
Computer Networks 161 (2019) 68–81

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A lightweight policy enforcement system for resource protection and

management in the SDN-based cloud

�

Xue Leng

a , Kaiyu Hou

b , Yan Chen

a , b , ∗, Kai Bu

a , Libin Song

c , You Li b

a College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
b Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
c TuSimple, San Diego, CA 92122, USA

a r t i c l e i n f o

Article history:

Received 31 December 2018

Revised 30 May 2019

Accepted 31 May 2019

Available online 13 June 2019

Keywords:

Software-defined networking

SDN-based cloud

Network management

Access control

a b s t r a c t

SDN-based cloud adopts Software-defined Networking (SDN) to provide network services to the cloud,

which allows more flexibility in network management. Meanwhile, the SDN controller provides users

and administrators with various APIs to access and manage network resources. However, unauthorized

requests, which are either sent from unregistered users or containing malicious operations, cannot be

completely defended. Moreover, the correctness of network configuration in the SDN-based cloud can-

not be guaranteed. In this paper, we propose SDNKeeper, a generic and fine-grained policy enforcement

system for the SDN-based cloud, which can defend against unauthorized attacks and avoid network re-

source misconfiguration. Besides, a policy language is designed for administrators to define policies based

on the attributes of the requester, resource, and environment. These policies will take effect when there

are requests accessing the SDN controller via Northbound Interface (NBI). Specifically, SDNKeeper can

block unauthorized network access requests outside the controller to protect the resources inside. Com-

pared to other traditional policy-based access control systems, SDNKeeper is application-transparent and

lightweight, which makes it easy to implement, deploy, and reconfigure at runtime. Based on the cor-

rectness proof of system design and the prototype implementation and evaluation, we conclude that

SDNKeeper achieves accurate and efficient access control with insignificant throughput degradation and

computational overhead.

© 2019 Elsevier B.V. All rights reserved.

a

o

R

r

t

w

b

F

w
1. Introduction

Combining the programmability of Software-defined Network-

ing (SDN) [2] and elasticity of the cloud, SDN-based cloud as a new

paradigm, provides a more flexible and convenient way to con-

trol and manage network resources. These advantages make SDN-

based cloud have a broad application prospects. The global cloud

service providers like Microsoft Azure [3,4] , IBM [5] and Google

[6] are all leading to use SDN in their cloud network architectures.

What’s more, the Cloud Data Center and Carrier Networks, such
� This work is supported in part by the National Key R&D Program of China

(2017YFB0801703), and in part by the Key Research and Development Program

of Zhejiang Province (2018C01088). A preliminary version of this manuscript has

been published in 2018 IEEE/ACM 26th International Symposium on Quality of Service

(IWQoS) , (Banff, Alberta, Canada, June 4–6, 2018) as a regular paper [1] .
∗ Corresponding author at: Department of Electrical Engineering and Computer

Science, Northwestern University, Evanston, IL 60208, USA.

E-mail addresses: lengxue_2015@outlook.com (X. Leng),

kyhou@u.northwestern.edu (K. Hou), ychen@northwestern.edu (Y. Chen),

kaibu@zju.edu.cn (K. Bu), slbthu@gmail.com (L. Song), you.li@u.northwestern.edu

(Y. Li).

d

t

o

fl

b

u

o

s

p

https://doi.org/10.1016/j.comnet.2019.05.022

1389-1286/© 2019 Elsevier B.V. All rights reserved.
s CloudFabric [7] developed by Huawei and NovoDC [8] devel-

ped by China Mobile, also adopt SDN-based Cloud. The Synergy

esearch Group [9] shows the global cloud infrastructure service

evenue has reached $12 billion in the third quarter of 2017. And

he International Data Corporation [10] predicts that the world-

ide market of the SDN-based Cloud Data Center will reach $12.5

illion by 2020.

The abstract architecture of SDN-based cloud is depicted in

ig. 1 (a). The SDN controller is the core component, providing net-

ork services for upper layer applications and managing the fun-

amental network resources. Due to the combination of SDN and

he cloud, SDN-based cloud can serve more users with a wealth

f services than SDN, and also manage network resources more

exibly than cloud. Therefore, there are two aspects that need to

e considered, one is effectively protecting network resources from

sers’ malicious requests, and the other is flexibly managing vari-

us network resources.

Since the advent of SDN, there has been a lot of excellent re-

earch focusing on the security of SDN from different angles. To

rotect the SDN controller, works [11,12] adopt user authentication

https://doi.org/10.1016/j.comnet.2019.05.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.05.022&domain=pdf
http://iwqos2018.ieee-iwqos.org/files/2018/05/SDNKeeper.pdf
mailto:lengxue_2015@outlook.com
mailto:kyhou@u.northwestern.edu
mailto:ychen@northwestern.edu
mailto:kaibu@zju.edu.cn
mailto:slbthu@gmail.com
mailto:you.li@u.northwestern.edu
https://doi.org/10.1016/j.comnet.2019.05.022

X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81 69

Fig. 1. Architecture of SDN-based cloud, as well as the application scenario of

SDNKeeper .

t

i

w

o

t

i

s

a

w

m

p

S

b

i

q

n

r

p

o

b

v

l

a

c

r

t

w

i

a

c

w

m

a

t

s

a

a

t

b

j

s

r

i

f

g

T

i

S

c

n

t

S

2

2

a

v

b

[

[

o

t

p

t

t

a

m

m

o

c

c

f

r

d

s

t

v

a

u

t

c

t
o block unregistered users. But these methods would be useless

f the legal user is compromised to execute malicious operations

ith his verified identity. Works [13–16] perform access control

n either the southbound interface or the plugins inside the con-

roller, both of which can not obtain the intention of users intu-

tively. Works [17,18] redesign the northbound interface (NBI) to

ecure the SDN controller, but cannot control user behavior at the

ttribute level. Based on the current research, securing SDN net-

ork at a fine-grained level and managing resources in a uniform

anner still have not been solved well.

To address the remaining problems mentioned above, in this

aper, we propose a fine-grained policy enforcement system,

DNKeeper , to protect and manage network resources in the SDN-

ased cloud. According to the architecture in Fig. 1 (c), SDNKeeper

s at the top of the SDN controller to filter out the malicious re-

uests at the NBI before they invade the controller resources and

etwork resources. Performing access control on NBI can not only

eserve the high-level abstraction information from users and up-

er layer applications, but also block the illegal access requests

utside the controller. Hence, the precious controller resources can

e used to process the necessary requests.

In order to make better use of SDN, various plugins 1 are de-

eloped. These plugins provide a large number of APIs for upper

ayer applications. Thus, managing these APIs in a unified manner,

s well as effectively verifying the legitimacy of access requests is

hallenging. What’s more, to reduce the occurrence of human er-

ors, it’s necessary to provide a convenient way for administrators

o manage the resources. While designing a friendly and effective

ay to interact is also a challenge. In the process of designing and

mplementing SDNKeeper, we overcome the challenges mentioned

bove.

SDNKeeper performs access control on NBI based on the poli-

ies defined by administrators. In order to provide administrators

ith a convenient way to express their intentions to protect and

anage resources, we design a policy language with a readable

nd operable format, which can narrow down to any specific at-

ribute of the requests and resources. A policy interpreter is de-

igned to parse these policies into a controller–processable format

nd then issue them to the data store. After a request has arrived

t the controller, permission engine will check its legitimacy against

he policies issued previously. The benign requests will continue to

e processed by the controller, while the illegal ones will be re-

ected by the policies and then blocked outside the controller. In

ummary, all access control strategies for protecting and managing

esources can be expressed in our policy language and take effect

n our system.

For this work, we made the following contributions.
1 A plugin is a project that is located in controller and provides specific functions

or upper level applications.

v

s

a

r
• We propose a generic policy enforcement system on SDN con-

troller to protect and manage network resources in SDN-based

cloud by monitoring the access requests.

• We design a fine-grained policy language for administrators

to define management policies, realizing centralized protection

and management of resources.

• We adopt formal methods to prove the design correctness of

SDNKeeper by constructing the system model and checking the

critical properties.

• We implement SDNKeeper with the feature of hot-update, to be

specific, it means policy hot-update. Administrators can update

policies on the fly and the modified policies will take effect to

subsequent requests soon after.

• We evaluate the performance of SDNKeeper with three metrics:

effectiveness, latency and throughput, and the results show that

SDNKeeper can accurately intercept illegal access requests with

minor computational overhead.

The rest of paper is structured as follows. First, research back-

round (Section 2.1) and related work (Section 2.2) are presented.

hen, an overview of SDNKeeper is described in Section 3 , includ-

ng application scenarios and the architecture of SDNKeeper. In

ection 4 and Section 5 , we illustrate the design details of poli-

ies and permission engine. Then Section 6 proves the correct-

ess of the system design. Finally, we implement and evaluate

he SDNKeeper prototype in Section 7 , and conclude the paper in

ection 8 .

. Background and related work

.1. Background

Since the birth of SDN, academia and industry have invested

 lot of energy in research. Fortunately, by virtue of unique ad-

antages of programmability and centralized control, SDN has

een widely used in various scenarios, such as home networking

19,20] , enterprise networking [21] , telecommunication networking

22,23] and data center/cloud networking [24–26] . The emergence

f SDN has brought new ideas to solve the inherent problems in

hese scenarios, such as increased management complexity, com-

lex deployment of solutions and high cost for new feature inser-

ion.

