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Abstract
Remote Access Trojan (RAT)-based attacks have become
prevalent, which represent a serious threat to enterprise se-
curity. To understand ramification of RAT attacks and dis-
closes attackers’ actions, forensic systems need first to record
sufficient audit logs for a long period of time and then to
reconstruct accurate fine-grained semantic RAT behaviors.
However, existing forensic systems either are blind to RAT
behaviors or incur high overhead.

To address these problems above, we propose RATScope,
an instrumentation-free semantic-aware forensic system for
RAT attacks on Windows. Specifically, we build a more com-
prehensive audit system upon the Windows built-in Event
Tracing for Windows (ETW), and propose a novel technique
to reconstruct semantic behaviors of RATs on recorded data.
Evaluation results on a representative set of RAT attacks from
2006 to 2017 show that our system can accurately identify
fine-grained semantic behaviors of unknown RAT with trivial
overhead.

1 Introduction

From cyber theft of personal financial information to Ad-
vanced Persistent Threat (APT) attacks aiming at intellectual
properties or critical infrastructures, today’s Remote Access
Trojans (RATs) cause a wide range of damage to individual
users, corporations and governments [22, 25, 26]. Unfortu-
nately, RAT attacks are characterized by long-term persis-
tence and devastating consequences, which render targeted
efficient forensic system a pressing requirement to security
practitioners.

To understand RAT attacks, we conduct a measurement
study of more than 500 white papers about the real-world
RAT attacks from 2008 to 2018 [3], and collect and analyze
82 workable RATs belonging to 51 RAT families from 2006
to 2017. To the best of our knowledge, this is the largest collec-
tion of RAT families in academics. We already make collected
RAT samples public on the Internet. And we highlight three
major observations:

O1 RATs are commonly equipped with tens (10 - 40) of Po-
tential Harmful Functionalities (PHFs), such as key log-
ging, screen grabbing and audio recording. Identifying
these fine-grained semantic behaviors can help analysts
understand intent and ramification of attacks [32].

O2 A RAT attack usually is not reported until more than 3
months after the breach happens [33]. What is worse, the
involved malware and its triggered intermediate traces
have already been self-deleted by then.

O3 Around 90% RAT families we collected only target at
Windows platforms.

According to the observations above, it will be greatly
helpful to reconstruct the vast majority of RAT attacks if we
can store sufficient audit logs for long periods of time and
accurately identify PHFs of RATs by a forensic system on
Windows platform. Plenty of existing research works have
focused on forensics. However, most of them are facing the
following challenges specific to Windows platforms:

1) Blind to fine-grained semantic behaviors of RATs.
According to the observation O1, it is essential to identify
PHFs of RATs. However, most of existing works [36–38,
43, 45–48, 50, 53] rely on audit logs consisting of a limited
amount of security-related objects like processes, files and
sockets, to diagnose attacks, and these audit logs are usually
provided by native audit systems, and can capture enough
semantics of the attack in some cases. For example, in a
drive-by download attack [38], it is enough to understand the
attack by knowing what file was downloaded from what IP
address. However, when it comes to RAT attacks [32], the
attack semantics represented by PHFs are not reflected in
these objects. Failing to capture attack semantics slows down
the progress of forensic processes and reduces the quality of
forensic results.

2) Requiring instrumentation or incurring high over-
head. Some previous works rely on instrumentation to obtain
fruitful audit logs of applications. Among various instrumen-
tation techniques, hooking acts as the most popular choice. It
alters or augments the dynamic behavior of applications by
intercepting function calls, which intrusively patch applica-
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tions or operating system. Instrumentation indeed provides
fruitful audit logs for identifying fine-grained semantics of
application behaviors [46, 49, 51].

However, instrumentation techniques are prohibitive in
the enterprise environment because intrusive patching could
make applications and operating system unstable and even
introduce new vulnerabilities which can be leveraged by mal-
ware [4, 14, 19]. Furthermore, patching the kernel has never
been supported by Microsoft, since it can greatly compro-
mises system security, reliability, and performance. Microsoft
even integrated Kernel Patch Protection (KPP) into Windows
to prevent patching the kernel [13].

And for those previous works which don’t rely on instru-
mentation, they either simply introduce a unacceptable system
overhead (sandbox and taint techniques) at runtime, meaning
that they cannot monitor the system for a long time where
RAT attacks often persist, or fail to fetch enough data for
analyses (static analysis, memory forensic), since malwares
and intermediate data have been removed, according to the
observation O2.

3) Incomplete audit data peculiar to Windows. Given
two challenges above, leveraging native audit systems be-
comes popular in recent related works [35, 36, 44, 48]. Since
the majority of RATs only work on Windows according to
the observation O3, we need to focus on Windows. Serving
as the only native audit system on Windows, Event Tracing
for Windows (ETW) [7] is an instrumentation-free and low-
overhead tool providing low-level events (e.g. system call and
API) of applications on Windows. However, unlike native
audit systems on other platforms, ETW cannot provide input
parameters for any low-level data like system call and API,
which cause a serious Semantic Collision problem (see Sec.
3.2). This incompleteness causes that most state-of-the-art
forensic approaches cannot be applied to ETW data directly
since their works rely on input parameters in various ways.

Summarizing all discussion above, severe and fundamental
challenges exist for recording and reconstructing RAT attacks
for forensic analysis on its fine-grained semantics on Win-
dows platform.

Our solution Our work is the first step towards solving
these fundamental challenges focusing on RAT attacks. We
propose RATScope, an instrumentation-free semantic-aware
forensic system for RAT attacks, which maps incomplete
ETW data to semantic behaviors and assists security practi-
tioners to understand attack ramification. To the best of our
knowledge, RATScope is the first forensic system on Win-
dows that can record and accurately reconstruct RAT attack
with high-level semantics described by PHFs. A comparison
is shown in Figure 1.

Specifically, we solve the challenges above by first improv-
ing the performance and data quality of native ETW audit
system so that we can efficiently provide sufficient audit logs
for all applications, including system call, API and call-stack,
and then proposing a novel multi-dimensional behavior model

called Aggregated API Tree Record (AATR) Graph model
where we combine system call data and library call-stack data
together to describe semantic behaviors of RATs accurately.

