
SDNKeeper: Lightweight Resource Protection and
Management System for SDN-based Cloud

Xue Leng∗, Kaiyu Hou†, Yan Chen∗†, Kai Bu∗ and Libin Song†
∗College of Computer Science and Technology, Zhejiang University, China

†Department of Electrical Engineering and Computer Science, Northwestern University, USA
Email: lengxue 2015@outlook.com, kyhou@u.northwestern.edu, ychen@northwestern.edu

kaibu@zju.edu.cn, libinsong2020@u.northwestern.edu

Abstract—SDN-based cloud has the merit of allowing more
flexibility in network management, however, the security of
network accessing and the correctness of network configuration
in SDN-based cloud have not been effectively addressed yet.
In this paper, SDNKeeper, a generic and fine-grained policy
enforcement system in SDN-based cloud is proposed, which can
defend against unauthorized attacks and avoid network resource
misconfiguration. With the usage of SDNKeeper, numerous flex-
ible network management policies can be created by adminis-
trators, which give administrators the discretionary room on
controlling the network resources. To be specific, SDNKeeper can
reject any unauthorized network access request at Northbound
Interface (NBI), which located between application plane and
control plane. Moreover, compared with other traditional policy-
based access control systems, SDNKeeper is totally application-
transparent and lightweight, which is easy to implement, deploy
and runtime configure. Based on the prototype implementation
and evaluation, we conclude that SDNKeeper can perform access
control accurately with negligible computation overhead whilst
the throughput degradation is still within the acceptable range.

Index Terms—Software Defined Networking, SDN-based
Cloud, Network Management, Access Control, Unauthorized
Attack

I. INTRODUCTION

Combining the programmability of SDN and elasticity of
cloud, SDN-based cloud as a new paradigm, which provides
a more flexible, efficient and convenient way to control and
manage the fundamental network service, comes into our sight.
Its abstract architecture is depicted in Fig.1 (a). With broad
application prospects, SDN-based cloud has been used in
Cloud Data Center and Carrier Networks, such as CloudFabric
[1] developed by Huawei and NovoDC [2] developed by China
Mobile. With reference to the prediction data provided by
International Data Corporation [3], the worldwide market of
SDN-based Cloud Data Center is expected to reach $12.5
billion by 2020.

In the architecture shown in Fig.1, SDN controller is the
core component of SDN-based cloud, managing the fun-
damental network. Thus, the security of SDN controller is
quite important for the whole system. To better illustrate
our motivation, we take Northbound Interface (NBI) as the
center point and investigate SDN-based cloud architecture
from two perspectives. On one hand, the application plane
will be focused on when we look up from NBI. In order to

Fig. 1: Architecture of SDN-based cloud, as well as the application
scenario of SDNKeeper.

make better use of SDN, various of third-party applications are
developed, which get even modify the resource information in
the controller and manipulate network resources in the data
plane to achieve business demands. For example, the security
applications will insert their own filter rules into the data plane,
as well as collect and analyze the information stored in the
controller. But the security of northbound requests sent from
these applications, did not attract enough attention. Due to the
absence of checking mechanisms on REST API accessing, a
malicious user or an attacker can paralyze the controller. For
instance, if a monitoring application has other permissions
beyond getting information such as update permission, it will
become a threat and can tamper with the data in the controller
based on its monitoring statistics. For another example, a
registered user can modify any data in the controller through
sending a corresponding REST request, this dangerous op-
eration will disturb the controller and destroy the network.
Although there are some related studies ([4], [5]), they only
verify users’ legitimacy while leave the verification of user
operation out, which is precisely the key to solve the security
problem mentioned above as well as an issue addressed in this
paper.

On the other hand, when we look down from NBI, the plu-
gins1 located in the controller will be spotlighted. To provide
a powerful SDN controller, various of plugins with specific
functions are developed to cooperate with core projects. Take
OpenDaylight [6], a mainstream SDN controller, for example,
currently, there are 62 projects opening thousands of REST

1Plugins are projects located in controller and provide specific functions
for upper level applications.978-1-5386-2542-2/18/$31.00 c© 2018 IEEE

APIs to upper applications. This situation can be described as
Fig.1 (b). Related work [7] focuses on the security of plugins
themselves and the communication between plugins and core
projects of the controller. To the best of our knowledge, there is
not a unified interface or tool can manage these plugins’ REST
APIs and perform access control on REST access requests.

To address these two issues mentioned above, we propose
SDNKeeper, the first fine-grained and generic policy enforce-
ment system for protecting and managing resources in SDN-
based cloud. To accomplish this system, we have to overcome
the following challenges: 1) Applicability, the proposed system
should work smoothly with existing controllers and applica-
tions; 2) Administrator friendliness, the system should provide
a convenient and formalized way for network administrators
to express their intentions; 3) Centralized management, the
system should be able to manage all the plugins inside the
controller, including their REST APIs and requests accessing
them; 4) Hot update, the update of the system should be
transparent to other components.