In large-scale networking, the resource management as well as

he network creation and configuration completely rely on network

dministrators, so that human errors are inevitable. When the ad-

inistrator configures the network, he needs to always keep in

ind the commands and parameters which are configured previ-

usly. With a slight negligence, networks that need to be isolated

ould communicate with each other. Sometimes these man-made

onfiguration errors are hard to be aware until alerts are received

rom physical network devices or users. What’s more, locating the

oot cause of network misbehavior is also a challenging work. Un-

er this circumstance, a tool for assisting in managing network re-

ources becomes important and necessary for network administra-

ors.

Besides these inherent drawbacks, when adopting SDN to pro-

ide fundamental network services in large-scale scenarios such

s cloud, a series of new issues will arise. First, the registered

ser is compromised to issue malicious requests to the SDN con-

roller. Second, the requests are sent correctly, but the content

ould have been tampered with during transmission. Finally, at-

ackers can send malicious requests to the SDN controller by in-

oking the NBI obtained by other means. More details of these is-

ues will be demonstrated in Section 3.2 . Without access control

nd verification mechanism, SDN controller may execute harmful

equests and the network will be paralyzed at worst. Since access

70 X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81

Fig. 2. The evolution of N orthbound I nterface.

t

s

t

n

l

D

c

m

f

l

c

v

w

a

c

a

w

t

g

m

f

p

(

a

o

t

t

s

o

s

m

p

a

w

[

p

p

p

c

t

p

f

t

a

c
requests are passed from cloud to the SDN controller via NBI, the

best way to protect resources is to perform access control on the

NBI. As depicted in Fig. 2 , the evolution of NBI has gone through

three stages [27] . As the focus moves up, more and more specific

plugins are integrated into the controller and eventually become

black boxes. Due to lack of internal details, performing access con-

trol inside these plugins is not advisable. Thus, performing access

control on NBI is a suitable design, which adapts to the evolution

of NBI and makes the system compatible.

2.2. Related work

We divide the related work into the following categories, tra-

ditional access control, access control in SDN, access control in

cloud, policy-based work, and policy language, and then compare

our work to these work from above five aspects.

Traditional access control. Many mature traditional AAA (Au-

thentication, Authorization, and Accounting) protocols are widely

applied to perform the access control on the users’ requests. For

example, RADIUS (Remote Authentication Dial-In User Service)

[28] is a networking protocol, which provides centralized AAA

management, and Diameter protocol [29] extends the RADIUS by

adding new commands and attributes. However, RADIUS does not

support attribute addressed policies. Similarly, although Diameter

provides the ability of attribute-based control, most of Diameter

commands and attributes are predefined, which makes Diameter

do not meet the requirement of resource management in the SDN-

based cloud.

Access control in SDN. Most of research are carried out around

the architecture of SDN. Works [13–15] perform access control

on the southbound interface and the data plane. Another work

SDNShield [16] performs access control on the plugins inside the

controller by modifying plugins’ codes. However, due to lack of

the intention of users, these work can not control user behavior.

Works [17,18,30,31] design new controller architectures and APIs to

prevent malicious operations, which weaken the applicability and

flexibility of the controller. Another related concept is Access Con-

trol List (ACL) in network field, PGA [32] , FlowGuard [33] are de-

signed based on ACL. These works are able to control packet rout-

ing in the existing network, but can not control the network con-

figuration in the SDN-based cloud, as well as the requests access-

ing the controller via the NBI.

There are a few works focusing on the northbound of SDN.

AAA [11] , a project of OpenDaylight controller [34] , can real-

ize basic user authentication and authorization. The prototype of

SDNKeeper is also implemented in the OpenDaylight controller.

Comparing to SDNKeeper, Fluorine , the latest version of AAA, can

filter access requests at the coarse user granularity, while unable
o make decisions according to the attributes of the requester, re-

ource, and environment. For instance, AAA can allow a user Bob

o create a resource “network” based on his identity but can-

ot make the decision in a finer attribute granularity, like al-

owing the user Bob to create a network of type VLAN before

ecember 31, 2018. Similarly, in order to perform role based ac-

ess control, works [12,17,18] develop a more secure authentication

echanism to verify user’s identity. But these works will loss ef-

ectiveness if the registered users are compromised to perform ma-

icious operations.

Access control in cloud. Prior access control mechanisms in

loud [35–40] are in allusion to protect data security and user pri-

acy, but do not provide effective protection for SDN. However,

orks [41,42] are based on SDN, which can control the network

nd detect attacks within and between clouds, but they do not

onsider security issues from the perspective of the SDN controller.

Policy-based work. Policy-based methods are widely applied,

nd some of them are proposed for traditional network [43–45] ,

hich are not suitable for SDN, since the managed resources and

he application scenarios are different. However, after the emer-

ence of SDN, many policy-based frameworks are designed to

anage and secure the SDN network [46–48] . They either (1) de-

end against covert channel attack by resolving rule conflicts and

reventing the conflicts installed in the SDN data plane [46] , or

2) design security policies to secure end hosts and defend against

ttacks related to the data flow and path in the data plane [48] ,

r (3) control the access time to the network services and control

he access to the switches based on users’ roles [47] . Compared

o these papers, our work focuses on protecting and managing re-

ources in the controller, and performs fine-grained access control

n the access requests based on the attributes of the requester, re-

ource, and environment.

Policy language. Due to the expansion of scale and increased

anagement complexity, a variety of policy-driven languages ex-

ressing the intention of administrators are proposed to manage

nd secure the network [49] . These languages focus on either net-

ork management or security management, for instance, PCIM

50] as an object-oriented information model can specify various

olicies for traditional networks in general, such as configuration

olicies, installation policies, error and event policies, and security

olicies, etc. XACML [51] is also a general attribute-based access

ontrol system for evaluating access requests. Compared to these

raditional works, in the scenario of the SDN-based cloud, we sim-

lify the specification of policies, which is easy to grasp and use

or administrators, and design a policy language with considering

he specific properties of SDN, such as centralized resource man-

gement and programmability of the network. Besides, SDNKeeper

an work as a plugin inside the SDN controller, which makes it

X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81 71

Fig. 3. Architecture and workflow of SDNKeeper .

e

m

3

S

a

d

w

3

t

c

t

d

o

s

a

g

d

a

S

m

n

a

s

l

(

m

t

H

t

3

n

p

a

e

s

S

i

q

t

t

t

w

s

a

fi

s

g

c

t

3

p

p

t

t

n

H

i

l

c

r

r

a

b

b

p

t

S

d

m

r

i

p

d

i

t

t

m

t

t

p

l

m

i

asy to implement and deploy, as well as compatible with other

odules.

. SDNKeeper overview

In this section, we first describe two application scenarios of

DNKeeper, following by a bird’s-eye view of the whole system and

 macroscopic description of the core components. To better un-

erstand the mechanism of SDNKeeper, we will demonstrate the

orkflow within the architecture shown in Fig. 3 .

.1. Threat model

In our threat model, the attacker is a malicious user with au-

henticated identity. We assume the attacker has two ways to ac-

ess the SDN controller. One is sending requests to the SDN con-

roller via applications. The other is accessing the SDN controller

irectly through the URI, as shown in Fig. 3 . Besides, there is an-

ther type of attacker who can hijack and tamper with requests

ent from applications to the SDN controller. The goal of such an

ttacker is to fetch the information beyond his scope to infer the

lobal status based on this information and attempt to modify or

elete the resources outside his scope.

To concentrate on demonstrating the core design of SDNKeeper

nd to clarify our work, we make two assumptions here: (1)

DN controller , which performs permission checking, is safe . That

eans the controller is secure enough and running correctly with

o bugs. We are confident because a large body of research work

nd troubleshooting techniques ([52–54]) make the SDN controller

afer and more robust. Therefore, our work mainly focuses on the

egitimacy of the access requests and the security of resources.

2) The administrator , who specifies policies, is credible . The ad-

inistrator has the highest authority such that he can configure

he whole network by making policies and executing commands.

ence, attacking network by hijacking administrators is not within

he scope of this paper.

.2. Application scenario

Based on the threat model, we summarize two application sce-

arios of SDNKeeper as follows. Here we regard resources as all

lugins inside the controller, as well as network resources man-

ged by the controller, including flow tables, statistics and devices,

tc.

Scenario 1: Protecting resources. The requests accessing re-

ources can be divided into three categories as described in
ection 2.1 , also shown in Fig. 3 . Request (1) comes from the reg-

stered user and application, which carries illegal information. Re-

uest (2) is also sent from benign user and application, but it was

ampered with halfway. And request (3) is sent directly to the con-

roller by the registered user. All these requests are dangerous to

he controller and put the resources at risk of being tampered

ith. SDNKeeper is designed to intercept these malicious requests.