Our contributions are summarized as follows:
• We are the first one to conduct a comprehensive study

on 500+ white papers and 50+ RAT families in the last
11 years (the study of the largest scale to the best of our
knowledge).
• We propose a novel method to efficiently record and

effectively reconstruct RAT attacks with fine-grained se-
mantics. We not only provide an enhanced data collector
with low system overhead but also accurately identify
fine-grained semantic behaviors, i.e. PHFs of RATs, us-
ing defective native data.
• We build and evaluate our system thoroughly. The evalu-

ation results show our method has high accuracy (over
90% true positive rates and near zero false positive rates)
with reasonable runtime and space overhead. More im-
portantly, evaluation results also show our system is ca-
pable of identifying behaviors of unknown RATs, where
an amazing finding is functionalities of RATs in past 11
years are implemented with a limited number of meth-
ods.

2 Key Observations and Problem Statement

In this section, we first summarize and describe the work
flow of a typical RAT attack as well as some interesting obser-
vations from more than 500 white papers, and then we present
the threat model and our system goals.

2.1 Anatomy of A Typical RAT Attack
The RAT toolkit consists of two main components: a RAT

controller and a RAT stub. The RAT stub is installed on victim
hosts while the RAT controller is owned by the attacker.

As depicted in Figure 2, the work flow of a typical RAT
attack is described as follows. 1 Reconnaissance phase. An
attacker stealthily performs passive or active reconnaissance
to search and select the targets with identified vulnerabilities.
2 Delivery phase. Once the targets are determined, attackers

use controllers to create dedicated RAT stub loader tailored
to several selected vulnerabilities. Next, the attacker delivers
the RAT stub loader to the targets through spear phishing or
insiders. 3 Installation phase. The delivered RAT stub loader
is eventually triggered and executed by the user of the target
host or certain auto execution services. The loader installs a
RAT stub connecting back to the RAT controller on the C&C
server so that the attacker obtains the privilege to directly ac-
cess target environment. 4 Action phase. The RAT controller
usually has a control panel with a graphical user interface
(GUI), with which the attacker could select an action with
simple mouse clicks and consequently the RAT stub on the
victim host will perform actions accordingly. According to
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Figure 2: Work Flow of A Typical RAT Attack.

our observation, there are 5 popular potential harmful func-
tionalities, i.e., Key Logging, Remote Desktop, Remote Shell,
Audio Record, and Download and Execute, used by RATs. We
summarize them into Table 1. 5 Transfer phase. In the final
phase, the attacker has collected all needed information and
transfer data back to the RAT controller or any other identities
controlled by the attacker. The time interval between action
phase and transfer phase may be several months or even years.
This phase is optional for certain RATs that have no purpose
of collecting information.

Table 1: Top 5 Popular RAT Potential Harmful Functionalities
Top-5 Popular Functionalities
Key Logging: log all the keys pressed down by a victim

Remote Desktop: remotely capture and control the victim’s desktop
screen

Remote Shell: remotely open a console and execute arbitrary commands

Audio Record: capture audios with victim’s microphone

Download and Execute: download a file and automatically execute it

2.2 Measurement of A Large RAT Data Set
RAT samples collection. In order to understand PHFs of

RATs comprehensively, we need to analyze both RAT con-
troller and RAT stub. However, RAT controllers are owned
by attackers and never installed on victim’s computer, so they
are quite difficult to get. To address this issue, we spent lots of
time searching in underground hacker forums [9, 11, 18]. Af-

ter searching and availability checking, we find 82 workable
RATs controllers along with their stubs as a result. Further-
more, we classify 82 RATs controllers into 51 RAT families
according to GUIs, functionalities and authors. Most of them
are quite notorious and involved in famous security incidents
in recent years (Table 2). We are confident that these RATs
are good representatives of real-world RATs.

Table 2: A Subset of RATs and Security Incidents Involved
RAT Family Year of Activity Security Incidents Involved

Poison Ivy since 2006 RSA SecurID attack, 2011 [20]; Nitro at-
tacks on chemical firms, 2011 [8]

DarkComet since 2008
Attack on Syrian activists, 2012 [6]; lever-
aging the Charlie Hebdo shooting inci-
dent for malware spreading, 2015 [12]

XtremeRAT since 2010 Attack on US, UK, Israel and other Mid-
dle East governments, 2012 [15, 17, 27]

Adwind
RAT since 2012

Attack on aerospace enterprises world-
wide, 2017 [1]; Targeting Danish compa-
nies, 2016 [2]

njRAT since 2012
Attack on India, 2014 [10]; Middle East
cybercrimes, 2014 [24]; Syrian surveil-
lance campaigns, 2013 [34]

Observations. After collecting RAT samples, we execute
and analyze the functionalities of RATs. An observation
is that around 90% RATs only target at Windows. This
observation derives from a finding where around 90% RAT
stub can only be generated as files specific to Windows, such
as Windows PE executable files, Windows batch files and
VBScript files, which means that they can only compromise
Windows platforms. Another observation is that attackers
prefer writing RAT stubs in popular Windows built-in
programming languages. As we can see in Table 3, the most
popular language is C# and Delphi. This is expected because
(1) required runtime dependence libraries are few or none
(Delphi) or installed by default (C#, Net framework installed
on most Windows versions). Thus RAT written in C# or
Delphi can be executed easily on most Windows computers;
(2) vast amounts of ready-to-use open-source functionalities
of C# and Delphi are available on Internet, helping attackers
implement a RAT. In contrast, Java and Python are rarely used
because performing the opposite way in two aspects above.
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Figure 4: Data format of enhanced ETW event.
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Figure 5: An AATR of GdipCreateBitmapFromHBITMAP.

ing return address of call-stack to library function. According
to our evaluation, we confirm that our parser is about 6 times
faster than the native parser.

A sample of enhanced ETW event can be found in Figure 4.
Naturally the ETW trace stored in log files will be a sequence
of ETW events arranged in chronological order (see section
4). Note that ETW does not provide any input parameters
for system calls and APIs. The lacking of parameters could
make identifying fine-grained semantic behaviors of RATs
challenging (see Section 3.2).

3.2 Aggregated API Tree Record Graph
To recover the fine-grained semantics of RAT attacks, we

must provide an accurate program behavior model to describe
PHFs of RATs.