In this paper, SDNKeeper is presented, which can inter-
cept unauthorized access requests and assist administrators to
manage network resources. As shown in the Fig.1 (c), NBI is
the indispensable interface connecting upper applications and
the controller. Performing access control on NBI can reserve
the high-level abstraction information from users/upper layer
applications, as well as block the illegal access requests out of
the controller, thereby protecting and saving resources in the
controller.

SDNKeeper performs access control on NBI based on the
policies defined by administrators. In order to provide admin-
istrators a convenient way to express intentions to protect and
manage resources, we design a policy language with readable
and operable format, which can narrow down to any specific
attribute of requests and resources. A policy interpreter is
designed to parse these policies into a controller-processable
format then issue them to the data store. After a request
coming to access the controller, permission engine will check
its legality with policies issued before. The benign requests
will continue to be processed by the controller, while the
illegal ones rejected by policies will be blocked outside the
controller. In sum, all strategies for protecting and managing
resources can be expressed in our policy language and take
effect in our system.

For this work, we made the following contributions.

• We propose a generic policy enforcement system on SDN
controller to protect and manage network resources in
SDN-based cloud through monitoring the access requests.

• We design a fine-grained policy language for administra-
tors to define management policies, realizing centralized
management of resources.

• We implement SDNKeeper with the feature of hot-update,
to be specific, it refers to policy hot-update. Administra-
tors can update policies on the fly and modified policies
will take effect to subsequent requests soon after.

• We evaluate the performance of SDNKeeper with three

Fig. 2: The evolution of Northbound Interface.

metrics: effectiveness, latency and throughput, and the
results show that SDNKeeper can accurately intercept
illegal access requests with minor computation overhead.

The rest of paper is structured as follows. Firstly, research
background (Section II-A) and related work (Section II-B) are
presented. And following that, an overview of SDNKeeper is
described in Section III, including application scenarios and
the architecture of SDNKeeper. In Section IV and Section
V, we illustrate the design details of policy and permission
engine. We implement and evaluate the SDNKeeper prototype
in Section VI. Finally, in Section VII we conclude the paper.

II. BACKGROUND AND RELATED WORK

A. Background

Since the birth of SDN, academia and industry have invested
a lot of energy in research. Fortunately, by virtue of unique ad-
vantages of programmability and centralized control, SDN has
been widely used in various scenarios, such as home network-
ing ([8], [9]), enterprise networking ([10]), telecommunication
networking ([11], [12]) and data center/cloud networking (
[13]–[15]). The global cloud service providers like Microsoft
Azure [16], [17], IBM [18] and Google [19] are all leading to
use SDN in their cloud network architectures. According to the
data from Synergy Research Group [20], $12 billion revenues
have been reached by the global cloud infrastructure service in
the third quarter of 2017. The emergence of SDN brings new
ideas to solve the inherent problems in these scenarios, such
as increased management complexity, complex deployment of
solutions and high cost for new feature insertion.

In large-scale networking, the resource management as well
as the network creation and configuration are completely
relying on network administrators, so that human errors are
inevitable. When creating network, administrators need to keep
in mind which network segment is available and whether the
VlanId has been assigned. With a slight negligence, networks
that need to be isolated could communicate with each other.
These bad operations are usually hard to be aware until
receiving alerts from physical network devices or tenants.
What’s more, it is more challenging to trace these faults
due to lack of administrator operation records. Under this
circumstance, a tool assisting in managing network resources
becomes important to network administrators.

Besides these inherent drawbacks, when adopting SDN to
provide fundamental network service in large-scale scene such
as cloud, a series of new issues will arise. First, attackers can

2

send malicious requests utilizing APIs obtained from applica-
tions accidentally. Secondly, the requests are sent correctly, but
the content were tampered with during transmission. Finally,
the registered user may directly issue malicious requests
to SDN controller. Without access control and verification
mechanism, SDN controller may execute harmful requests and
the network will be paralyzed at worst. Since access requests
are passed from cloud to SDN controller through NBI, the
best way to protect resources is to perform access control
on NBI. As depicted in Fig. 2, the evolution of NBI has
gone through three stages [21]. With the rise of focus, more
and more specific plugins integrated inside the controller even
become a black box for upper applications. Due to lack of
internal details, performing access control inside these plugins
is not advisable. Thus, a wise design is proposed in this
paper, performing access control on NBI, which adapts to the
evolution of NBI and makes the system compatible.

The two main issues mentioned above are critical to the se-
curity of fundamental network. However, at present, they have
not been addressed efficiently. Also, among the existing work,
there is no access control mechanism performed at northbound
level of SDN. In a word, an access control mechanism is
important and necessary for protecting and managing network,
which is the key point this paper worked on.

B. Related Work

Based on our work, we divide the related work into the
following categories, access control in SDN, access control in
cloud and policy language, then compare our work with these
papers from above three aspects.