Scenario 2: Managing resources. There are various plugins in-

ide the controller providing a large number of APIs for upper layer

pplications, as depicted in Fig. 1 (b). SDNKeeper provides a uni-

ed entrance to manage resources, such as controlling which re-

ource can be deleted or which resource can be queried in a fine-

rained manner. Administrators just need to insert specific poli-

ies in SDNKeeper to achieve the goal of managing resources in

he controller and the data plane.

.3. Architecture of SDNKeeper

In the SDN-based cloud, the fundamental network service is

rovided by SDN. Taking a typical application scenario as an exam-

le, as depicted in Fig. 1 , cloud communicates with SDN controller

hrough REST API (i.e. NBI) provided by plugins inside the con-

roller. Meanwhile, REST Service, as the unique northbound chan-

el in the SDN controller, processes all requests sent from cloud.

ence, our key idea of protecting and managing network resources

n the SDN-based cloud is to perform access control at the NBI

evel.

SDNKeeper is an attribute-based access control system, which

an perform access control based on the attributes of the requester,

esource, and environment. For instance, attributes can be user

ole, user name, resource name, resource type, requested action,

nd legal operating time, etc. Since SDNKeeper runs at the north-

ound of the controller, all illegal requests from northbound will

e blocked outside the controller. However, it cannot be applied to

revent malicious messages from the southbound.

In general, SDNKeeper as a fine-grained policy enforcement sys-

em provides real-time protection and permission checking for the

DN controller. Specifically, SDNKeeper allows administrators to

esign policies based on the global view of the whole network. No

atter which application the access request comes from, it will be

ejected if it violates the policies.

In our design, SDNKeeper mainly consists of two parts, policy

nterpreter and permission engine. After the administrator defines

olicies in policy language based on the global view and security

emands, these policies will be issued to the controller. Then, pol-

cy interpreter will parse and transform the semantic policies into

ree-structured data and store them in the data store of the con-

roller.

Permission engine is the core component, which enforces per-

ission checking based on the policies defined by the administra-

or. SDNKeeper can be regarded as a filter between the SDN con-

roller and upper applications. During the lifetime of the controller,

ermission engine keeps mediating all access requests at the NBI

evel continuously. Permission engine also supports runtime policy

odification, providing the flexibility of access control.

The complete access control workflow of SDNKeeper is shown

n Fig. 3 and described as follows.

1. The administrator first defines the policies according to current

global view and security demands (step 1 ©), and then issues

these policies to the controller (step 2 ©).

2. The policy interpreter parses and transforms the semantic

policies into formalized structural data, which are controller-

identifiable and SDNKeeper-processable. Parsed policies are

stored in the data store (step 3 ©).

72 X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81

4

p

t

t

m

j

c

j

b

j

a

t

t

t

3. When the controller receives a REST Request (step 4 ©), the filter

in REST Service will intercept and send this request to permis-

sion engine (step 5 ©).

4. Permission engine checks the required operation with policies

stored in the data store (step 6 ©). If the request violates the pol-

icy, permission engine will reject it along with response mas-

sages.

Generally, in the original SDN system, all requests sent from

various applications are directly loaded into the controller with-

out checking for the legitimacy and correctness of the requests at

the attribute level. Thus, malicious requests can strike the system

without any obstruction. Although several security inspection tech-

niques [55–57] are presented for the safety of applications, they

can only work offline and are unable to ensure the legality of the

requests sent to a running plugin. In SDNKeeper, the controller can

not only avoid infringement caused by malicious requests, but also

save precious resources to efficiently process benign requests and

provide real-time protection for the system. We will describe the

design of policies, and the details of policy interpreter and permis-

sion engine in Section 4 and Section 5 , respectively.

4. Policy language and policy design

In this section, we will expound what the policy is, how to

manage policies in SDNKeeper and how to write a policy for the

administrator.

4.1. REST request

REST API 2 is the most common NBI for users to access network

resources in SDN. Almost all SDN controllers, like OpenDaylight

[34] , Floodlight [58] , ONOS [59] and Ryu [60] , support REST API,

and recommend or require using REST Request to access network

resources at the northbound of SDN. A REST Request consists of

four main parts as shown below.

1. Method defines the HTTP verbs a requester intends to per-

form. The most common HTTP verbs are POST , GET , PUT and

DELETE , which correspond to create, read, update and delete

operations, respectively.

2. URI identifies the network resource provided by the controller.

Typically, plugins register their URI s in the REST Service. Taking

the RESTConf [61] , the REST Service in the OpenDaylight con-

troller, for an example, the plugin should first resister the URI s,

which are used to identify its resources, to the RESTConf . Then,

users can query their resources by combining the GET verb and

the URI registered previously.

3. Headers carry a list of information in the HTTP request, such

as the content type of this request and the authorization token

of the requester.

4. If a requester requests to create (POST), update (PUT) or delete

(DELETE) a resource, a JSON body with detailed attributes of

this resource should be included.

With the information carried in the REST request, a policy can

be created to perform fine-grained access control on the requests,

which are sent by users to access network resources in the con-

troller and the data plane. The following is a typical REST Request

example.
2 REST API: RE presentational S tate T ransfer A pplication P rogramming I nterface,

which allows the requester to access and manipulate resources using a uniform,

stateless operation over HTTP.

T

t
A typical REST request example

.2. Policy

A policy in SDNKeeper is designed to determine whether to ap-

rove or decline a REST request. In order to defend against unau-

horized requests, the policy needs to clearly describe the details of

he requester, requested resource and environment. Thus, we for-

ulate a resource access control policy (P) into three terms: Sub-

ect, Object and Environment, which can cover all the information

ontained in a REST Request.

• Subject (S) is a requester, usually means a user who issues ac-

cess requests to the controller (Headers: Authorization). Its at-

tributes (ATTR) are the information related to the users, like

username and role type.

• Object (O) is the requested resource provided by the controller,

such as networks, firewalls and routers, etc. (URI). All the con-

text in the Body part of the REST request are the attributes of

this Object.

• The system Environment (E) is also an important aspect we

should consider. For example, date is a crucial environment at-

tribute in the lease of a network resource. A user cannot use

resources after the lease expires.

We predefined a data structure to fetch the attributes of Sub-

ect, Object and Environment:

For instance, Subject’s attributes such as role and username can

e obtained in the format like subject.role and subject.user . For Ob-

ect, action attributes can be fetched in the format like action.uri

nd action.method . Similarly, query string for GET verb can be ob-

ained by using action.query . As the same, environment data struc-

ure represents the system date and time in the controller.

In addition, we can refer to JsonPath syntax to fetch the at-

ributes in the Body part:

For example, $.network.type can get the type of the network.

herefore, with our predefined data structure, network administra-

ors can get any information from the REST request and customize

X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81 73

a

s

i

a

p

W

t

c

4

i

i

c

d

t

i

b

v

a

p

h

t

a

r

p

A

4

t

A

b

t

f

b

o

m

r

c

b

a

p

t

i

g

i

a

5

g

c

rbitrary access control policies according to our predefined data

tructure.

Each policy is a set of assertion expressions combined with the

teration of if-statement s and AND/OR operations, and will eventu-

lly return a value of ACCEPT or REJECT :

Below, we show an example of a policy which follows the

olicy language syntax. This policy is called “Bob_can_ post_vlan ”.

ith the first if-statement , a REST request from user Bob will hit

his policy. Under the assertions in the second if-statement , Bob can

reate a network , if the type of the network is VLAN .

A Policy

.3. Policy hierarchy

SDNKeeper classifies the policies into two categories, global pol-

cy and local policy:

• Global policies are intended for all requests. When a request

comes in, it will be checked against all the global policies.

• Local policies are only intended for individual user group and

user, which have user-related attributes: role and username .

When a request from a certain user comes in, only the rele-

vant local policies with the matching role and username will be

checked.

There are two reasons for designing these two separated pol-

cy sets. One is for performance . Permission engine only needs to

heck global policies and relevant local polices. This will greatly re-

uce the policy checking burden when the policy set is large. And

he other more important reason is for expressiveness and simplic-

ty . Administrators can make group policies to manage requests in

atches according to specific requirements, as well as make indi-

idual policies for particular users to control their resources.

A Policy File
In order to have an intuitive understanding, we provide

n example of a policy file as shown above, including global

olicies and local policies. For user “Alice” with “user” role,

er REST requests will be processed by global policy sys-

em_update , local policy user_can_get_on_monday and local policy

lice_cannot_delete_firewall . However, for user “Bob” with “user”

ole, his requests will be checked with only two policies, global

olicy system_update and local policy user_can_ get_on_monday .

SDNKeeper’s policy language syntax is summarized in

ppendix A .

.4. Policy generation

To make SDNKeeper work correctly in the SDN-based cloud,

here are only two steps for generating policies. First, the REST

PIs and related attributes of the requester and resources should

e provided to the network administrator. Second, the administra-

or defines access control policies based on these attributes and

ollowing the description in Section 4 . Since these policies are Json-

ased rules, it is easy to generate policies just follow the grammar

f Json.

Before SDNKeeper is running, administrators first need to sum-

arize the characteristics of attacks, security demands and system

estrictions, such as pointing out the resources which can be ac-

essed by users, specifying the resource attributes which need to

e checked, and setting an available service time, etc. These char-

cteristics will be further used to create global policies and local

olicies. When a new user joins, administrators only need to assign

his user with a corresponding role (new or existed). The author-

ty of this user will follow the policies described by the predefined

lobal and local policies within this role. In addition, the admin-

strator can also create specific policies for the particular user by

dding a new local policy for this user on the fly.