Semantic Collision Problem. The most effective state-of-
the-art approach to identify program behaviors is to use behav-
ior graphs built on system audit traces of low-level data like
system call and API. Behavior-graph based approaches gained
solid success in previous works [42, 44] but their success re-
lies heavily on the input parameters because parameters not
only provide essential behavior information but also are used
for reconstructing causality among low-level data in behavior
graphs. However, ETW lacks these parameters.

Without essential behavior information and causality recon-
struction in behavior graph model, a severe problem called
Semantics Collision will come up. Semantics Collision refers
to the ambiguity of behavior graphs where two different pro-
gram behaviors have the same behavior graph, i.e. different
program behavior semantics collide on a single graph, which
will lead to a ridiculous accuracy reduction. A real-world
example is shown in Figure 6. Semantics Collision ultimately
results in the failure of all previous works.

Our Solution. In summary, it’s risen to critical that we
need to solve semantics collision on ETW data which lacks pa-
rameters to perform effective fine-grained semantics recovery.
Motivated by the example in Figure 5, two different behaviors

may collide on a graph built on one single level of data (sys-
tem call), but apparent difference can be found on other levels
(library call-stack level). It suggests that combining multiple
dimensions of low-level data is a key solution. In this work,
we decide to use system call and library call-stack to build
our behavior model. The reason is that for a specific program
behavior, system call and library call-stack are generic and sta-
ble across different applications while application call-stack
varies drastically. For the ease of our further explanation, we
specify the top layer of library call-stack, which is the API
invoked directly by applications, as top-layer API.

Furthermore, three vital observations are found as follows:

• System calls invoked by a top-layer API and correspond-
ing library call-stack appear adjacently (aggregated) in
ETW traces.
• Different parameters of an API basically cause different

call-stack trees.
• Different call-stack trees of an API execution basically

imply different parameters inputed to that API.

These observations suggest that the call-stack tree can be
used for approximating parameters to mitigate the parame-
ter lack issue and call-stack correponding to one API can be
found adjacently in ETW traces. It leads to our core behav-
ior model design proposed as Aggregated API Tree Record
Graph Model (AATR Graph Model), a behavior graph built
on multi-dimensional data, achieving a balance between per-
formance and overhead. Compared to traditional behavior
graph models, AATR Graph Model turns single-dimensional
low-level data on its vertices to multi-dimensional data, specif-
ically an AATR, and correspondingly adjust the edges to be
the causality between AATRs.

Our design novelty surrounds the design of Aggregated API
Tree Record (AATR). An AATR is the API tree structured
by library call-stack invoked by a root top-layer API with
the system call as leaves. AATR can be regarded as a multi-
dimensional data of two different data levels. According to the
observations we mentioned above, we can mitigate the defect
as much as possible by leveraging call-stack. An example of
AATR in practice is shown in Figure 5.

3.3 AATR Based Log Reducer
When performing online recording, after parsing the ETW

audit logs collected by our collector, we find stored parsed
data are usually ridiculously huge. A key reason is that each
system call has a corresponding call-stack which contains
average 30 layers library functions.

To reduce logs, the basic idea of our solution is to eliminate
useless data and to compress duplicated data. According to
this basic idea, the jobs done by our log reducer can be shown
as follows:

• Eliminate application call-stack for every ETW event.
• Rearrange ETW audit logs into AATR traces.
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Figure 6: An example of Semantics Collion on system call level data. Two different program behaviors, visiting website and
capturing screen, look like exactly the same from the perspective of traces of system calls (Block (3) in the figure). But the
difference between these two program behaviors can be easily found on call-stack information.

The firs job is straightforward for these data are not needed
by our AATR graph model. The intuition is that library call-
stack of an AATR occurs repeatedly in corresponding adjacent
ETW events. And the structure of AATR will compress these
duplication so by folding duplicated parts.

3.4 AATR Graph Generator
Our Aggregated API Tree Record Graph Generator is used

in offline training phase to produce AATR graphs presenting
PHFs in collected PHF traces.

Typical behavior graph model generation usually gener-
ates too huge behavior graphs because they include as much
as information they have from low-level data traces which
are basically collected for a long enough time to ensure that
collected traces don’t cut off a complete program behavior.
Apparently, too huge behavior graphs will lead to troubles for
storing them and performing an efficient matching at runtime.

According to our observation, tremendous semantic redun-
dancy exists in our collected ETW audit logs and a large
portion of this redundancy is represented as loops in a long-
time execution. It implies that if we can reduce those repeated
parts, we will be able to find a compact representation for
fine-grained semantics, i.e. PHFs.

Therefore, our generation process is accomplished by a
redundancy-reduction-based algorithm and a causality plug-
in. The basic idea of redundancy-reduction-based algorithm
to leverage call-stack to precisely identify loop bodies and
for causality plug-in, we just use some existing techniques to
build causality for AATRs. since it is not our main contribu-
tion, we won’t dive much into it in this paper.

3.5 AATR Graph Matcher
Our Aggregated API Tree Record Graph matcher is used in

forensic phase to model the fine-grained semantics of reported
RAT attacks.

The design of our AATR graph matcher is motivated by
solving the noise problem in low-level data traces. Noise

refers to some unexpected system routine due to different run-
time system context, which could lead to instability where we
observe differences between low-level data traces of the same
program behavior. Noices are unrelated to program behav-
iors so matching should not be tampered by them. Since we
are using multi-dimensional data (ETW event), we need care
about noises in every dimension, which demands a relatively
loose matching algorithm to identify PHFs represented by
the graphs and meanwhile, without any loss of false-positive
concern since false-positive will be introduced by a loose
matching.

To address the noise problem without any loss of false-
positive concern, we propose a optimal partial graph match-
ing algorithm. The idea of it is different from finding exact
occurrences of behavior graphs in audit traces as previous
works do, we find a mapping between vertices of an AATR
graph and an ETW trace fulfilling the causality constraint and
optimizing a matching rate function which reflects how well
an AATR graph is matched on the input. This method works
well for a gap is found on the matching rate between a true
match and other cases so that we can set a universal threshold
for each PHF for triggering the match.

4 Enhanced Data Collector

Our enhanced data collector reuses the native ETW
recorder which efficiently record and store low-level events
in log files, and build our own parser which can efficiently
parses binary ETW data, recover semantics of events and fi-
nally aggregate parsed ETW logs into enhanced events. The
architecture is depicted in figure 7.