Access Control in SDN. Work [22]–[24] perform access
control on southbound and data plane. And SDNShield [7]
performs access control on the plugins inside the controller
through modifying plugins’ codes. However, they did not con-
sider the malicious requests coming from northbound. Work
[25], [26] design new controller architectures and APIs to
prevent malicious operations, which weaken the applicability
and flexibility of SDN controller. Then, PGA [27], FlowGuard
[28] are designed for Access Control List (ACL). They can
only control the packets routing in the existing network, while
cannot control the network configuration in SDN-based cloud,
as well as access requests from northbound.

For the work focusing on northbound, AAA [4], a project
of OpenDaylight controller, can realize fundamental user au-
thentication and authorization. In the latest version of Nitro-
gen, AAA can filter access requests at the coarse resource
granularity, while unable to make decisions according to the
attributes of requester, resource and environment.

Access Control in Cloud. Prior access control mechanisms
in cloud [29]–[34] are in allusion to protect data security and
user privacy. They have not provided effective protection for
SDN. Although, work [35], [36] are based on SDN, they only
control the network and detect attacks within and between
cloud. Controller has not been taken into their concerned.

Policy Language. Due to the expansion of scale and in-
creased management complexity, a variety of policy-driven

Fig. 3: Architecture and workflow of SDNKeeper.

languages expressing intentions of administrators are proposed
to manage and secure the network [37]. These languages focus
on either network management or security management, e.g.,
PCIM [38] can be mapped into network device configurations,
while XACML [39] is designed based on XML and consists
of four components to perform access control. Compared with
it, our work is lightweight and easy to implement and deploy
to achieve the purpose of access control on REST requests.
Overall, SDN-based cloud is a new scenario, realizing a
lightweight policy enforcement mechanism for both network
management and protection is still challenging and unresolved.

Therefore, designing a lightweight access control system
to protect and manage resources for SDN-based cloud is
challenging and of great significance.

III. SDNKEEPER OVERVIEW

In this section, after presenting two application scenarios of
SDNKeeper, we give a bird’s-eye view of SDNKeeper as well
as a macroscopic description of its main components. To better
understand the mechanism of SDNKeeper, we demonstrate the
workflow within its architecture.

A. Application Scenario

To focus on demonstrating the core design of SDNKeeper
and make our work understandable without any ambiguity, we
make two assumptions here: 1) SDN controller, which per-
forms permission checking, is safe. A large body of research
and techniques ([40]–[42]) make SDN controller safer and
more robust, and our work mainly focuses on the legitimacy
of access requests and the security of resources. Therefore,
we assume that the controller is safe. 2) Administrator,
who specifies policies, is credible. Administrator has the
highest authority so that can configure the whole network via
making policies. Hence, attacking network through hijacking
administrator will not be discussed in this paper.

Based on above two assumptions, we summarize two ap-
plication scenarios of SDNKeeper as follows. Here we regard
resource as all plugins inside the controller, as well as the
network resources managed by the controller, including flow
tables, statistics and devices, etc.

3

Scenario 1: Protecting resources. The requests accessing
resources can be divided into three categories as described
in Section II-A, also shown in Fig. 3. Request (1) comes
from the application and carries illegal information. Request
(2) is also sent from benign user and application, but it
was tampered with halfway through. And request (3) is sent
directly to the controller by the registered user. All these
requests are dangerous to the controller and put resources at
risk of being tampered with. While SDNKeeper can intercept
these malicious requests effectively.

Scenario 2: Managing resources. There are various of
plugins inside the controller opening thousands of REST APIs
for upper applications. SDNKeeper provides a unified entrance
to manage resources, such as controlling which resource can
be deleted or which resource can be queried. Administrators
just need to add a policy in SDNKeeper to achieve the goal
of managing resources in the controller and data plane.

B. Architecture of SDNKeeper

In SDN-based cloud, the fundamental network service is
provided by SDN. Taking a typical application scenario as an
example, as depicted in Fig. 1, cloud [43] communicates with
SDN controller through REST API provided by plugins inside
the controller. Meanwhile, REST Service, as the unique north-
bound channel in SDN controller, processes all requests sent
from cloud. Hence, our key idea of protecting and managing
network resources in SDN-based cloud is to perform access
control at the NBI level.

In general, SDNKeeper as a fine-grained policy enforcement
system provides real-time protection and permission checking
for SDN controller. Specifically, SDNKeeper allows admin-
istrators to design policies based on the global view of the
whole network. No matter which application the access request
comes from, it will be rejected if violating the policies.

In our design, SDNKeeper mainly consists of two parts,
policy interpreter and permission engine. The complete access
control workflow of SDNKeeper is described as follows.

1) Administrator first defines the policies according to cur-
rent global view and security demands (step 1©), and then
issues these policies to the controller (step 2©).