. Policy interpreter and permission engine

In this section, details of policy interpreter and permission en-

ine are introduced, as well as the mechanism of REST request pro-

essing and permission checking.

74 X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81

Fig. 4. Semantic tree of global policy.

a

s

r

i

t

m

I

c

A

p

w

c

t

p

c

c

u

t

a

fi

m

p

c

r

c

A

c

6

a

a

t

r

fi

w

w

s

n

s

n

b

5.1. Policy interpreter

The human-language based policies need to be translated into

the computer-processable data structure. In the policy interpreter,

abstract policies issued by the administrator are parsed into a se-

mantic tree, which is loaded into the controller’s memory. Intu-

itively, Fig. 4 shows the semantic tree of a global policy set. In the

semantic tree, each leaf node represents an attribute or a compar-

ing value and other nodes represent logical operators. Thus, each

expression can be expressed by a subtree. After recursively evalu-

ating the left children and right children, we can get the value of

the root node, i.e. , the result of permission checking.

Matching in the semantic tree is very fast. Our evaluation in

Section 7.2 shows that the matching time will not be significantly

affected after we quadruple the total number of policies.

5.2. Permission engine

Each request issued by users will be checked by the permis-

sion engine. Generally speaking, permission engine (1) extracts at-

tributes of request, such as user, uri and method , (2) evaluates this

request by checking it against policies in the data store, and (3) fi-

nally makes a decision on approving or declining this request. We

highlight several issues in permission engine design as follows.

Policy conflict. Because of the intersection of different policies,

a REST request may be approved by one matched policy but re-

jected by another matched policy, which brings a policy conflict. As

shown below, if user Alice requests to GET the network resource.

Her demand will be approved by all_can_get policy in global policy

set. However, Alice does not have the permission to access the net-

work resource as described in local policy net_reject_alice . There-

fore, it will be inaccurate if we return the decision once the policy

is matched.

A Policy File with Policy Conflicts

For the sake of security, we introduce full match strategy in the

permission checking process. A REST request is checked in the or-

der of global policies, group local policies, and user local policies. If
 matched policy returns the checking result of “REJECT”, permis-

ion engine will decline this request immediately. If the checking

esult of the matched policy is “ACCEPT”, the permission check-

ng process will go on until all policies have been checked or get

he result of “REJECT”. After all policies have been checked and

atched an “ACCEPT” decision, this request should be approved.

f no policy is matched by this request, this request will be de-

lined. The complete permission checking process is illustrated in

lgorithm 1 .

Algorithm 1: Permission checking.

Input : request
Output : AC C E P T or RE JE CT

1 approv ed ← false
2 pol icy _ set ← { Gl obal , Local [rol e] , Local [rol e][user] }
3 for policy in policy _ set do

4 if request matches policy then

5 if policy . eval(request) == RE JE CT then

6 return RE JE CT
7 else approv ed ← true

8 If approv ed == true return AC C EP T
9 return RE JE CT ;

Filter based. Permission engine acts as a filter between the ap-

lication plane and the control plane. Therefore, illegal requests

ill be rejected before reaching the relevant modules inside the

ontroller, which will not occupy the computational resources of

he controller. Filter based design can also bring benefits to de-

loyment. Typically, controllers have a REST Service module for re-

eiving and distributing REST requests. It will only need a few code

hanges when adding a new REST filter to the REST Service mod-

le. In most mainstream SDN controllers, like OpenDaylight con-

roller and ONOS controller, we can enable SDNKeeper in them by

dding several dependencies to the configuration files.

Runtime configuration. Since administrators may need to re-

ne policies dynamically according to the security and manage-

ent demands, runtime configuration is an important feature for

ermission engine. In SDNKeeper, administrators are allowed to ac-

ess and update the policies in the data store, where a listener is

egistered, at any time. Once an insert/delete/update operation oc-

urs, the listener will send a notification to the permission engine.

nd the permission engine will update the policies in the memory

ache, so that subsequent requests will be checked by new policies.

. Correctness proof of SDNKeeper

SDNKeeper is the first protective barrier for network control

nd management, the correctness of its system design is critical

nd need to be proved and guaranteed. In the case that the sys-

em follows the designed workflow, returns the correct checking

esults, and is able to process requests continuously, we can con-

rm that the design of the system is correct. In this section, we

ill illustrate the correctness of the system design by modeling the

hole system with Formal Methods (FM) and checking the neces-

ary properties. In order to avoid missing some points which can-

ot be covered by the experiments, proving the correctness of the

ystem design is necessary. On the premise of ensuring the correct-

ess of the design, we will show the implementation correctness

y evaluating the whole system with sufficient experiments.

X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81 75

Fig. 5. SDNKeeper system model consisting of Access_Control_Filter FSM and Permission_Engine FSM.

6

a

s

6

A

r

s

F

i

A

i

t

6

i

P

t

F

p

p

r

a

e

w

p

r

p

s

i

c

n

f

Table 1

LTL operators used in model

checking.

Operator Intuitive meaning

G Globally

F Eventually

O Once

X Next state

Y Previous state

6

t

b

s

c

t

s

c

c

T

c

k

c

t

c

F

p

E

w

s

e

m

P

r

.1. System modeling

We first build a system model consisting of Access Control Filter

nd Permission Engine as shown in Fig. 5 . Each sub-model is a finite

tate machine (FSM) with several states and transitions.

.1.1. Access Control Filter (ACF)

The Access_Control_Filter FSM has 5 states and 6 transitions.

CF_Idle state is the initial state and ACF_Inter- cepted state rep-

esents that there is a new request to access the controller. After

ending the request to the Permission Engine, Access_Control_Filter

SM will go to ACF_Waiting state. Depending on the check-

ng result received, the Access_Control_Filter FSM will reach the

CF_Received_A- C_Processing state if the checking result received

s accept , and will transfer to the ACF_Received_REJ_Block state if

he checking result received is reject .

.1.2. Permission Engine (PE)

The Permission_Engine FSM has 4 states and 11 transitions. Sim-

larly, PE_Idle state is the initial state. After receiving requests, the

ermission_Engine FSM will go to PE_Checking_Global_Policy state

o check global policy set. Following that, the Permission_Engine

SM will reach PE_Checking_Local_Policy state to check all local

olicies after all global policies have been checked with. In this

rogress, once there are matched policies with the decision of

eject , the checking_result will be returned via the Channel_PA,

t the same time the checking process in the PE is over. Oth-

rwise, no matter the checking_result is accept or unmatch ,
hich means the request and policy do not match, the checking

rocess will continue until all policies have been examined and

each the PE_Check_All_Policies state.

Policy Interpreter is responsible for parsing high-level abstract

olicies into tree structure policies and pushing them into the data

tore. It plays a role of providing policies for permission checking

n the whole system, and has no interactions with above two core

omponents Access Control Filter and Permission Engine . So it does

ot impact the correctness analysis of the system design. There-

ore, the model of Policy Interpreter can be omitted.
.2. Model checking

We choose NuSMV, a state-of-the-art symbolic model checker,

o perform model checking. Its latest version, NuSMV2 [62] , is

ased on the powerful satisfiability (SAT) engine to achieve good

calability and efficiency. Users can specify synchronous or asyn-

hronous finite state models in an intuitive fashion. The proper-

ies to be checked can be described as linear temporal logic (LTL)

pecifications. Given a certain number of rounds, NuSMV model

hecker either provides a counterexample to the property, or con-

ludes that the property is satisfied by the corresponding model.

able 1 lists the LTL operators we used in the model checking.

In order to prove the correctness of the system design, we

heck all critical properties based on the model built above. The

ey point is the selection of properties. The main function of Ac-

ess Control Filter is intercepting access requests and sending them

o Permission Engine , then waiting to handle the request until re-

eiving the checking result. Thus, the properties of Access Control

ilter should satisfy this workflow and is able to make the system

rocess requests uninterruptedly. Since the workflow of Permission

ngine is more complex, its properties should not only respect its

orkflow, but also describe its key features to ensure the Permis-

ion Engine work smoothly. The detailed descriptions of each prop-

rty are illustrated as follows and the corresponding formal state-

ents are shown in Table 2 .

roperty 1 . If ACF FSM is in the ACF_Idle state, it will eventually

eturn to the ACF_Idle state.

76 X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81

Table 2

The formal statement of properties for model checking.

FSM Property Formal statement

ACF Pro 1

Pro 2

Pro 3

Pro 4

PE Pro 5

Pro 6

Pro 7

P

b

“

a

p

a

a

p

p

6

c

m

m

a

p

s

w

e

u

t

B

c

S

7

S

s

c

t

p

e

t

i

3 After exhaustively checking all properties for enough times which cover all pos-

sible changes in all states and transitions, we can conclude that the system design

is correct.
This property can ensure the Access Control Filter can come back

to its initial state, that is to say, it can process access requests con-

tinuously. It is important for the network in the case of a large

number of requests accessing the controller.