4.1 Quick Parsing
The key idea of quick parsing is to build a RAT-oriented

parser. It consists of three steps: 1) filtering out RAT-
unrelated events. ETW provides over one thousand groups
of log events, and collecting all these events could easily pro-
duce gigabytes of data per minute. However, after collecting
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Figure 7: Architecture of Enhanced Data Collector.

and looking inside traces of behaviors of all 82 RAT sam-
ples, we observe that most events are totally unrelated to RAT
(e.g. events related to Internet Explorer, Windows Defender,
and Word) while behaviors of RAT can be effectively re-
flected in low-level events (e.g. system call and call-stack).
Thus we filter out totally unrelated events and focus on sys-
tem call and call-stack events. 2) picking forensic-related
fields from the selected events. Except fields specific to cer-
tain types of events, each Windows kernel level event has 18
common fields [5]. However, not all common fields are use-
ful in RAT forensic. For example, a common field in kernel
events, elapsed execution time for kernel-mode instructions,
is designed to debug performance issues of applications, but
useless in RAT forensic. According to previous forensic sys-
tem [36, 40] and our domain knowledge on RATs, we select
and parse 3 fields from 18 common fields: process id, thread
id and time stamp. 3) creating parsing shortcuts for picked
fields. The ETW recorder stores events in a binary file. In or-
der to correctly extract values of fields from binary, complex
parsing steps are performed one by one, such as checking
Windows version, analyzing data structures of field, and lo-
cating fields in ETW binary data. Our idea of optimization is
to create and cache shortcuts for reusing results of complex
parsing steps. Specifically, each field is stored in a certain
offset of ETW binary data with a certain data size. In the of-
fline phase, in order to create shortcuts, we perform complex
parsing steps for each picked field to obtain offset and data
size, and store these information in a cache file. Note that the
process of generating shortcuts is automatically performed
without human efforts. In the online phase, the file is loaded
into memory. When a new ETW event occurs, we retrieve
offset and data size of a field from the memory and directly
jump to the offset of ETW binary data and extract values of
the field using data size without complex parsing steps.

4.2 Semantic Recovering

In addition to the parsing performance problem, some fields
provided by ETW lack semantics. Specifically, 1) values of
certain significant fields provided by ETW are wrong. For
example, the value of process id of system call is wrong,
which could cause a benign process detected as malware. 2)
ETW only provides memory address of system call and call-

stack rather than symbolic names. It is practical to resolve
system call and call-stack to symbolic names which contain
more semantics than memory address.

We address the above two problems in two steps: 1) Cor-
recting field values. ETW does not provide any documents
describing how to correct field values. By reverse engineer-
ing, we find that field values of a event can be corrected from
other events. Specifically, given a event with a wrong value,
we first locate another event which have a correct value, then
determine whether two events can be combined by corre-
lating semantics of two events. For example, the value of
process id of system call event is wrong. We found that the
context switch event has correct value of process id. Then
we analyze semantics of context switch event to determine
whether context switch and system call can be combined and
how to combine. Specifically, the operating system offers
time slices of CPU processor to threads that are eligible to
run. After a time slice is completed, a context switch event
occurs which switch the CPU processor from one thread to
another. Thus by tracking context switch events, we can ob-
tain which thread is running under a certain CPU processor.
At the same time, a system call event provides which CPU
processor the system call is related to. Thus by correlating the
CPU processor between context switch events and system call
events, we can map a system call to a thread. After getting the
thread id, we can easily get the process id by searching which
process create the thread. Finally, we correct the process id
and thread id value in the original system call event. 2) re-
solving system call and call-stack. The process of resolving
memory address to symbolic name has two steps. First, our
system locates a module which a memory address belong to,
and converts raw memory address to an offset of the mod-
ule. Specifically, Windows loads a module (e.g. DLL library)
in a random memory space when operating system restarts.
Our system leverage an event called ImageLoad from ETW
to obtain dynamic mapping relationships between memory
address and modules. Second, our system maps an offset of a
module to a symbolic name. Mapping relationships between
offsets of a module between symbolic names can be obtained
from debugging symbol files [28]. In order to resolve memory
address correctly after updates or patches, our system checks
and updates the mapping relationships automatically when
our system is started.
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4.3 Enhanced Event Format
With the above two techniques, raw ETW log data are

eventually transformed into enhanced events. Figure 4 shows
an example enhanced event of our logging system. Block (a)
is the basic information of an ETW event include the process
id (ProcessId) and the thread id (ThreadId) of the thread which
invoke the event, the event type (EventType), and the details of
the event (Details). In this example, EventType is system call,
and Details is the syscall name. Note that EventType could
also be kernel security-related events, such as FileIORead,
FileIOWrite and IPV4Connect, and the Details of these events
are the target object, such as the absolute path of a file, the
IP address with port. Block (b) is the callstack of the event,
which can be simplified into three parts: (b1) library callstack
and (b2) application callstack. Each entry of the callstack
represents a callee function with its lower entry being its
caller function.

5 AATR Graph Generator

In this section, we explain our Aggregated API Tree Record
Graph Generator design with insights detailedly.

5.1 Semantics Redundancy Problem
Low-level data traces are usually collected for a long

enough time so that traces can include a complete life cy-
cle for a program behavior. Although the whole execution can
be long, core parts often repeat themselves naturally. As a con-
crete instance, in key logging PHF, RAT stub keeps recording
keyboard strokes. The corresponding ETW trace is shown in
Figure 8.

Obviously, the major semantics lies inside the main loop
body while the collected trace still contains a tremendous
amount of duplicated events, which leads to a severe seman-
tics redundancy problem.

Existing works focus more on how to build and reconstruct
accurate causality in low-level data but ignore semantics re-
dundancy, which result in a huge behavior graph result, mak-
ing storing of behavior graphs demanding unnecessary space
and graph matching inefficient. What’s more, redundant parts
in a trace also contain more noise which graph matcher has
to tolerate.

5.2 Redundancy-reduction-based Generation
Enlightened by the example in Figure 8, it seems that most

of semantics redundancy occurs as loops. We further confirm

this conjecture by conducting trace analyses, finding that most
RAT execution can be divided into 3 phases.