2) The policy interpreter parses and transforms the se-
mantic policies into formalized structural data, which
are controller-identifiable and SDNKeeper-processable.
Parsed policies are stored in the data store (step 3©).

3) When the controller receives a REST Request (step 4©),
the filter in REST Service will intercept and send this
request to permission engine (step 5©).

4) Permission engine checks the required operation with
policies stored in the data store (step 6©). If the request
violates the policy, permission engine will reject it along
with response massages.

Policy interpreter is a component of SDNKeeper. After the
administrator defines policies in policy language based on the
global view and security demands, these policies will be issued
to the controller. To be specific, policy interpreter parses and

transforms the semantic policies into tree-structured data and
stores them in the data store of the controller.

Permission engine is the core component of SDNKeeper,
which enforces permission checking based on the policies
defined by the administrator. SDNKeeper can be regarded as a
filter between SDN controller and upper applications. During
the lifetime of the controller, permission engine keeps medi-
ating all access requests at NBI level consistently. Permission
engine also supports runtime policy modification, providing
the flexibility of access control.

Generally, in original SDN system, all requests sent from
various applications are directly loaded into the controller
without checking the legitimacy and correctness. Thus, ma-
licious requests can strike the system without any obstruction.
Though, several security inspection techniques ([44]–[46]) are
presented for the safety of applications. They can only work
offline and unable to ensure the legality of requests sent to
a running plugin. In SDNKeeper, controller can not only
avoid infringement caused by malicious requests, but also save
precious resources to efficiently process benign requests and
provide real-time protection for the system. We will describe
the design of policies, and the details of policy interpreter and
permission engine in Section IV and Section V, respectively.

IV. POLICY LANGUAGE AND POLICY DESIGN

In this section, we will expound what the policy is, how
policies are managed in SDNKeeper and how to write a policy
for administrators.

A. REST Request

REST API2 is the most common way for tenants to request
network resources through NBI in SDN. Almost all SDN
controllers today provide REST API, and recommend or
require using REST request to access network resources from
northbound, like OpenDaylight [6], Floodlight [47], ONOS
[48] and Ryu [49]. A REST request has four main parts as
shown blow.

A Typical REST Request Example

1) Method: POST (POST/GET/PUT/DELETE)
2) URI: https://<controller-ip>:<port>/networks/
3) Headers: {

Content-Type : application/json,
Authorization : {

Username : Alice, Password : *** },
... }

4) Body (optional): {
network : {

name : alice-network,
tenant_id : 9bacb3c5d39d41a7951...,
subnets : [],
network_type : vlan,
... }}

2REST API: REpresentational State Transfer Application Programming
Interface, which allows the requester to access and manipulate resources using
a uniform, stateless operation over HTTP.

4

1) Method defines the HTTP verbs a requester wants to per-
form. The most commonly used HTTP verbs are POST,
GET, PUT and DELETE. They correspond to create, read,
update/replace and delete operations, respectively.

2) URI identifies the network resource provided by the
controller. Typically, plugins register their URIs in REST
Service. For example, the REST Service in OpenDaylight
is called RESTConf, plugins should tell RESTConf what
the URIs they want to use to identify their resources. A
query condition with some attributes may follow the
URI when GET verb is requested.

3) Headers carry a list of information in HTTP request,
such as the content type of this request and the autho-
rization token of a requester.

4) If a requester requests to create (POST), update/replace
(PUT) or delete (DELETE) a resource, a Json body with
detailed attributes of this resource should be included.

With the information carried in REST request, a policy
can be created to perform fine-grained access control on the
requests, which are sent by tenants to access network resources
in the controller and data plane.

B. Policy
A policy in SDNKeeper is designed to determine whether to

approve or decline a REST request. We formulate a resource
access control policy (P) into three terms: Subject, Object and
Environment, which can cover all the information contained
in a REST Request.

P(S,O,E) := (ATTR(S) op ATTR(O) op ATTR(E))

• Subject (S) is a requester, usually means a user who issues
access requests to the controller (Headers: Authorization).
Its attributes (ATTR) are the information related to the
users, like username and role type.

• Object (O) is the requested resource provided by the
controller, such as networks, firewalls or routers (URI).
All the context in the Body part of REST request are the
attributes of this Object.

• The system Environment (E) is also an important aspect
we should consider. For example, date is a crucial envi-
ronment attribute in the lease of a network resource. A
tenant cannot use resource after the lease expires.

We predefined a data structure to fetch the attributes of
Subject, Object and Environment:

predefined
: ’subject.’ (’role’ | ’user’)
| ’action.’ (’uri’ | ’query’ | ’method’)
| ’environment.’ (’date’ | ’time’ | ’week’)

For instance, Subject’s attributes such as role and username
can be obtained by format subject.role and subject.user. For
Object, action attributes can be fetched by the format ac-
tion.uri and action.method. And query string for GET verb can
be obtained by using action.query. As the same, environment
data structure represents the system date and time in the
controller.