Property 2 . ACF FSM must go through ACF_Intercepted state and

ACF_Waiting state if the ACF FSM gets the checking_result from PE.

Access Control Filter intercepts access requests first and is in a

waiting state until receiving the checking result from Permission

Engine . This is the normal processing flow indicating that the Ac-

cess Control Filter is in a normal working state.

Property 3 . If ACF FSM reaches ACF_Waiting state, ACF_Intercepted

state must be its last state before that.

Similar to property 2, this property also describes the workflow

of Access Control Filter , but is more precise. Fine-grained property

checking is necessary because we need to ensure every step of this

ACF FSM respects to the system design.

Property 4 . If there is a request coming in, the ACF

FSM must reach either ACF_Received_AC_Processing state or

ACF_Received_REJ_Block state.

Once there are requests accessing the controller and being in-

tercepted by the Access Control Filter , the checking result must be

returned, either accept or reject , which means the request is

benign that can be processed further, and the request is illegal that

need be blocked outside the controller respectively. This property

can guarantee every request is checked by Permission Engine , then

processed based on the checking result.

Property 5 . If PE FSM is in the PE_Idle state, it will eventually re-

turn to the PE_Idle state.

In order to cooperate with Access Control Filter, Permission En-

gine should also be able to perform access control on the received

requests continuously. No matter how many requests there are, it

can return the checking result to Access Control Filter and come

back to the initial state.

Property 6 . For PE FSM, the PE_Checking_Global_Policy state must

be reached before PE_Checking_Local_Policy state.

Benefit from the design of separated policy set, checking re-

quests achieves high performance, since only global policies and

user-related local policies need to be checked. What’s more, global

policies have higher priorities than local policies, thus, all global

policies must be checked before any local policies.
roperty 7 . For PE FSM, if and only if all policies have

een checked and either “pe_matched_gp_accept = TRUE” or

pe_matched_lp_accept = TRUE”, the checking_result is set to

ccept .
To protect the controller effectively in case of policy conflict, we

ropose an elaborate design, which accepts a request if and only if

ll global policies and user-related policies have been checked with

nd the checking result is accept . This can ensure every request

rocessed by the controller is benign without being impacted by

olicy conflict.

.3. Discussion

We build system model consisting of two core components (Ac-

ess_Control_Filter FSM and Permission_Engine FSM) and perform

odel checking on its critical properties, which are described for-

ally. Based on the design principles of SDNKeeper, we propose

nd check all function-related properties above, which are im-

ortant for making the access control system work correctly and

moothly. As depicted in Fig. 5 , there are 17 transitions in the

hole system model, and we run the model checker for 7 times,

ach time checks one property, which have covered all possible sit-

ations. The model checking results show that there are no coun-

erexamples found, which means these properties are all satisfied.

ased on the basic thought 3 of formal methods for proving the

orrectness of the system design, we can prove that the design of

DNKeeper is correct.

. Implementation and evaluation

There are two major components in the prototype of

DNKeeper: (1) policy interpreter parses semantic policies into

emantic trees, and (2) permission engine performs permission

hecking on each coming request. In this section, we first introduce

he implementation of these two components, as well as the im-

lementation of model construction and model checking. Then, we

valuate the performance of SDNKeeper from three metrics: effec-

iveness, latency and throughput , and briefly discuss the results

n the end.

X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81 77

7

[

f

i

J

D

e

B

m

b

a

w

i

t

o

S

s

c

p

7

r

c

S

i

a

s

s

F

e

7

q

w

h

A

a

i

p

c

t

t

i

o

c

a

w

e

7

s

c

a

l

i

l

t

Table 3

REST API provided in Neutron Northbound.

Type # of APIs # of attributes

Networking 6 220

Firewall 3 83

Security 2 24

VPN 4 104

SFC 4 60

Meter 2 13

QoS 2 31

Load Balance 4 81

BGP VPN 1 22

L2 Gateway 2 26

7

7

c

o

p

s

k

b

6

n

t

q

q

u

S

m

a

t

B

w

t

d

o

c

7

s

m

s

u

t

S

S

r

t

s

c

f

6

s

c

g

i

i

n

a
.1. Implementation

We implement SDNKeeper as a plugin of the OpenDaylight

34] controller, which works as a filter to control any REST request

rom upper applications to the controller, and implement policy

nterpreter and permission engine as the controller-independent

ava bundles. Currently, almost all mainstream controllers (Open-

aylight, ONOS) use REST API in northbound communication. This

nables SDNKeeper to perform access control on these controllers.

enefit from the lightweight feature of SDNKeeper, the deploy-

ent of the whole system is low cost, which only needs to em-

ed SDNKeeper into the controller as a feature and assign it with

 high priority to filter REST requests first.

SDNKeeper is an attribute-based access control system, in

hich role is an important attribute of the requester for check-

ng permission and making decisions. Since a user authentica-

ion module (AAA [11]) has already been developed, we liberate

urselves from repetitive work. Owing to the filter-based feature,

DNKeeper is compatible with other projects, so that the permis-

ion engine of SDNKeeper can be inserted behind AAA, then the

hecking progress is based on the authenticated result of AAA.

The two main components and system model checking are im-

lemented as follows.

.1.1. Policy interpreter

Policies defined by administrators are the JSON-based, human-

eadable rules. Policy Interpreter compiles these semantic poli-

ies into semantic trees. We implement a CLI command

DNKeeper:load/reload in Karaf console to load all semantic policies

nto the data store of the controller. In this progress, ANTLR [63] ,

 language recognition tool, is responsible for reading and parsing

emantic policies continuously, then a registered listener will in-

ert the policy tree into the data store once a new one is loaded.

inally, all policies will be stored as a tree, so that the permission

ngine just needs to recursively traverse a tree to enforce a policy.

.1.2. Permission Engine

Permission Engine is the core component checking REST re-

uests based on policies defined by administrators. In the real-

orld scenario, REST requests sent to the controller are usually

ighly concurrent. In order to adapt to this characteristic, we adopt

kka [64] to process multiple requests simultaneously by creating

 certain number of Actors . Making full use of controller’s comput-

ng resources helps us achieve high system performance, i.e., low

rocessing latency and high processing throughput.

What’s more, request queue and response queue are designed for

aching access requests and check results respectively to mitigate

he congestion of requests. Policy cache is designed for accelerating

he process of policy matching. With the Policy Data Store Listener

n permission engine, the policy cache can be updated at runtime

nce there are policy changes in the data store. And the new poli-

ies will take effect on subsequent requests. In order to assist the

dministrator to checkout whether the new policies are effective,

e implement a CLI command SDNKeeper:cache , which can be ex-

cuted in the Karaf console to get the policies in the cache.

.1.3. Model checking

To perform model checking on the whole system, we first con-

truct system model consisting of two finite state machines, Ac-

ess_Control_Filter FSM and Permission_En- gine FSM. The model has

 total of 9 states and 17 transitions and is built in XML with 500+

ines of code referred to LTEInspector [65] . Then, we express spec-

fications in Linear Temporal Logic (LTL), which characterizes each

inear path induced by the finite state machine, and check the sys-

em model against 7 properties with the aid of NuSMV [62] .
.2. Evaluation

.2.1. Methodology

We establish the testbed of SDNKeeper on the mainstream SDN

ontroller OpenDaylight (Intel i7-7700 8 × 3.6 GHz, 16GB Mem-

ry, 4 CPU cores), and choose Neutron Northbound [66] , a com-

onent enabling communication between Opendaylight and Open-

tack [67] , as our test application. Neutron Northbound provides 30

inds of REST APIs, ranging from networking, firewall, QoS to load

alance, with 185 kinds of requests (GET, POST, PUT, DELETE) and

64 related attributes, which are enough to evaluate the effective-

ess of SDNKeeper.

In our evaluation, users send REST requests to OpenDaylight

hrough REST API. SDNKeeper performs access control on these re-

uests at the NBI level. We examine the check results of those re-

uests in the controller and the response received by users to eval-

ate the performance of SDNKeeper.

We first evaluate the effectiveness of SDNKeeper, i.e., whether

DNKeeper can reject unauthorized requests correctly. Then, we

easure the extra processing latency introduced by SDNKeeper

nd REST request throughput. Finally, we evaluate the computa-

ional overhead of SDNKeeper with different numbers of requests.

oth measurements are conducted in the controllers with and

ithout SDNKeeper. If an illegal request is rejected by SDNKeeper,

he processing time and resources occupancy would be largely re-

uced. Hence, for the sake of fairness, we evaluate the performance

f SDNKeeper in cases where all decisions are “ACCEPT” and all de-

isions are “REJECT”.

.2.2. Effectiveness evaluation

In order to evaluate the effectiveness of SDNKeeper, we de-

ign test cases corresponding to the three types of illegal requests

entioned in Section 3.2 . Since these illegal requests have the

ame format, we simulate these requests by sending REST requests

niformly. Table 3 lists all types of REST APIs provided by Neu-

ron. These APIs are representative to show the correctness of

DNKeeper in rejecting the unauthorized access requests in the

DN-based cloud.