1. (Prologue) The starting phase of the program execution.
It performs initialization like reading configuration files
and allocating memory for latter execution.

2. (Loops) The main part of the program execution. It con-
tains the major functionality in several loops.

3. (Epilogue) The ending phase of the program execution.
It releases all acquired system resources and finishes the
execution in the end.

This observation is further confirmed in [48], a forensics
paper also using ETW call-stack information.

These observations motivate us that as long as we can re-
duce the repeated loops, we can extract information we need
to describe fine-grained semantic behavior, i.e. PHFs of RATs.
Our method is to use application call-stack and library call-
stack on a system call to conduct the reduction on input traces.
These call-stack information accurately locates every system
call in program code. And it helps distinguish whether two
system call events of the same system call type refers to a
revisit of the same system call in the code by the program
counter. Once we confirm a revisit, we are confident that all
system call events in the trace between these two events forms
a loop body. After we get all loop bodies identified, we select
the most representative one, apply redundancy-reduction re-
cursively so that we can deal with nested loops not only in
application code but also in library code, along with the parts
of prologue and epilogue as our redundancy reduction result.

The above paragraph describes the major logics of our
redundancy-based graph generation. Two more technical de-
tails are as follows. First, we unfold the input traces received
from our log reducer, which resumes the data format to be
multi-level data so that it is convenient for generation algo-
rithm to manipulate. Second, we organize the redundancy-
reduction result into an AATR sequence and then add the
causality result on it to turn it into an AATR graph.

We give our AATR graph generation as the following pseu-
docodes in Algorithm 1 and Algorithm 2.

We implement our redundancy-reduction by a depth-first
recursion where we first deal with top-level loops and dive
into nested loops at once. This implementation follows the
real work flow of the program execution and also provides
ease for implementation code writing. The result shows our
generated graph is basically 10k times smaller than the tradi-
tional behavior graph.

6 AATR Graph Matcher

In this section, we explain our design for Aggregated API
Tree Record graph matcher. We will formalize the optimal
partial matching problem and explain our solution to noise
problem without loss of false-positive concern.
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Algorithm 1 Redundancy-reduction Algorithm
Input: An unfolded AATR trace φinput={θ j=(syscall,library call-
stack,application call-stack) | j=1 . . .m}
Output: An AATR sequence without causality φreducted ⊆ φinput
Initialize: φreducted ← /0

1: function REDUNDANCY-REDUCTION(φinput )
2: scan from θm to θ1, find the last θ f lbs ∈ φinput where ∃k,

θ f lbs=θk, f lbs+1≤ k ≤ m
3: φpro← θ1 . . .θ f lbs−1
4: get all loop body separator αlbs←{ jk|θ jk =θ f lbs}
5: llbs← max(αlbs)
6: scan from θ1 to θm, find the last θlbe ∈ φinput where ∃k,

θlbe=θk, f lbs≤ k ≤ llbs
7: φepi=θlbe+1 . . .θm
8: αlbs← αlbs∪{lbe+1}
9: get the maximum gap index js=argmax js js+1− js

10: get selected loop body φslb=θ js . . .θ js+1

11: get nested loop recursively reduced result φnesrec ←
Redundancy-Reduction(φslb)

12: get next top-level loop recursively reduced result φnextrec←
Redundancy-Reduction(φepi)

13: φreducted ← Concatenate(φpro, φnestrec, φnextrec)
14: return φreducted
15: end function

6.1 Optimal Partial Matching Problem
As mentioned in system overview, our task is to find the

mapping between vertices of an AATR graph and ETW trace
event fulfilling the causality constraint, i.e. the chronological
order between AATRs and meanwhile maximize the matching
rate function which is designed to reflect how well an AATR
graph is matched. For ease of our further explanation, we
formalize optimal partial matching program as follows.
Definition 1 (Optimal Partial Matching Problem)
Given a labeled direct acyclic simple graph G=(V ={vi|1≤
i≤m},E ⊆V ×V ) and a labeled sequence S={s j|1≤ j≤ n},
find an one-to-one mapping f : V ′↔ S′, where V ′ ⊆ V and
S′ ⊆ S, so that (1): f can maximize a matching rate function
t : P(V × S)→ [0,1]; (2) for ∀vx,vy ∈ V ′, if there is a path
from vx to vy in G, sx= f (vx)< sy= f (vy).

Here P(V ×S) represents the power set of V ×S and N rep-
resents the set of natural number. Function t is the matching
rate function which is designed to reflect how well the graph
is matched. Its definition will be given in 6.2.

Consider how we build the optimal mapping f , when we
decide to map a vertex vi to an event s j, all previous vertices of
vi can only be matched to events prior to s j due to the contraint
(2). This observation is more clear in a special case of our
matching problem where G is a sequence. In this case our
matching problem become the Maximal Weighted Common
Sequence problem (a generalized version of Longest Common
Sequence problem) where the optimal substructure property
is clear of matching starting i vertices in G to starting j events
in S. This finally motivate our dynamic-programming-based

Algorithm 2 Aggregated API Tree Record Graph Generation
Input: (1) n unfolded AATR traces collected by enhanced data
collector, corresponding to one selected PHF: Φph f ={φi|i=1 . . .n},
where trace φi={θ j=(syscall, library call-stack, application call-
stack)| j=1 . . .m}; (2) a causality analysis engine CausalityEngine
which take an AATR sequence to output an AATR graph; (3) traces
about all other PHFs: Φother; (4) traces of benign program normal
operation: Φbenign;
Output: n AATR graphs, each represented as direct acyclic graph
of AATRs which defines the PHF semantically: Ψ={ψ}, where
ψ=(∪AATR, ∪causality)
Initialize: Ψ← /0.

1: procedure AGGREGATED API TREE RECORD GRAPH GEN-
ERATION

2: Preprocess each trace φi ∈Φph f .
3: for each trace φi ∈Φph f do:
4: ψi← REDUNDANCY-REDUCTION(φi)
5: Eliminate application call-stack in ψi and organize ψi to

be an AAR behavior sequence
6: ψi← CausalityEngine(ψi)
7: eligible← true
8: for each trace φi2 ∈ (Φother ∪Φbenign) do
9: if ψi matched φi2 then

10: eligible← f alse
11: end if
12: end for
13: if eligible then
14: Ψ←Ψ∪{ψi}
15: end if
16: end for
17: end procedure

matching algorithm on AATR graph matching and it will be
introduced in 6.3.