In addition, we can refer to JsonPath syntax to access the
attributes in the Body part:

jsonpath : ’$.’ string (’.’ string)*

For example, $.network.type can get the type of the network.
Therefore, with our predefined data structure, network admin-
istrator can get any information from the REST request and
customize arbitrary policies according to our predefined data
structure.

Each policy is a set of assertion expressions combined with
the iteration of if-statements and AND/OR operations, finally
returning a value of ACCEPT or RE JECT :

policy : policy_name ’{’ statement ’}’
statement : ’ACCEPT’ | ’REJECT’ | if_state
if_state : ’if (’ expr ’)’ statement

(’else’ statement)?

Below, we show an example of a policy which follows
the policy language syntax. This policy is called “Bob can
post vlan”. With the first if-statement, a REST request from
user Bob will hit this policy. Under the assertions in second
if-statement, Bob can create a network, if the type of network
is Vlan.

A Policy

Bob_can_post_vlan{
if (subject.user == ’Bob’) {

if (action.uri REG ’/networks/’ &&
action.method == ’POST’ &&
$.network.type == ’vlan’) {

ACCEPT }}}

C. Policy Hierarchy

SDNKeeper classifies the policies into two categories,
global policy and local policy:

policySet : globalSet? localSet? ;
globalSet : ’GLOBAL_POLICY {’ policy* ’}’
localSet : ’LOCAL_POLICY {’ localPolicy* ’}’
localPolicy : role. (user)? ’{’ policy* ’}’

• Global policies are intended for all requests. When a
request comes in, it will be checked against all the global
policies.

• Local policies are intended for individual user group and
user only, which have user-related attributes: role and
username. When a request from a certain user comes in,
only the related local policies with the matching role and
username will be checked.

In order to have an intuitive understanding, we give an
example of a policy file including global policies and local
policies. For user “Alice” in “user” role, her REST request
is processed by global policy system update, local policy
user can get on monday and alice cannot delete firewall.
However, for user “Bob” in “user” role, his requests will be
checked with only two policies, global policy system update
and local policy user can get on monday.

There are two reasons for designing these two separated
policy sets. One is for performance. Permission engine only

5

needs to check global policies and related local polices. This
will greatly reduce the policy checking burden when the policy
set is large. And the other more important reason is for
expressiveness and simplicity. Administrators can make group
policies to manage requests in batches according to specific
requirements, as well as make individual policies for particular
users to control their resources.

SDNKeeper’s policy language syntax is summarized in
Appendix A.

A Policy File

GLOBAL_POLICY {
system_update {

if (environment.time > 12pm &&
environment.time < 1am) {

REJECT }}}
LOCAL_POLICY {
user {

user_can_get_on_monday {
if (action.method == ’GET’) {
if (environment.weekday == ’mon’) {

ACCEPT }}}}
user.Alice {

alice_cannot_delete_firewall {
if (action.uri REG ’/firewalls/’) {
if (action.method == ’DELETE’) {

REJECT }
else {

ACCEPT }}}
... }}

D. Policy Generation

Enforcing SDNKeeper in SDN-based cloud only requires
network administrators to learn a little knowledge. First, the
REST APIs and related attributes have already been recorded.
Thus, administrators do not need to learn about them. Second,
policies in SDNKeeper are Json-based rules. Those access con-
trol rules can be created by simply following the description
in Section IV, which are totally the same as Json grammar.

Before enforcing SDNKeeper, administrators first need to
summarize the characteristics of attacks, business needs and
system restrictions. Basic global policies for the whole cloud
and various local policies for different types of tenants are
created from those characteristics. When a new tenant joins
this cloud, administrators only need to assign this tenant into a
corresponding role. The authority of this tenant will follow the
policies described by the predefined global and local policies.
In addition, administrators can also create special policies for
particular tenant by adding a new local policy for this tenant
on the fly.

V. POLICY INTERPRETER AND PERMISSION ENGINE

In this section, details of policy interpreter and permission
engine are introduced, as well as the mechanism of REST
request processing and permission checking.

Fig. 4: Semantic tree of global policy.

A. Policy Interpreter

The human-language based policies are required to transfer
to computer-processable data structure. In policy interpreter,
abstract policies issued by the administrator are parsed into a
semantic tree, which is loaded into the controller’s memory. In-
tuitively, Fig. 4 shows the semantic tree of a global policy set.
In the semantic tree, each leaf node represents an attribute or a
comparing value and other nodes represent logical operators.
Thus, each expression can be expressed by a subtree. After
recursively evaluating the left child and right child, we can
get the value of root node, i.e., the result value of permission
checking.

Matching in semantic tree is very fast. Our evaluation
in Section VI-B shows that the matching time will not be
significantly affected after we quadruple the total number of
policies.