When verifying the effectiveness of intercepting unauthorized

equests, we send two kinds of illegal requests: (1) requests sent

o access resources not belonging to the current user; (2) requests

ent to perform extra operations on the resources owned by the

urrent user. We create 2789 policies in 3 granularities: 30 policies

or all kinds of APIs, 185 policies for all kinds of actions in the API,

64 policies for all kinds of attributes, and 1910 policies for all pos-

ible combinations of two attributes. Based on these policies, we

reate benign and illegal access requests. The benign requests are

enerated to make the requests able to pass the permission check-

ng. And illegal requests are generated by setting incorrect values

n some fields to make them violate one or more policies which

eed to be checked with. Thus, when these requests are sent to

ccess the controller, they will be checked with the generated poli-

78 X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81

Fig. 6. Evaluation Result: (a) latency of SDNKeeper with different numbers of policies, (b) latency between original and SDNKeeper-enabled OpenDaylight with 10 0 0 policies,

(c) throughput of SDNKeeper per second with different numbers of policies under 2 threads, (d) throughput between original and SDNKeeper-enabled OpenDaylight with

different numbers of threads.

Fig. 7. Evaluation Result : (a) latency of SDNKeeper with different number of re-

quests, (b) computational overhead of SDNKeeper, which is evaluated with 8G of

memory and 4 CPU cores.

p

c

w

f

t

t

g

l

b

t

J

b
cies. If the request violates one or more policies, it will be rejected

and returned to the requester, while if it passes all policies, it will

be further processed by the controller. The results show that all

these illegal requests are rejected by SDNKeeper.

7.2.3. Latency evaluation

In SDNKeeper, matching policies and checking permissions may

introduce extra delay to the controller when processing a REST re-

quest. We evaluate this delay by measuring the latency in users

from sending a request to receiving the corresponding response.

Three experiments are performed in this part: (1) latency with dif-

ferent numbers of policies shown in Fig. 6 (a), (2) latency between

controllers with and without SDNKeeper shown in Fig. 6 (b), (3)

latency with different numbers of requests shown in Fig. 7 (a). For

first two experiments, each test is executed 5 times with 30,0 0 0

requests.

Fig. 6 (a) illustrates the processing latency with different num-

bers of policies. As we can see, in all of those four request cate-

gories, almost no latency increase is introduced when we increase

the number of policies. The insignificant computation overhead

mainly benefits from our design of storing policies in the seman-

tic tree. What’s more, the matching time will not be significantly

affected after increasing the number of policies because of the de-

sign of policy hierarchy, only policies under specific users will be

checked with.

Under the same scenario with 10 0 0 policies, we compare the

latency between SDNKeeper-enabled OpenDaylight controller and

original OpenDaylight controller. According to the access control

mechanism, the policy decision will affect request processing time.

Due to the processing time of the controller, decision “REJECT”

will make the processing time shorter than original, while decision

“ACCEPT” will introduce a little computational overhead. As shown

in Fig. 6 (b), SDNKeeper with decision “ACCEPT” only introduces

about 0.15 ms extra delay on average. And when request is “RE-

JECT” by SDNKeeper, the latency is largely reduced about 0.17 ms,

3.10 ms, 2.36 ms and 2.19 ms in GET, POST, PUT, DELETE requests

respectively. In practice, decision “ACCEPT” and “REJECT” are mixed

to construct a blameless policy set, thus the extra delay which is

introduced by SDNKeeper will be further reduced.

We then evaluate the latency of SDNKeeper with different num-

bers of requests. As shown in Fig. 7 (a), when the number of re-

quests increases from 20 0 0 to 10,0 0 0, there is no significant dif-

ference in the latency of each request, which means SDNKeeper

can work smoothly when processing a large number of requests.

In short, SDNKeeper has insignificant computational overhead for

policy processing.

7.2.4. Throughput evaluation

We then evaluate the throughput of SDNKeeper. In the evalu-

ation, we send a large number of REST requests to fulfill the ca-
acity of the controller and measure the number of requests that

an be processed per second, i.e., the number of received responses

ithin one second.

As shown in Fig. 6 (c), no matter what the decision is, the per-

ormance of the controller is almost unchanged when we increase

he number of policies significantly. This result is consistent with

he result in latency evaluation. The number of policies has negli-

ible impact under our semantic tree design.

In Fig. 6 (d), we compare the throughput in the OpenDay-

ight controller with and without SDNKeeper. We vary the num-

er of threads to test the processing capacity of SDNKeeper. From

he results we can see that SDNKeeper with the decision “RE-

ECT” always gets the best performance without being affected

y the number of threads. While for both original OpenDaylight

X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81 79

Fig. 8. Throughput of SDNKeeper with the decision “ACCEPT” under different con-

figurations.

c

t

t

b

l

i

m

e

u

s

S

c

c

i

c

c

7

o

c

S

e

m

S

S

c

s

t

q

q

W

s

e

i

7

c

s

u

S

N

a

c

s

w

i

p

p

d

r

t

m

8

S

t

a

w

i

w

t

a

fi

f

r

S

u

c

t

T

q

c

D

c

i

A

ontroller and SDN- Keeper-enabled OpenDaylight controller with

he decision “ACCEPT”, the throughput varies with the number of

hreads. Based on our experimental environment, when the num-

er of threads is greater than 4, the processing capability is no

onger significantly affected by thread’s number and close to the

deal. And the performance of SDNKeeper-enabled controller is al-

ost as good as original OpenDaylight controller according to the

valuation results. We then compare the throughput of SDNKeeper

nder different configurations. As shown in the Fig. 8 , with the

ame number of CPU cores, allocating more memory can make

DNKeeper achieve higher throughput. Similarly, under the same

onfiguration with 8G of memory, increasing the number of CPU

ores can improve the throughput when the number of CPU cores

s less than 4. In short, SDNKeeper performs access control ac-

urately with negligible effect on the processing capability of the

ontroller.

.2.5. Computational overhead evaluation

We evaluate the computational overhead of SDNKeeper based

n the number of requests, particularly the CPU and memory

onsumed when processing different numbers of requests. Since

DNKeeper running on the OpenDaylight controller as a plugin, we

valuate the computational overhead by measuring the CPU and

emory consumed by the original OpenDaylight controller and

DNKeeper enabled OpenDaylight controller. As shown in Fig 7 (b),

DNKeeper consumes approximately 8.19 M of memory when pro-

essing thousands of requests. Meanwhile, the average CPU con-

umption of SDNKeeper is about 28 millicores. For both controllers,

he CPU consumption is at its highest when processing 20 0 0 re-

uests. This is because the execution time of processing 20 0 0 re-

uests is so short that the system has not reached a stable state.

hen there are a large number of requests being processed, the

ystem maintains a stable CPU consumption. To summarize, the

xtra computational overhead introduced by SDNKeeper process-

ng requests is negligible compared to the original SDN controller.

.3. Discussion

Based on our correctness proof of the system design and model

hecking result in Section 6.2 , we can prove that the system de-

ign of SDNKeeper is correct. Meanwhile, from effectiveness eval-

ation results we can conclude that the system implementation of

DNKeeper is correct. Compared to the southbound interface, the
BI is latency insensitive and infrequent. According to the evalu-

tion results, 0.15 ms extra delay by SDNKeeper in NBI communi-

ation is acceptable. In practice, to guarantee the service quality,

ervice providers usually limit the rate of access to the controller,

hich is smaller than throughput threshold. Furthermore, accord-

ng to the evaluation results shown in Fig. 6 (d), the through-

ut of SDNKeeper enabled controller is very close to the through-

ut threshold of the original controller. Therefore, the throughput

egradation introduced by SDNKeeper will not affect the response

ate of access requests. To conclude, SDNKeeper can prevent unau-

horized requests effectively with negligible impact on the perfor-

ance of the SDN controller.

. Conclusion

Having advantages of centralized control and programmability,

DN has been rapidly applied to the SDN-based cloud to provide

he network services for upper applications. SDN controller acts

s the brain is the most critical component for the whole net-

ork. Therefore, efficiently protecting and managing the resources

nside the controller becomes an important issue. To address that,

e propose SDNKeeper, a lightweight policy enforcement system,

o assist administrators in protecting and managing resources. In

ddition, we design a policy language for administrators to de-

ne policies. With these fine-grained policies, SDNKeeper can per-

orm access control for each request to defend against unautho-

ized attacks and avoid network misconfiguration. What’s more,

DNKeeper is application-transparent and enable administrators to

pdate policies on the fly. We adopt formal methods to prove the

orrectness of the system design. Then we implement the proto-

ype of policy enforcement system and evaluate its performance.

he results show that SDNKeeper can accurately block illegal re-

uests outside the controller and work smoothly with negligible

omputational overhead and insignificant throughput degradation.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

ppendix A. Policy language syntax

Policy hierarchy

Policy statement

Primary

80 X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81

[

“? ” indicates 0 or 1 occurrences of the preceding element.

“∗” indicates 0 or more occurrences of the preceding element.

References

[1] X. Leng , K. Hou , Y. Chen , K. Bu , L. Song , SDNKeeper: lightweight resource pro-

tection and management system for SDN-based cloud, in: 2018 IEEE/ACM 26th
International Symposium on Quality of Service (IWQoS), IEEE, 2018, pp. 1–10 .