6.2 Matching Rate Function

To reflect how well an AATR graph is matched, our match-
ing rate function is given as follows:

Definition 2 (Matching Rate Function)
Given a labeled direct acyclic simple graph G=(V ={vi|1≤
i ≤ m},E ⊆ V ×V ), a labeled sequence S={si|1 ≤ i ≤ n}
and an one-to-one mapping f : V ′↔ S′, where V ′ ⊆ V and
S′ ⊆ S, a matching rate function t : P(V ×S)→ N is defined

as t= ∑∀(v,s)∈ f bonus(v,s)
∑∀v∈V bonus(v,v) , where bonus is a mapping :V ×S→ N

representing a matching score between a pair of v and s.

Further, given a pair of (v,s) where v=(syscv, lib_stackv)
and s=(syscs, lib_stacks). Here syscv is the system call of v
and lib_stackv is the corresponding library call-stack. And
the score function can be given as follows:

bonus(v,s) =

{
1+∆(lib_stackv, lib_stacks) syscv=syscs

0 otherwise
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Figure 9: An example of dynamic programming transition on
graph states. The gray vertices stand for Frontier Vertex Set
in each step. They are vertices which can be picked for next
step because all of their previous vertices are covered.

Here ∆(lib_stackv, lib_stacks) is the longest common part
in library call-stacks of v and s starting from bottom-level to
top-level.

The intuitive explanation of matching rate function is that
we sum up the similarity of every matched (v,s) pair and
use the rate of this summed score over the score of a perfect
matching, i.e. ∑∀v∈V bonus(v,v) to get our normalized match-
ing rate. Obviously, the higher value of the matching rate
function reflects a better match of the AATR graph.

6.3 Dynamic Programming based Matching
To perform a dynamic programming (DP) based graph

matching for AATR graph, we need to define the transition
state representing every subproblem so that DP algorithm can
do its transition. In this work, we define it as Graph State as
follows:
Definition 3 (Graph State)
Given a direct acyclic graph G = (V,E), a graph state gs
can be defined as a mapping gs : V →{0,1} where gs(v) = 0
means that v is in the subgraph represented by gs and gs(v)=1
means it has not.

Our DP transition will be performed to calculate matching
rate function t for subproblems on the transition graph built
on graph states. One transition step will act on a graph state by
picking next vertex to be included. Note that we can only pick
the vertices in Frontier vertex set to not violate constraint (2)
in Definition 1. A concrete example of a step of DP transition
on a graph state is shown in Figure 9.

Our algorithm pseudocode is given as Algorithm 3 and 4.

7 Evaluation

In this section, we evaluate RATScope with a large set of
real-world RAT samples and benign applications by answer-
ing the following questions.
• Q1. Can RATScope effectively identify fine-grained se-

mantics of attacks caused by existing real-world RATs
as well as previously unknown RATs?

Algorithm 3 Transition Graph Building
Input: An unfolded AATR graph ψ=(V =∪AATR, E=∪causality);
Output: A graph state transition graph T G=(Vtr={∀graph-state},
Etr={∀graph-state-transition} ⊆ (Vtr×Vtr),label : Etr→V )
Initialize: gsinit ←{gs(v)=1|∀v ∈V}; addedGs←{gsinit}; T G←
({gsinit}, /0, /0); t psortQueue←{gsinit};

1: procedure TRANSITION-GRAPH-BUILDING(ψ)
2: while t psortQueue 6= /0 do
3: gshead ← t psortQueue.pop()
4: V f rontier← GetFrontier(gshead , ψ)
5: for each vitr ∈V f rontier do
6: gsnew← gshead
7: gsnew(vitr)← 0
8: Vtr←Vtr ∪{gsnew}
9: Etr← Etr ∪{(gshead ,gsnew)}

10: label((gshead ,gsnew))← vitr
11: if gsnew /∈ addedGs then
12: t psortQueue.push(gsnew)
13: addedGs← addedGs∪{gsnew}
14: end if
15: end for
16: end while
17: return T G
18: end procedure

• Q2. Can RATScope be deployed on real-world systems
with acceptable performance and storage overhead?

All machines used in our experiments have the same hardware
configuration which is 3.3 GHz Intel i5-4590 CPU and 4 GB
RAM.

7.1 Matching Accuracy

7.1.1 Experiment Setup

PHF Trace Collection. We trigger 5 PHFs in Table 1 for
all 82 workable RATs from 51 families in Table 3 and collect
traces for every PHF of every RAT sample.

Benign Trace Collection. We select tens of popular ap-
plications of various utilities. Particularly, we select several
benign applications who have functionalities similar to the se-
lected PHFs, such as audio-related (QuicktimePlayer and Au-
diorecorder), shell-related (CMD and Remote Utility), screen-
related (SnippingTool, Teamviewer), and download-related
(FreeDownloadManager) for a more strict false-positive test.

True-Positive Experiment. We apply 10-fold cross valida-
tion method on collected traces for each PHF. Specifically, we
split traces of each PHF into 10 folds randomly and pick one
fold as testing set iteratively and the rest part as training set.
Then we generate behavior patterns for each trace in training
set, and match these patterns on testing set. To demonstrate
the strength of our AATR design, we generate three kinds of
patterns which are AATR model, TopAPI model where only
top-layer APIs are used to describe PHFs, and Syscall model
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Algorithm 4 AATR Graph Matching
Input: (1) A unfolded input ETW trace φ={θ j=(syscall, library
call-stack) | j=1 . . .m}; (2) A unfolded AATR graph ψ=(V =∪AATR,
E=∪causality);
Output: A matching rate ∈ [0,1]
Initialize: T G=(Vtr,Etr,label) ← Transition-Graph-Building(ψ);
gsinit ← {gs(v)=1|∀v ∈ V}; gs f in ← {gs(v)=0|∀v ∈ V}; ∀gs ∈ Vtr,
score(gs,θ0)← 0, where score : Vtr×φinput → N;

1: procedure GRAPH-MATCHING(φinput , ψ)
2: for j = 1→ m do
3: d pQueue←{gsinit}
4: score(gsinit ,θ j)← 0
5: while d pQueue 6= /0 do
6: gshead ← d pQueue.pop()
7: score(gshead ,θ j)← score(gshead ,θ j−1)
8: for each gspred where e1=(gspred ,gshead) ∈ Etr do
9: if score(gspred ,θ j)> score(gshead ,θ j) then

10: score(gshead ,θ j)← score(gspred ,θ j)
11: end if
12: delta← score(gspred ,θ j−1)+bonus(labele1 ,θ j))
13: if delta > score(gshead ,θ j) then
14: score(gshead ,θ j)← delta
15: end if
16: end for
17: for each gssucc where e2=(gshead ,gssucc ∈ Etr) do
18: if gssucc /∈ d pQueue then
19: d pQueue.push(gssucc)
20: end if
21: end for
22: end while
23: end for
24: f inalScore← score(gs f in,θm)
25: return f inalScore/maxScore
26: end procedure

where only system calls are used. The results are shown in
the TP Rate column in Table 4.