B. Permission Engine

Each request issued by users will be checked by the permis-
sion engine. Generally speaking, permission engine 1) extracts
attributes of request, such as user, uri and method, 2) evaluates
this request by checking against policies, and 3) finally makes
a decision on approving or declining this request. We highlight
several issues in permission engine design as following.

Policy Conflict. Because of the intersection of different
policies, a REST request may be approved by one matched
policy and rejected by another matched policy, which brings
a policy conflict. As shown below, if user Alice requests to
GET a networking resource. Her demand will be approved by
all can get policy in global policy set. However, Alice does
not have the permission to access the networking resource
as described in net reject alice policy. Therefore, it will be
unsecured if we make a decision by only one approved policy.

GLOBAL_POLICY {
all_can_get {

if (action.method == ’GET’) {
ACCEPT }}}

LOCAL_POLICY {
user.Alice {

net_reject_alice {
if (action.uri == ’/networks/’) {

REJECT }}}}

6

For the sake of security, we introduce full match strategy in
permission checking process. A REST request is checked in
the order of global policies, group local policies and user local
policies. If a matched policy returns a “REJECT”, permission
engine will decline this request immediately. If no policy is
matched by this request, this request will also be declined.
Otherwise, this request should be approved. The complete
permission checking process is illustrated in Algorithm 1.

Algorithm 1: Permission Checking
Input : request
Output: ACCEPT or RE JECT

1 approved ← f alse
2 policy set ← {Global, Local[role], Local[role][user]}
3 for policy in policy set do
4 if request matches policy then
5 if policy.eval(request) == RE JECT then
6 return RE JECT
7 else approved ← true

8 If approved == true return ACCEPT
9 return RE JECT ;

Filter Based. Permission engine acts as a filter between
application plane and control plane. Therefore, illegal requests
will be rejected before reaching the related modules inside
the controller, which will never occupy the network resources.
Filter based design can also bring benefits in deployment. Typ-
ically, controllers have a REST Service module for receiving
and distributing REST requests. It will only have a little code
changing when adding a new REST filter to REST Service
module. In most cases, like OpenDaylight and ONOS, we can
enable SDNKeeper in them by adding several dependencies to
configuration file.

Runtime Configuration. Since administrators may need
to refine policies dynamically according to the security and
business demands, runtime configuration is an important fea-
ture for permission engine. In SDNKeeper, administrators are
allowed to access and update the policies in data store, where a
listener is registered, at any time. Once an insert/delete/update
operation occurs, the listener will send a notification to per-
mission engine. And the permission engine will update the
policies in the memory cache, so that subsequent requests will
be checked by new policies.

VI. IMPLEMENTATION AND EVALUATION

There are two major components in the prototype of
SDNKeeper: 1) policy interpreter parses semantic policies
into semantic trees, 2) permission engine performs permis-
sion checking for each coming request. In this section, we
first introduce the implementation of these two components.
Then, we evaluate the performance of SDNKeeper from three
metrics: effectiveness, latency and throughput and briefly
discuss the results in the end.

A. Implementation
We implement SDNKeeper as a plugin of OpenDaylight [6]

controller, which works as a filter to control any REST request

from upper applications to the controller. As SDNKeeper
is application-independent, we can support every network
application in OpenStack naturally.

Though, the implementation is inherently related to the con-
troller specification, policy interpreter and permission engine
are implemented as the controller-independent Java bundles.
Currently, almost all mainstream controllers (OpenDaylight,
ONOS) use REST API in northbound communication, which
makes it easy to deploy SDNKeeper on controllers to perform
access control on REST requests. Benefit from the lightweight
of SDNKeeper, the deployment of the whole system is lowcost,
which only need embed SDNKeeper into the controller as a
feature and ask the priority to filter REST requests first.

SDNKeeper is an attribute-based access control system,
in which role is an important attribute of the requester for
checking permission and making decisions. Since a user
authentication module (AAA [4]) has already been developed,
we liberate ourselves from repetitive work. Owing to the filter-
based feature, SDNKeeper is compatible with other projects,
so that the permission engine of SDNKeeper can be inserted
behind AAA, then the checking progress is based on the
authenticated result of AAA.

The two main components are implemented as follows.
1) Policy Interpreter: Policies defined by administrators

are the Json-based, human-readable rules. Policy Interpreter
compiles these semantic policies into semantic trees. We
implement a CLI command SDNKeeper:load/reload in Karaf
console to load all semantic policies into data store of the
controller. In this progress, ANTLR [50], a language recog-
nition tool, is responsible for reading and parsing semantic
policies continuously, then a registered listener will insert the
policy tree into data store once a new one is loaded. Finally,
all policies will be stored as a tree, so that permission engine
just needs to recursively traverse a tree to enforce a policy.

2) Permission Engine: Permission Engine is the core
component checking REST requests based on policies defined
by administrators. In the real-world scenario, REST requests
sent to the controller are usually high concurrency. In order to
adapt to this character, we adopt Akka [51] to process multiple
requests simultaneously through creating a certain number of
Actors. Making full use of controller’s computing resources
helps us achieve high system performance, i.e., low processing
latency and high processing throughput.