[2] E. Haleplidis , K. Pentikousis , S. Denazis , J. Salim , D. Meyer , O. Koufopavlou ,
Software-Defined Networking (SDN): Layers and Architecture Terminology, RFC

7426, IRTF, 2015 .
[3] A. Greenberg , SDN for the cloud, in: Keynote in the 2015 ACM Conference on

Special Interest Group on Data Communication, 2015 .

[4] Microsoft Azure and Software Defined Networking. Accessed on 2018-11-8
https://goo.gl/t2QVUm .

[5] IBM Network Services for Software Defined Networks. Accessed on 2018-11-8
https://goo.gl/xP6cLh .

[6] Google cloud platform. Accessed on 2018-11-8 https://goo.gl/B2fMfJ .
[7] CloudFabric, a SDN-based data center developed by Huawei. Accessed on 2018-

11-24 https://goo.gl/mp9E9J .
[8] NovoDC, a SDN-based data center developed by China Mobile. Accessed on

2018-11-24 https://goo.gl/pdktxv .

[9] Synergy Research Group. Accessed on 2018-11-8 https://goo.gl/f7yTH9 .
[10] I. D. Corporation, A Report on Datacenter by Idc. Accessed on 2017-07-31

https://goo.gl/ZLv2Pg .
[11] AAA„ A Project of OpenDaylight Controller. Accessed on 2018-01-02 https://

goo.gl/LvfRoH .
[12] Y.E. Oktian , S.-G. Lee , J. Lam , OAuthkeeper: an authorization framework for

software defined network, J. Netw. Syst. Manage. 26 (2018) 1–22 .

[13] C.R. Taylor , D.C. MacFarland , D.R. Smestad , C.A. Shue , Contextual, flow-based
access control with scalable host-based SDN techniques, in: Computer Com-

munications, IEEE INFOCOM 2016-The 35th Annual IEEE International Confer-
ence on, IEEE, 2016, pp. 1–9 .

[14] F. Klaedtke , G.O. Karame , R. Bifulco , H. Cui , Access control for SDN controllers,
in: Proc. 3rd ACM HotSDN, 2014, pp. 219–220 .

[15] P. Porras , S. Shin , V. Yegneswaran , M. Fong , M. Tyson , G. Gu , A security en-

forcement Kernel for OpenFlow networks, in: Proc. 1st ACM HotSDN, 2012,
pp. 121–126 .

[16] X. Wen , B. Yang , Y. Chen , C. Hu , Y. Wang , B. Liu , X. Chen , SDNShield: reconcil-
iating configurable application permissions for SDN App markets, in: Depend-

able Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP International
Conference on, IEEE, 2016, pp. 121–132 .

[17] C. Banse , S. Rangarajan , A secure northbound interface for SDN applications,

in: Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1, IEEE, 2015, pp. 834–839 .
[18] Y.E. Oktian , S. Lee , H. Lee , J. Lam , Secure your northbound SDN API, in: Ubiqui-

tous and Future Networks (ICUFN), 2015 Seventh International Conference on,
IEEE, 2015, pp. 919–920 .

[19] M. Lee , Y. Kim , Y. Lee , A home cloud-based home network auto-configuration
using SDN, in: Networking, Sensing and Control (ICNSC), 2015 IEEE 12th Inter-

national Conference on, IEEE, 2015, pp. 4 4 4–4 49 .

[20] H. Kim , N. Feamster , Improving network management with software defined
networking, IEEE Commun. Mag. 51 (2) (2013) 114–119 .

[21] D. Levin , M. Canini , S. Schmid , A. Feldmann , Incremental SDN deployment
in enterprise networks, in: ACM SIGCOMM Computer Communication Review,

Vol. 43, ACM, 2013, pp. 473–474 .
[22] H. Ali-Ahmad , C. Cicconetti , A. De la Oliva , V. Mancuso , M.R. Sama , P. Seite ,

S. Shanmugalingam , An SDN-based network architecture for extremely dense

wireless networks, in: Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for, IEEE, 2013, pp. 1–7 .

[23] A . Basta , A . Blenk , K. Hoffmann , H.J. Morper , M. Hoffmann , W. Kellerer , To-
wards a cost optimal design for a 5g mobile core network based on SDN and

NFV, IEEE Trans. Netw. Serv.Manage. (2017) .
[24] A. Dixit , F. Hao , S. Mukherjee , T. Lakshman , R. Kompella , Towards an elastic

distributed SDN controller, in: ACM SIGCOMM Computer Communication Re-
view, 43, ACM, 2013, pp. 7–12 .

[25] M. Banikazemi , D. Olshefski , A. Shaikh , J. Tracey , G. Wang , Meridian: an

SDN platform for cloud network services, IEEE Commun. Mag. 51 (2) (2013)
120–127 .

[26] T. Wang , F. Liu , H. Xu , An efficient online algorithm for dynamic SDN controller
assignment in data center networks, IEEE/ACM Trans. Netw. 25 (5) (2017)

2788–2801 .
[27] H. developer, Northbound Interface of SDN. Accessed on 2018-10-25 https://
goo.gl/D2wv2L .

[28] C. Rigney , S. Willens , A. Rubens , W. Simpson , Remote Authentication Dial in
User Service (RADIUS), RFC 2058, Network Working Group, 1996 .

[29] P. Calhoun , J. Loughney , E. Guttman , G. Zorn , J. Arkko , Diameter Base Protocol,
RFC 3588, Network Working Group, 2003 .

[30] S. Matsumoto , S. Hitz , A. Perrig , Fleet: defending SDNs from malicious admin-
istrators, in: Proc. 3rd ACM HotSDN, 2014, pp. 103–108 .

[31] A .D. Ferguson , A . Guha , C. Liang , R. Fonseca , S. Krishnamurthi , Participatory

networking: an API for application control of SDNs, in: ACM SIGCOMM Com-
puter Communication Review, 43(4), 2013, pp. 327–338 .

[32] C. Prakash , J. Lee , Y. Turner , J.-M. Kang , A. Akella , S. Banerjee , C. Clark , Y. Ma ,
P. Sharma , Y. Zhang , Pga: using graphs to express and automatically reconcile

network policies, in: ACM SIGCOMM Computer Communication Review, 45(4),
2015, pp. 29–42 .

[33] H. Hu , W. Han , G.-J. Ahn , Z. Zhao , Flowguard: building robust firewalls for soft-

ware-defined networks, in: Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ACM, 2014, pp. 97–102 .

[34] Opendaylight, A Mainstream SDN Controller. Accessed on 2018-10-12 https:
//goo.gl/JwB2G6 .

[35] Symantec, Cloud Data Protection and Security. Accessed on 2018-09-28 https:
//goo.gl/yud9Mq .

[36] DoorCloud, Cloud Access Control. Accessed on 2018-10-18 https://goo.gl/

bxBAkF .
[37] A.R. Khan , Access control in cloud computing environment, ARPN J. Eng. Appl.

Sci. 7 (5) (2012) 613–615 .
[38] R. Charanya , M. Aramudhan , Survey on access control issues in cloud com-

puting, in: Emerging Trends in Engineering, Technology and Science (ICETETS),
International Conference on, IEEE, 2016, pp. 1–4 .

[39] Y.A. Younis , K. Kifayat , M. Merabti , An access control model for cloud comput-

ing, J. Inf. Secur. Appl. 19 (1) (2014) 45–60 .
[40] R. Aluvalu , L. Muddana , A survey on access control models in cloud comput-

ing, in: Emerging ICT for Bridging the Future-Proceedings of the 49th Annual
Convention of the Computer Society of India (CSI) Volume 1, Springer, 2015,

pp. 653–664 .
[41] M.S. Malik , M. Montanari , J.H. Huh , R.B. Bobba , R.H. Campbell , Towards SDN

enabled network control delegation in clouds, in: Dependable Systems and

Networks (DSN), 2013 43rd Annual IEEE/IFIP International Conference on, IEEE,
2013, pp. 1–6 .

[42] R. Miao , M. Yu , N. Jain , Nimbus: cloud-scale attack detection and mitiga-
tion, in: Acm Sigcomm Computer Communication Review, 44, ACM, 2014,

pp. 121–122 .
[43] D.C. Verma , Simplifying network administration using policy-based manage-

ment, IEEE Netw. 16 (2) (2002) 20–26 .

44] A. Rayes, M. Cheung, Policy-based network security management, 2007, US
Patent 7,237,267.

[45] L. Lymberopoulos , E. Lupu , M. Sloman , An adaptive policy-based framework for
network services management, J. Netw.Syst. Manage. 11 (3) (2003) 277–303 .

[46] Q. Li , Y. Chen , P.P.C. Lee , M. Xu , K. Ren , Security policy violations in SDN data
plane, IEEE/ACM Trans. Network. (TON) 26 (4) (2018) 1715–1727 .

[47] F. Hadi , M. Imran , M.H. Durad , M. Waris , A simple security policy enforce-
ment system for an institution using SDN controller, in: 2018 15th Interna-

tional Bhurban Conference on Applied Sciences and Technology (IBCAST), IEEE,

2018, pp. 4 89–4 94 .
[48] V. Varadharajan , K. Karmakar , U. Tupakula , M. Hitchens , A policy-based secu-

rity architecture for software-Defined networks, IEEE Trans.Inf. Forensics Secur.
14 (4) (2019) 897–912 .