False-Positive Experiment. Our false-positive experiment
consists of two parts: 1) Non-PHF test. For each PHF, we use
traces of this PHF as the training set and use traces of the
other 4 PHFs as the testing set. 2) Benign test. For each PHF,
traces of this PHF are considered as training set and benign
traces as testing set. The results are listed in the FP Rate
column of Table 4, respectively.

7.1.2 Results Analysis

RATScope is capable of identifying PHFs of unknown
RATs accurately. From the TP testing result in Table 4, we
can see that for every PHF, almost all unknwon RATs can be
matched with AATR graphs generated by known RATs. To
further explore the reason, we manually reverse engineer all
RAT samples and analyze implementation methods of each
PHF. Our finding is the implementation methods for one PHF
are homogeneous across various RATs in the past 11 years.
For example, the AATR graph of remote shell of SpyNet RAT

which is active since 2008 can match that of 28 other RATs,
meaning they implement remote shell using the same method.

AATR model has much less false-positve than TopAPI
model and System call model. From Table 4, AATR model
has a high TP rate close to TopAPI and Syscall model, while
it has a much lower FP rate than the other two models. The
results are consistent with our observations about Semantic
Collision. Note that the FP rate of AATR model on the non-
phf test is still relatively high. After manually checking the
traces, we find that RATs of these traces enable some PHFs
like key logging by default, which means these traces actually
perform these PHFs and should not be considered as False-
positive. After correcting these results, all FP rates of AATR
model on the non-phf test reduce to 0%.

AATR model has some slight false-positive on benign
traces. Still from Table 4, AATR model succeeds in identify-
ing audio record, remote shell, and download&exec perfectly,
but some slight FPs on the benign test occur on remote desk-
top and key logging. Two major reasons are 1) benign appli-
cations truly perform actions similar to RATs. For example,
some RATs implement remote desktop by capturing screens
continuously, and the built-in snipping tool on Windows
uses the similar method to implement capturing screen. 2)
some RATs functionalities are implemented by very low-level
APIs so that the call-stack tree is not deep enough to differ-
entiate AATR model from Syscall model and TopAPI model.
For example, GetKeyboardState, a core API in key logging,
invokes the system call NtUserGetKeyboardState directly. We
suppose these behaviors should be reported as it is exactly
what RAT can do, especially in the first case, but still we
think we can build a white list for a small number of benign
applications to avoid both kinds of false-positives if a harsh
requirement exists.

Evasion Discussion. The key reason why our system can
detect previously unknown RATs is that our system model
semantic behaviors of RATs and different RAT families use
the same implementations of PHFs. If attackers know our
design, they can change the implementations of PHFs to evade
our system. However, we argue that 1) Our system is more
robust than state-of-the-art technique, i.e. traditional signature-
based techniques [23], which can easily be evaded by static
obfuscation techniques. What’s more, our system is even
resilient to dynamic obfuscation techniques like reordering
APIs and API Injection. 2) The number of implementations of
PHFs is limited and much less than malware variants. When
an unknown implementation of PHFs occurs, as long as our
system can generate a behavior graph for this implementation,
any unknown RAT which is based on this implementation
will be detected by our system. 3) Our work can increase
needed efforts from attackers. In order to evade our system,
they have to find an unknown implementaion of each PHF,
which generally cannot be obtained easily.
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Table 4: Detection accuracy of three models on 5 PHFs.
FP RatePHF Model TP Rate NonPHF Benign

AATR 100% 0% 0%
TopAPI 100% 10.51% 10.20%Audio Record
Syscall 100% 10.51% 48.97%
AATR 95.00% 4.16% 0%

TopAPI 86.30% 11.10% 2.04%Remote Shell
Syscall 96.11% 18.05% 32.65%
AATR 89.40% 0% 0%

TopAPI 91.90% 17.46% 14.28%Download & Exec
Syscall 93.99% 9.32% 38.77%
AATR 92.30% 4.36% 4.08%

TopAPI 94.03% 17.06% 20.41%Remote Desktop
Syscall 96.33% 19.64% 42.85%
AATR 83.50% 2.3% 2.04%

TopAPI 90.01% 16.26% 10.20%Key Logging
Syscall 90.50% 22.42% 20.41%

7.2 Performance and Storage Overhead

ETW Recording Overhead. To evaluate ETW recording
overhead, we need to measure the overhead under different
workloads. Therefore, we conduct two experiments to exhibit
the performance of ETW.

Firstly, we build a benchmark to generate diversified types
of ETW events and control the number of events generated
per second and show a measurement on it. As Figure 10 (a)
depicted, the overhead stays lower than 7% under 20,000
events per second while it can go up to 83.72% under 229,475
events per second, which is maximal events the machine can
generate per second. This indicates that the runtime overhead
of the ETW recorder hinges on the number of ETW events
generated per second.

Secondly, we observe how ETW performs in real-world
system environments. Specifically, we select 12 popular appli-
cations including browsers, messaging applications, editors,
media players, server-side software and development tools.
Then we leverage a GUI testing tool to automatically trig-
ger functionalities of these applications repeatedly, such as
visiting websites, receiving and sending emails, editing docu-
ments, playing videos, online voice chatting and compressing
files. Meanwhile, we repeatably collect traces for them and
calculate average number of generated events per second. The
results are shown in Figure 10 (b). Provided the average
number of generated events per second of most applications
is smaller than 20,000, the ETW runtime overhead will be
basically lower than 7% according to Figure 10 (a).