What’s more, request queue and response queue are de-
signed for caching access requests and check results respec-
tively to mitigate the congestion of requests. With the Policy
Data Store Listener in permission engine, the policy cache
in memory can be updated at runtime once the administrator
refined policies in the data store. And the new policies will
take effect on subsequent requests. In order to facilitate
the administrator to checkout whether the new policies are
effective, we implement a CLI command SDNKeeper:cache,
which can be executed in the Karaf console to get the policies
in the cache.

In practice, multiple controllers cooperate with each other
as a cluster to provide network services. When working in

7

200 400 600 800 1000

No. of Policy

0

1

2

3

4

5

6
L

at
en

cy
 (

m
s)

(a) Latency - SDNKeeper

GET

POST

PUT

DELETE

All REJECT

GET POST PUT DELETE

Request Method

0

1

2

3

4

5

6

L
at

en
cy

 (
m

s)

(b) Latency - ODL vs SDNKeeper

ODL

SDNKeeper(ACCEPT)

SDNKeeper(REJECT)

200 400 600 800 1000

No. of Policy

200

400

600

800

1000

1200

N
o
.
o
f

R
es

p
o
n
ce

(c) Throughput - SDNKeeper

SDNKeeper(ACCEPT)

SDNKeeper(REJECT)

2 4 6 8 10

No. of Thread

200

400

600

800

1000

1200

N
o
.
o
f

R
es

p
o
n
ce

(d) Throughput - ODL vs SDNKeeper

ODL

SDNKeeper(ACCEPT)

SDNKeeper(REJECT)

Fig. 5: Evaluation Result: (a) latency of SDNKeeper with different numbers of policies, (b) latency between original and SDNKeeper-enabled
OpenDaylight with 1000 policies, (c) throughput of SDNKeeper per second with different numbers of policies under 2 threads, (d) throughput
between original and SDNKeeper-enabled OpenDaylight with different numbers of threads.

multi-controller scenario, SDNKeeper can still perform well
since the distributed policy data store makes each permission
engine on different controllers has the same view of policies.

B. Evaluation

1) Methodology: We establish the testbed of SDNKeeper
on the mainstream SDN controller OpenDaylight (Intel i7-
7700 8x3.6GHz, 16GB Memory), and choose Neutron [52], a
component providing network service in OpenStack [43], as
our test application. Neutron provides 30 kinds of REST API,
ranging from networking, firewall, QoS to load balance, with
185 kinds of requests (GET, POST, PUT, DELETE) and 664
related attributes, which we think are enough to evaluate the
effectiveness of SDNKeeper.

In our evaluation, tenants send REST requests to OpenDay-
light (ODL) through REST API. And SDNKeeper performs
access control on REST API between application plane and
control plane. We examine the check results of those requests
in the controller and the response in tenants to evaluate the
performance of SDNKeeper.

We first evaluate the effectiveness of SDNKeeper, i.e.,
whether SDNKeeper can reject all kinds of unauthorized
requests correctly. Then, we measure the extra processing la-
tency introduced by SDNKeeper and REST request throughput
comparing between controllers with and without SDNKeeper.
Since if an illegal request is rejected by SDNKeeper, the
processing time and resources occupancy would be largely
reduced. Hence, we evaluate the performance of SDNKeeper
in both cases, all decisions are “ACCEPT” and all decisions
are “REJECT”.

TABLE I: REST API in OpenStack Neutron

Type # API # Attr Type # API # Attr
Networking 6 220 Meter 2 13
Firewall 3 83 QoS 2 31
Security 2 24 Load Balance 4 81
VPN 4 104 BGP VPN 1 22
SFC 4 60 L2 Gateway 2 26

2) Effectiveness Evaluation: In order to evaluate the effec-
tiveness of SDNKeeper, we design test cases corresponding
to the three types of illegal requests mentioned in Section
III-A. Since these illegal requests have the same format,

we simulate these requests through sending REST requests
uniformly. Table I lists all types of REST APIs provided by
OpenStack Neutron. These APIs are representative to show
the correctness of SDNKeeper in rejecting the unauthorized
access in SDN-based cloud.

When verifying the effectiveness of intercepting unautho-
rized requests, we send two kinds of illegal requests: 1)
requests accessing resources not belong to current user, 2)
requests performing extra operations on his own resources.
We create 2789 policies in 3 granularities: 30 policies for all
kinds of APIs, 185 policies for all kinds of actions in API,
664 policies for all kinds of attributes and 1910 policies for
all possible combinations of two attributes. Then, 2789 related
illegal requests are sent to violate them. Note that, we create
illegal requests by setting incorrect values to some fields of
the request to make it violate one or more policies which need
to be checked with. The results show that all of these illegal
requests are rejected by SDNKeeper.

