sample signatures are available at the anonymized websitethroughput in the BinPAC paper [20]. The results are coestst

www.nshield.org.

across different network traces.

Trace TH TH NU TH NU |DARPA
DNS [WINRPC [WINRPC [HTTP [HTTP | HTTP
Throughput(Gb/s)
Original BinPAC(P4) 0.10| 1.37 1.04 2.02 | 13.00| 1.52
Opt BinPAC(P4) 0.31 1.41 1.11 2.10 | 14.21| 1.69
UltraPAC(P4) 3.43(16.19 12.90 7.46 | 44.41| 6.67
Speed Up Ratio(P4) 11.2 115 11.6 3.6 3.1 3.9
Throughput(Gb/s)
UltraPAC(XE 1core)| 3.63| 19.88 12.78 7.86 | 42.22| 6.64
UltraPAC(XE 8core)[23.75 123.18 91.09 | 48.67(295.09 42.31
Max. Memory 16 15 15 14 14 14
Per Conn. (Bytes)

Table 4: Parsing results.

Throughput: Table 4 shows that on the single core P4 our parsers
parse WINRPC at 13+ Gbps, DNS at 3.4Gbps and HTTP at 6.7+
Gbps. Using eight cores the throughput further increases vy
7 times. Comparing with the Opt BinPAC, we speed up binary
protocols (DNS and WINRPC) about 12 times, and a text prétoco
HTTP, about 3~ 4 times.

The original BinPAC’s throughput here is higher than that in

Trace TH NU TH NU |DARPA
WINRPC [WINRPC [HTTP |HTTP | HTTP

Throughput (Gb/s)

Sequential(P4) 10.68 9.23 0.34 | 2.37| 0.28

CS(P4) 14.37 10.61 2.62 | 17.63| 1.85

Matching Only Time

Sequential(P4) (secs) | 0.0048 0.33 |344.28 12.68| 106.74

CS(P4) (secs) 0.0012 | 0.18 |30.46| 1.08 | 12.16

Speed Up Ratio(P4) 4 1.8 11.3 | 11.7 8.8

Throughput (Gb/s)

CS(XE 1core) 18.25 12.03 3.02 | 19.90| 2.01

CS(XE 8core) 118.61 84.69 | 18.48(128.57 11.00

Avg Memory Usage 32 32 28 28 28

Per Connection (Bytes

[Avg #of Candidates | 1.16 [1.48 [0.033]0.038] 0.0023]

Table 6: Parsing+Matching results.

that even on the single core P4 the CS algorithm can achiexg ab
11~14Gbps for WINRPC (45 signatures) and about 1.9+Gb/s for
HTTP (794 signatures). The throughput on NU HTTP trace is
much higher, because it has much longer average flow length, a

the BinPAC paper [20], because the BinPAC paper measures themost of the bytes are contributed by the HTTP BODY field in the

throughput with Bro together, which includes TCP reassgrabt
other lower layer overhead. Our measurement excludes suech o
head.

Protocol HTTP DNS
Trace size (MB) 200 140
Parser BinPAC|UltraPAC| BinPAC| UltraPAC
Func call # (K) 12,949| 4,850 |91,394| 1,685
Mem copy/alloc/dealloc time 23% 6% 76% ~0%

Table 5: Execution profiling results.

To further understand this performance boost, we profileie
ecution of both BinPAC and UltraPAC parser using the same sam
ple traces. Table 5 shows: 1) UltraPAC parser heavily resitive
number of function calls; and 2) it spends much smaller porti
of the execution time on memory copy, allocation and dealoc
tion. Among the three major overheads of BinPAC par§ér2),
buffer management overhedsl already minimized in our experi-
ment setting. Table 5 mainly confirms the elimination of B\
large overhead oparse tree traversal The elimination ofinner
nodes extractiorin UltraPAC parser contributes to the remaining
of throughput increase.

Due to the smaller protocol field size, the BinPAC DNS parser
suffers from relatively larger overhead on memory operatid hat
is why UltraPAC gets higher speedup ratio on DNS protocole Th
memory operation time of UltraPAC HTTP parser is incurrethiz
computation of field length.