To further investigate the results, we look into the details of
traces. We find that the number of events per second goes up
to 30,000 ∼ 40,000 events per second only when applications
start up, which could incur 10% ∼ 14% overhead. The reason
is that applications usually invoke lots of APIs to initialize
themselves by loading libraries, reading configuration files
and checking machine states. Since the duration of start up
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Figure 10: Figure (a) shows the runtime overhead with dif-
ferent numbers of events per second. Figure (b) shows the
number of events per second generated by different kinds of
popular applications.

is short and users seldom restart applications frequently, this
won’t be a big trouble for deploying our system. For some
other exceptions in the figure, Chrome and Windows gen-
erates over 11% overhead due to their program complexity
while Winscp and Git incur around 7% overhead because they
were always downloading files from Internet, which leads
into a generation of many IO-related ETW events.

ETW Parsing Overhead. To show the efficiency of our
proposed parsing techniques, we conduct a comparing experi-
ment between our system and other built-in parsing libraries
mentioned in Section 4. Given the same raw ETW log file, we
parse this file with every parsing tool on the same Windows
platform in the same machine. The final results are listed in
Table 5 and it shows that RATScope is nearly 6 times faster
than TDH and 2 times faster than TraceEvent (state-of-the-art
library). Note that another library called Krabsetw does not
support parsing from log files so we don’t compare with it.
Faster parsing speed helps our system to surpass other sys-
tems by saving system resources and responding to attackers
more quickly.

Table 5: Comparing Parsing speed of different ETW parsers.
# of Parsed Event / Sec

TDH 93,254
TraceEvent 242,716
RATScope 552,090

Matching Overhead. Our matching overhead consists of
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preprocessing overhead and graph matching overhead. To
evaluate it, we collect traces of three representative real-world
scenarios and apply preprocessing and graph matching respec-
tively. The user on the scenario A installs a tiny Web server,
a FTP server and a SSH server for internal communications.
The user on the scenario B is an officer who usually visits
web pages and watches videos with Chrome, sends or receives
emails with Outlook, and edits documents with PowerPoint.
The user on the scenario C is a software development engineer
who usually writes codes with Visual Studio, visits web
pages with Chrome, and reads programming manuals with
Adobe Reader. The result are listed in Table 6. Note that the
preprocessing overhead is very heavy which could slow down-
load the process of forensic. We argue that 1) traces are sent
to servers and processed in servers, and users would not be
affected by the preprocessing. 2) Each trace only need to be
preprocessed one time. 3) Current preprocessing program is
single-thread and we haven’t optimize it. In the future, we can
leverage multiple CPU cores to preprocess traces in parallel
to reduce preprocessing time.

Table 6: Matching Overhead under different scenarios.
Scenario A B C

Recording Time 297s 301s 286s
Preprocessing Time 306s 446s 353s

Matching Time 152s 278s 195s

Storage Overhead. We evaluate the storage overhead un-
der the same three typical real-world scenarios mentioned in
Section 7.2. We deploy our system under these three scenarios
and collect data for one day respectively. Table 7 lists storage
sizes before and after applying our AATR-based log reducing
technique. This technique can get a good compression ratio
because most of call-stacks of neighbor events are the same.

Table 7: Storage overhead of one day under three scenarios.
Scenario A B C Avg.

Storage Size
Before Reduction 0.45 GB 0.97 GB 0.61 GB 0.68 GB

Storage Size
After Reduction 0.09 GB 0.24 GB 0.15 GB 0.16 GB

Compression
Ratio 20% 24.7% 24.6% 23.1%

8 Related Works

Attack Causality Analysis plays a vital role in today’s
forensics area. The basic idea of original causality analysis
is to build causal graphs by connecting system objects like
processes, files and registries using low-level events like file
IO and network operations. Given a detected attack point, for-
ward and backward tracking along causal graphs will be used
to find attack-related events so that it can extract a blueprint
of the attack from tremendous system data [40, 41]. Many

works have been proposed aiming at improving causality
graph framework. Some works [43, 44, 46, 48, 50] mitigated
the dependency explosion problem by fine-grained causality
tracking to reduce more unrelated data. Meanwhile, some
other works [36–38, 47] focus on real-time and scalability by
prioritizing the tracking process and proposing effiecient data
storage model. However, previous works don’t concentrate
on the attacker’s intention when performing forensic analy-
ses so that their result are too coarse-grained to be used for
understanding RAT attacks.

Malware behavior modelling is a mature security re-
search topic where researchers propose and evolve behavior
models to describe semantics of malware behavior, keeping
pace with the increasing complexity of malware. This topic
derives from the need for solving evasion problems caused by
static obfuscation in malware detection area. The key reason
for static obfuscation to be effective is that static features
used for detection are easily changed artifacts in malware
binaries [54,55]. Behavior modelling solves this evasion prob-
lem by capturing the information flows among system calls
essential to malwares’ task, which cannot be easily evaded
by static obfuscation [31, 42]. However, these models focus
on the behavior of the entire malware, which is not suitable
for our PHF modelling since PHFs are just some core parts
of the whole program behavior. Furthermore, most behavior
models rely heavily on the parameter of system call which is
not provided, it leads to the final failure for previous works.

Remote Access Trojan. The increasingly prevalent RAT
attacks draw more attention. A few previous works focused
on RAT detection [30, 39]. They rely on network-based fea-
tures to detect RATs in early stage. However, RATs tend to
be stealthy and low-traffic so that they cannot accurately de-
tect RAT in practice. Farinholt et al. [32] tried to understand
the motives, intentions, and procedures of RAT. However,
they only focus on one RAT family and did not propose any
approach to mitigate RAT attacks.

9 Conclusion

In this paper, we propose RATScope, an instrumentation-
free semantic-aware forensic system which can efficiently
record and reconstruct RAT attack with fine-grained semantics
on Windows. We propose novel methods on ETW collector
to achieve a fast parsing and a low space overhead along with
a novel AATR graph model for describing PHFs of RATs.
Evaluation results show that RATScope can record low-level
events including syscalls with call-stack for long periods of
time with reasonable runtime and space overhead, achieving
great accuracy of identifying semantics of RAT attacks.
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