[49] W. Han , C. Lei , A survey on policy languages in network and security manage-
ment, Comput. Netw. 56 (1) (2012) 477–489 .

[50] B. Moore , E. Ellesson , J. Strassner , A. Westerinen , Policy Core Information Mod-

el–Version 1 Specification, RFC 3060, Network Working Group, 2001 .
[51] T. Moses , et al. , Extensible access control markup language (xacml) version 2.0,

Oasis Standard 200502 (2005) .
[52] L. Xu , J. Huang , S. Hong , J. Zhang , G. Gu , Attacking the Brain: Races in the SDN

Control Plane, 26th USENIX Security Symposium (USENIX Security 17), 2017 .
[53] S. Scott-Hayward , Design and deployment of secure, robust, and resilient SDN

controllers, in: Network Softwarization (NetSoft), 2015 1st IEEE Conference on,

IEEE, 2015, pp. 1–5 .
[54] C. Scott , A. Wundsam , B. Raghavan , A . Panda , A . Or , J. Lai , E. Huang , Z. Liu ,

A. El-Hassany , S. Whitlock , et al. , Troubleshooting blackbox SDN control soft-
ware with minimal causal sequences, ACM SIGCOMM Comput. Commun. Rev.

44 (4) (2015) 395–406 .
[55] A. Gounares, Interactive graph for navigating application code, 2017, US Patent

9,658,943 https://www.google.com/patents/US9658943 .

[56] I. BAKER, K. BASSIN, S. Kagan, S. Smith, System and method to classify au-
tomated code inspection services defect output for defect analysis, 2016. US

Patent 9,442,821 https://www.google.com/patents/US9442821 .
[57] Code inspections in the intellij platform. Accessed on 2018-11-10 https://goo.

gl/kDqenJ .
[58] Project Floodlight,. Accessed on 2018-11-7 https://goo.gl/8CxYdF .

[59] Onosproject, Onos. Accessed on 2018-10-12 https://goo.gl/Sdsc6X .

[60] Ryu SDN Framework. Accessed on 2018-11-7 https://goo.gl/Mdxewq .
[61] A. Bierman, M. Bjorklund, K. Watsen, RESTCONF protocol. RFC 8040, IETF, 2017.

[62] A. Cimatti , E. Clarke , E. Giunchiglia , F. Giunchiglia , M. Pistore , M. Roveri , R. Se-
bastiani , A. Tacchella , Nusmv 2: an opensource tool for symbolic model check-

http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0003
https://goo.gl/t2QVUm
https://goo.gl/xP6cLh
https://goo.gl/B2fMfJ
https://goo.gl/mp9E9J
https://goo.gl/pdktxv
https://goo.gl/f7yTH9
https://goo.gl/ZLv2Pg
https://goo.gl/LvfRoH
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0018
https://goo.gl/D2wv2L
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0020
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0024
https://goo.gl/JwB2G6
https://goo.gl/yud9Mq
https://goo.gl/bxBAkF
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0031
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0032
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0033
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0034
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0035
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0036
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0037
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0038
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0039
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0040
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0041
https://www.google.com/patents/US9658943
https://www.google.com/patents/US9442821
https://goo.gl/kDqenJ
https://goo.gl/8CxYdF
https://goo.gl/Sdsc6X
https://goo.gl/Mdxewq
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042

X. Leng, K. Hou and Y. Chen et al. / Computer Networks 161 (2019) 68–81 81

[

[

[

[

n

2

ing, in: International Conference on Computer Aided Verification, Springer,
2002, pp. 359–364 .

63] ANTLR, Another Tool for Language Recognition. Accessed on 2018-10-28 https:
//goo.gl/bxBAkF .

64] Akka, building highly concurrent, distributed and resilient message-driven ap-
plications on the JVM. Accessed on 2018-12-07 https://goo.gl/3yU63u .

65] S.R. Hussain , O. Chowdhury , S. Mehnaz , E. Bertino , LTEInspector: a systematic
approach for adversarial testing of 4G LTE, in: Symposium on Network and

Distributed Systems Security (NDSS), 2018, pp. 18–21 .

66] Opendaylight, Neutron Northbound,. Accessed on 2018-12-23 https://goo.gl/
MZ4Fdd .

[67] O. Sefraoui , M. Aissaoui , M. Eleuldj , Openstack: toward an open-source solu-
tion for cloud computing, Int. J. Comput. Appl. 55 (3) (2012) .

Xue Leng received the B.S. degree in computer sci-

ence and technology from Harbin Engineering University,
Harbin, China, in 2015. She is currently pursuing the Ph.D.

degree major in computer science and technology with
Zhejiang University, Hangzhou, China. Her research in-

terests are software-defined networking (SDN), network
function virtualization (NFV), and microservice. She is a

student member of the IEEE and CCF.

Kaiyu Hou received the B.Sc. degree in software engineer-

ing and M.Sc. degree in computer science from Xi’an Jiao-
tong University, Xi‘an, China, in 2014 and 2017, respec-

tively. Currently, he is pursuing the Ph.D. degree major in

computer science at Northwestern University, Evanston,
IL, USA. His research interests include software defined

networking (SDN) and networked system. He is a student
member of the IEEE.

Yan Chen received the Ph.D. degree in computer sci-

ence from the University of California at Berkeley, USA, in
2003. He is currently a professor with the Department of

Electrical Engineering and Computer Science, Northwest-
ern University, USA and a distinguished professor with

the College of Computer Science and Technology, Zhe-
jiang University, China. Based on Google Scholar, his pa-

pers have been cited over 10,0 0 0 times and his h-index is

49. His research interests include network security, mea-
surement, and diagnosis for large-scale networks and dis-

tributed systems. He received the Department of Energy
Early CAREER Award in 2005, the Department of Defense

Young Investigator Award in 2007, the Best Paper nomi-
ation in ACM SIGCOMM 2010, and the Most Influential Paper Award in ASPLOS

018.
Kai Bu received the B.Sc. and M.Sc. degrees in com-

puter science from the Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2006 and 2009,

respectively, and the Ph.D. degree in computer science
from The Hong Kong Polytechnic University, Hong Kong,

in 2013. He is currently an Associate Professor in the Col-

lege of Computer Science and Technology at Zhejiang Uni-
versity, China. His research interests include networking

and security. He is a recipient of the Best Paper Award of
IEEE/IFIP EUC 2011. He is a member of the ACM, the IEEE,

and the CCF.

Libin Song received the B.S. degree in Mechatronics

Automation Engineering and Economics from Tsinghua
University, Beijing, China, in 2015, and the M.S. de-

gree in computer science from Northwestern University,
Evanston, IL, USA, in 2017. He is now a software engi-

neer at TuSimple working on Container Orchestration for
TuSimple GPU Cluster.

You Li received his B.Eng. degree in Electrical and
Computer Engineering at Shanghai Jiao Tong University,

Shanghai, China, in 2016. He is currently pursuing the
Ph.D. degree major in computer science at Northwest-

ern University, Evanston, IL, USA. His research interest in-
cludes formal methods, electronic design automation, and

hardware obfuscation.

http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0042
https://goo.gl/bxBAkF
https://goo.gl/3yU63u
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0043
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0043
https://goo.gl/MZ4Fdd
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0044
http://refhub.elsevier.com/S1389-1286(18)31412-9/sbref0044

	A lightweight policy enforcement system for resource protection and management in the SDN-based cloud
	\numberline {1}Introduction
	\numberline {2}Background and related work
	\numberline {2.1}Background
	\numberline {2.2}Related work

	\numberline {3}SDNKeeper overview
	\numberline {3.1}Threat model
	\numberline {3.2}Application scenario
	\numberline {3.3}Architecture of SDNKeeper

	\numberline {4}Policy language and policy design
	\numberline {4.1}REST request
	\numberline {4.2}Policy
	\numberline {4.3}Policy hierarchy
	\numberline {4.4}Policy generation

	\numberline {5}Policy interpreter and permission engine
	\numberline {5.1}Policy interpreter
	\numberline {5.2}Permission engine

	\numberline {6}Correctness proof of SDNKeeper
	\numberline {6.1}System modeling
	\numberline {6.1.1}Access Control Filter (ACF)
	\numberline {6.1.2}Permission Engine (PE)

	\numberline {6.2}Model checking
	\numberline {6.3}Discussion

	\numberline {7}Implementation and evaluation
	\numberline {7.1}Implementation
	\numberline {7.1.1}Policy interpreter
	\numberline {7.1.2}Permission Engine
	\numberline {7.1.3}Model checking

	\numberline {7.2}Evaluation
	\numberline {7.2.1}Methodology
	\numberline {7.2.2}Effectiveness evaluation
	\numberline {7.2.3}Latency evaluation
	\numberline {7.2.4}Throughput evaluation
	\numberline {7.2.5}Computational overhead evaluation

	\numberline {7.3}Discussion

	\numberline {8}Conclusion
	Declaration of Competing Interest
	\numberline {Appendix A}Policy language syntax
	References