With BinPAC design, it is not trivial to reduce this part ofesv
head to a similar level as UltraPAC. We further optimize thie-B
PAC DNS parser to remove the creation and deletion of paese tr
nodes, by reusing preallocated nodes via a linked list. hinide-
mentation optimization reduces the execution time by atrio%o,
but the performance is still not even close to the UltraPAG@a
Memory Consumption: The UltraPAC parsers have to maintain
the parsing variables required in the parsing state machm&a-
ble 4, we also report the maximum memory size required per con
nection. It is no more than 16 bytes for all the three protecol

7.2.2 Parsing + Matching Performance

Next, we evaluate the matching performance.
Candidate Set Size:We validate the observation in 84.1 (the can-
didate sets usually are small). For all protocols and trabesmax-
imum size of the candidate sets is no more than 8. The aveizge s
is less than 1.5.

HTTP response message. The HTTP BODY field is not required by
most signatures and thus involves little matching overhdadly
using the eight cores can speed up matching-5B1 times than
only using a single core on the XE machine, and achieve 11s-Gb/
for the 794 signatures. The throughput of WINPRC is higher be
cause of the small number of vulnerabilities.

We implement the b
sequential matching & 35
with short-circuit eval- 8 2:
uation,i.e., a signature 5
is skipped upon the 5 15
first condition that 2 1
does not meet. In T oos S

Table 6, the matching
only time is obtained
by subtracting the Figure 9: Scalability to the # of
parsing time from the rules.

parsing+matching time. The speedup ratio is computed as the
matching only time of sequential matching over the matching
only time of our scheme on the P4. For HTTP, we speed up the
matching by 8.8~ 11.7 times. For WINRPC, we speed up the
matching by a factor of two to four although there are only 45
signatures.

Scalability: Figure 9 shows the scalability of NetShield in terms
of throughput under increasing number of rules, evaluatiid an

1GB TH HTTP trace. The system throughput degrades gragefull
when increasing the number of rules. This is because thaghro

put mainly depends on the number of matchart the number of
rules. In the beginning, including more rules will add moratah-

ers, and thus increases the overhead. After about 400 riles,
matchers have been included; thus, the throughput remiaibke s
Memory Consumption

100 200 300 400 500 600 700 800
of rules used

and Breakdown: There [DFA | 5.29GHy
are two types of memory NetShield 2.3MB
consumption: the match- NetShield Breakdown

ing data. structures for .(?r?eMatChmg 11?4?\;(5
representing the ruleset DFA 907KB
shared by all the con- Integer Range Checking0.3KB

nections and the memory
states maintained for each
connection. Table 7 shows

Table 7: Size of matching data
structures on 794 HTTP signa-
tures

Throughput: We evaluate our candidate selection based matching the memory usage of the matching data structure on 794 HTTP

on both single core and multi-core implementation. Tablads

vulnerability signatures and the breakdown. We only neexlitb

2.3MB memory. The small memory usage is because vulnesabili
signatures are defined on multiple protocol fields. Thus treee
sponding matching data structure for each field becomeslaimp
and more memory efficient. For comparison, we also calctifete
size of the combined minimized DFA on the same rule set derive
from Snort. We employ the same methodology used in [25]. The
result DFA size is 5.29GB.

Table 6 also shows the average memory usage per connection
which is dominated by the parsing variables during the pgrdror
HTTP protocol, we need 14 bytes for parsing, 12 bytes for ikegp
three individual matchers’ states (a field can map to seveaath-
ers, maximum three in the HTTP case), 2 bytes (on overage) for
keepingsS;, and zero byte for buffering protocol fields. For WIN-
RPC protocol, we need 15 bytes for parsing, 8 bytes for keepin
two individual matchers’ states, 4 bytes (on overage) fapkeg
S;, and 5 bytes for buffering protocol fields.

Comparing With Existing Regex Approaches: While having
better accuracy than regex-based approaches, NetShigidtis
slower. One of the state-of-the-art regex approaches, 2BAZ6],
reports that, for 863 Snort HTTP rules, it needs 36 bytesiection
and 1.08MB to store the XFA data structures. Their earlier
work [25] shows XFA can achieve 75 seconds/GB (108Mb/s) for
the Snort HTTP signatures on a 3GHz PC. Their later work [26] i
about seven times faster (Figure 9 in [26]). Therefore, vienage

it can achieve about 756Mbps on the 3GHz PC. On the other hand,
for 973 Snort HTTP rules, NetShield needs 28 bytes/conmecti
and 2.3MB on shared data structures. It can achieye- 17 Gbps

for HTTP on a 3.8GHz single core P4. Due to the lack of theiecod
we cannot make a direct comparison. Nevertheless, fromehe p
formance metrics above, we believe the performance of NeltEh
will be comparable to that of XFA. Moreover, by combining Net
Shield with XFA, we can possibly achieve even better pertoroe
with smaller memory requirement.

There are five reasons for NetShield to obtain similar or even
better performance comparing with regex-based approathese
achieve fast protocol parsing;) after parsing, the protocol fields
not used in signatures can be directly skipped, but regegeap-
proaches need to match every bytaj)(the C'S algorithm intro-
duces very little overhead;i«) the matching operation for each
protocol field is simple;«) multiple regex rules can be converted
to one vulnerability signature (especially for binary pails) to
reduce the ruleset size.

Comparing With Existing Vulnerability Signature Ap-
proaches: All existing approaches [9, 22, 29] use sequential
matching. We show our scheme speeds3igp~ 11.7 times over
sequential matching for 794 signatures. We believe thalatfyer
the ruleset, the bigger the speedup ratio.

Worst Case Traffic for the HTTP Ruleset: As mentioned in 84.3,
for WINRPC, we prove th&'S algorithm works well even in the
worst case traffic. For the HTTP ruleset, we use the greedy alg
rithm to generate the worst case traffic given the problemRs N
Hard. We generate two synthetic traces with same trafficachar
teristics, except that one is the worst case traffic but therabne

is normal. For the trace of the worst case traffic, our scheame c
achieve 64.8% of the throughput of the normal one. It shows ou
scheme works reasonably well even in the worst case.

7.3 Accuracy Evaluation

Previous work [9, 13, 22, 29] has already demonstrated thiat v
nerability signature is much more accurate than existirgpxe
based approaches. The results shown here are mainly toraonfir
that NetShield is also able to achieve good accuracy.

First, we evaluate three WINRPC vulnerabilities Snortstrie
detect: Bugtraq 8205, Bugtraq 6005 and MS08-067 (expldited

the recent Conficker worm). We find some of the bit patterns in
Snort signature are not related to vulnerabilities. Afterehange
the bit pattern in the exploit code, the exploit still worksit Snort
cannot detect the attack and thus has false negatives. Haohale
the bit patterns in normal requests, Snort will report thipiests as
false positives. On the other hand, NetShield detects alptiy-
morphic variants we create from the real exploits accuyatel

, Furthermore, we evaluate a 10-minute “clean” HTTP tracenfro
TH (1.2GB). In that period, Snort generates 42 alerts whigt-N
Sheild generates zero alert. We manually checked thods aled
found they are all false positives.

8. RELATED WORK

Intrusion Detection/Prevention Systems.Snort uses the PCRE
library for regex matching guarded by a string matching base-
filter. However, the worst case performance is mainly detiole
the PCRE library, which is a NFA based approach and quite slow
[26]. Bro is another popular NIDS with a regex signature eagi
It can also access semantic information with an expressilieyp
language, which is close to a general programming languAge.
the tradeoff, it is hard to optimize its speed for detectinigrge
number of vulnerabilities.
Regular Expression Matching Engines.The current research of
regex matching focuses on improving the matching speedtand t
memory efficiency [7, 8, 17, 25, 26, 30]. However, as we men-
tioned, only relying on regexes is not enough. It is very hard
extend these approaches to handle vulnerability sigrature
Protocol Parsing.In 85, we compare NetShield parsing with Bin-
PAC [20] and GAPA [9]. Recently, Scheat al.[22] propose the
first high-speed parsing design by leveraging on string hiagc
i.e, to locate the invariant string close to the required fieltiey
demonstrate that their system works well when considersmail
number of vulnerability signatures with sequential matghi On
the other hand, our goal is to design an automated parseragene
that can support a large number of vulnerability signatures
Packet Classification Algorithms. The SPMSM problem we for-
mulate is related to the classical packet classificatioblpro but is
more complex. Both problems are defined on a set of matching di
mensions, and allow wildcards. In [28], Taylor classifieel pracket
classification techniques into four categories: exhaessiwarch,
decision tree, tuple space and decomposition. Unfortiynatene
of them can be directly applied to the SPMSM problem due to the
five characteristics of vulnerability signature matchigg(1).
Ternary Content Addressable Memory (TCAM) uses brutegorc
hardware parallelism to achieve fast exhaustive searcpdoket
classification. However, it remains unknown how to apply TCA
for the SPMSM problem. For example, currently there are no
efficient ways to encode regexes used in vulnerability digea
into TCAM. Decision tree algorithms such as HiCuts [16] and H
perCuts [24] require interleaving different dimensions.(com-
bining them as a big tree), which is quite impossible wher-dea
ing with vulnerability signatures since the fields arriveddterent
time. Moreover, they need huge amount of memory when being
used with a large number of wildcards. Tuple Space based algo
rithms [27] exploit the fact that the five tuples in packetssifica-
tion are all integers so that the tuple space is small. Farerabil-
ity signatures with many long string fields, the tuple spaae loe
very large. Also, it cannot handle regex matching which dgineed
by vulnerability signatures. The decomposition based aggres
are not suitable either. For example, the recursive flonsdiaa-
tion (RFC) [15] partitions all fields into fixed-size chunkét is
remain unknown how to extend the scheme to work with variable
length string fields and regular expression matchers. Bitoveap-

proaches [6, 18] need large memo@((V)) per connection and
high computation overhead.

9. DISCUSSIONS

When a vulnerability logic is deeply embedded in the applica
tion, it is hard to directly use the protocol fields in the syiib
predicates to describe the signature. In this case, we loare t
cover the internal state of the application as the statabkas and
use them in the symbolic predicates. We achieve this bytinger
into the protocol parser a function that partially reprogiithe ap-
plication logic to compute and return the state variablesthis
way, we bear the extra computational overhead, but cantdaitec
possible vulnerabilities accurately. For example, Bugtiza 599
is a buffer overflow vulnerability in wu-ftpd 2.5. If a deep PT
path is created by making new directories recursively, tiiéeb
will be overflowed. However, neither the path nor the patlgien
is a protocol field. To solve this problem, we insert a custai
function into the parser to calculate the path length, ardiuim
the symbolic predicates. In all the vulnerabilities we hatuadied
including those mentioned in other papers [9, 10, 13, 2@} elare
only a few such cases.

Another problem is that, when applying vulnerability sigmas
at network level, ambiguities might arise if we do not knove th
software variances running on the hosts. It is possibleatiw
can trigger a vulnerability on variance A but not B. One Solut
is to actively map the software variance and their versionshe
enterprise network [23]. We argue that, even without knoviire
exact version, vulnerability signatures of popular sofevaill not
cause false positives since normal traffic will not triggee t/ul-
nerability; otherwise the software will crash often and reanbe
popular. Furthermore, different software variances migtgrpret
the protocol slightly differently, which might cause paigiambi-
guity. The active mapping approach can help in this case s we

10. CONCLUSIONS

In this paper, we present NetShield, the first systematigdes
of vulnerability signature based parsing and matchingrengks-
sentially, we propose the state machine based parsing texecu
model and the CS algorithm for fast matching on a large vulner
ability ruleset. We also implement, deploy, and releaseNbe
Shield prototype. The real trace evaluation demonstragesiNtet-
Shield achieves similar speed to that of the current reg{pres-
sion based NIDS/NIPS while offering much better accuracy.

11. ACKNOWLEDGEMENTS

We gratefully acknowledge our shepherd, Cristian Estathtla@
anonymous reviewers for their valuable inputs on earliesivas

[7] M. Becchi and P. Crowley. A hybrid finite automaton for
practical deep packet inspection.Pmoc. of ACM CoNEXT
2007.

[8] M. Becchi and P. Crowley. Efficient regular expression
evaluation: Theory to practice. Proc. of [IEEE/ACM ANCS
2008.

[9] N. Borisov, D. J. Brumley, H. J. Wang, J. Dunagan, P. Joshi
and C. Guo. A generic application-level protocol analyzer
and its language. Iproc. of NDS$2007.

[10] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.
Towards automatic generation of vulnerability-based
signatures. IfProc. of IEEE Security and Privacy
Symposium2006.

[11] B. Chazelle. Lower bounds for orthogonal range seaghi
ii: The arithmetic modelJournal of the ACM
37(3):439-463, July 1990.

[12] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. IrProc. of ACM SOSP2005.

[13] W. Cui, M. Peinado, H. J. Wang, and M. Locasto. Shieldgen
Automated data patch generation for unknown
vulnerabilities with informed probing. Iproc. of IEEE
Security and Privacy2007.

[14] S. Dharmapurikar and V. Paxson. Robust tcp stream
reassembly in the presence of adversarie®rot. USENIX
Security Symposiun2005.

[15] P. Gupta and N. McKeown. Packet classification on midtip
fields. Inproc. of ACM SIGCOMM1999.

[16] P. Gupta and N. McKeown. Classification using hierazahi
intelligent cuttings|EEE Micro, 20(1):34-41, Jan 2000.

[17] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expression matching for deep packet inspectiofRroc. of
ACM SIGCOMM 2006.

[18] T. V. Lakshman and D. Stiliadis. High-speed policy-bds
packet forwarding using efficient multi-dimensional range
matching. Inproc. of ACM SIGCOMM1998.

[19] Z.Li, X. Gao, Y. Chen, and B. Liu. Netshield: Matching
with a large vulnerability signature ruleset for high
performance network defense. Technical Report
NWU-EECS-08-07, Northwestern University, 2009.

[20] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: A
yacc for writing application protocol parsers.proc. of
ACM IMC, 2006.

[21] V. Paxson. Bro: A system for detecting network intrusier
real-time.Computer Networks31, 1999.

[22] N. Schear, D. Albrecht, and N. Borisov. High-speed
matching of vulnerability signatures. FProc. of RAID 2008.

[23] U. Shankar and V. Paxson. Active mapping: Resisting nid
evasion without altering traffic. IRroc. of IEEE Security
and Privacy 2003.

[24] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting.proc. of
ACM SIGCOMM 2003.

of this paper. This work was supported in part by US NSF CNS- [25] R. Smith, C. Estan, and S. Jha. XFA: Faster signature

0831508, and China NSFC (60625201, 60873250), 973 project

(2007CB310701), 863 high-tech project (2007AA01Z216) &sd
inghua University Initiative Scientific Research Program.

12. REFERENCES

[1] 1998 DARPA Intrusion Detection Evaluation Data Set.
www. | 1. mit. edu/ m ssion/conmuni cations/
i st/ corporalideval/ data/1998data. ht i .

[2] Conflcker
tp://en.w ki pedi a. org/ wi ki / Conficker.

[3] DAG card
t p: / / www. endace. conf dag- 8. 1sx. htni .

[4] NetShleId Websiteht t p: / / www. nshi el d. or g.

[5] PRX Traffic Managerht t p: / / ww. i poque. com
product s/ prx-traffic- mnager.

[6] F. Baboescu and G. Varghese. Scalable packet clasgificat
In proc. of ACM SIGCOMMZ2001.

matching with extended automata.Rmnoc. of IEEE Security
and Privacy 2008.

[26] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the big
bang: Fast and scalable deep packet inspection with exdende
finite automata. IProc. of ACM SIGCOMMZ2008.

[27] V. Srinivasan, S. Suri, and G. Varghese. Packet classifin
using tuple space search.proc. of ACM SIGCOMM1999.

[28] D. E. Taylor. Survey and taxonomy of packet classifmati
techniqguesACM Comput. Sury37(3):238-275, 2005.

[29] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: Vulnerability-driven network filters for preventj
known vulnerability exploits. IfProc. of ACM SIGCOMM

2004.

[30] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz.
Fast and memory-efficient regular expression matching for
deep packet inspection. Proc. of ANCS2006.