3) Latency Evaluation: In SDNKeeper, matching policies
and checking permissions may introduce extra delay in con-
troller when processing a REST request. We evaluate this delay
by measuring the latency in tenants from sending a request to
receiving the corresponding response. Two experiments are
performed in this part: 1) latency in different numbers of
policies (Fig. 5 (a)) and 2) latency between controllers with
and without SDNKeeper (Fig. 5 (b)). Each test is executed 5
times with 30000 requests.

Fig. 5 (a) illustrates the processing latency with different
numbers of policies. As we can see, in all of those four request
categories, almost no latency increase is introduced when we
increase the number of policies. The insignificant computation
overhead mainly benefits from our design of storing policies
in semantic tree. What’s more, the matching time will not be
significantly affected after increasing the number of policies
because of the design of policy hierarchy, only policies under
specific users will be checked.

Under the same scenario with 1000 policies, we compare
the latency between SDNKeeper-enabled OpenDaylight and
original OpenDaylight. Since the policy decision affects re-
quest processing time, i.e., decision “REJECT” will make the
processing time shorter than original, while decision “AC-
CEPT” will induce a little bit of computation overhead. As

8

shown in Fig. 5 (b), SDNKeeper with decision “ACCEPT”
only introduces about 0.15ms extra delay on average. And the
latency is largely reduced about 0.17ms, 3.10ms, 2.36ms and
2.19ms in GET, POST, PUT, DELETE requests respectively,
when request is “REJECT” by SDNKeeper. In practice, de-
cision “ACCEPT” and “REJECT” are mixed to construct a
blameless policy set, thus the extra delay which is introduced
by SDNKeeper will be further reduced. In short, SDNKeeper
has insignificant computation overhead for policy processing.

4) Throughput Evaluation: We then evaluate the through-
put of SDNKeeper. In the evaluation, we send a large number
of REST requests to fulfill the capacity of controller and
measure the number of requests that can be processed per
second, i.e., the number of received responses within one
second.

As shown in Fig. 5 (c), no matter what decision is, the
performance of the controller is almost unchanged when we
increase the number of policies significantly. This result is
consistent with the result in latency evaluation. The number of
policies has negligible impact under our semantic tree design.

In Fig. 5 (d), we compare the throughput in OpenDaylight
controller with and without SDNKeeper. We vary the number
of threads to test the processing capacity of SDNKeeper.
From the results we can see that SDNKeeper with decision
“REJECT” always gets the best performance without being
affected by the number of threads. While the throughput of
both original OpenDaylight and SDNKeeper-enabled Open-
Daylight with decision “ACCEPT” are varied with thread’s
number. When the number of threads is greater than 4, the
processing capability is no longer significantly affected by
thread’s number and close to the ideal. And the performance
of SDNKeeper-enabled controller is almost as good as orig-
inal OpenDaylight according to evaluation results. In short,
SDNKeeper performs access control accurately with negligible
effect on the processing capability of the controller.

5) Discussion: Compared with the Southbound Interface
(SBI), the NBI is latency insensitive and infrequent. According
to evaluation results, 0.15ms extra delay by SDNKeeper in
NBI communication is acceptable. In industry, the throughput
threshold will be limited by a reasonable experience value to
ensure each request can be processed in the controller. Besides,
since permission engine of SDNKeeper is stateless, running
it in multi-controller system can get better performance. In
a word, SDNKeeper can prevent unauthorized requests ef-
fectively with negligible impact on the performance of SDN
controller.

VII. CONCLUSION

SDN-based cloud as a new concept has been widely applied
in many industrial scenarios. However, effective resource
protection and management in SDN-based cloud have not
been addressed yet. In this paper, we propose SDNKeeper,
a lightweight policy enforcement system, which can prevent
network resources from illegal access requests and assist-
ing network administrator in managing network resources.

Through defining fine-grained policies, SDNKeeper can per-
form access control on each request received by the controller
to defend against unauthorized attack and avoid network
misconfiguration. Beyond all benefits above, SDNKeeper is
also application-transparent and able to support administrators
to update policies on the fly. We implement the prototype of
policy enforcement system and evaluate its performance. The
results show that SDNKeeper can perform access control ac-
curately with negligible computation overhead and acceptable
throughput degradation.

APPENDIX
POLICY LANGUAGE SYNTAX

Policy Hierarchy
policySet : globalSet? localSet? ;
globalSet : ’GLOBAL_POLICY {’ policy* ’}’
localSet : ’LOCAL_POLICY {’ localPolicy* ’}’
localPolicy: role.(user)? ’{’ policy* ’}’
policy : policy_name ’{’ statement ’}’

Policy Statement
statement : ’{’ statement ’}’

| ’ACCEPT’ | ’REJECT’ | if_state
if_state : ’if (’ expr ’)’ statement

(’else’ statement)?
expr : ’(’ expr ’)’

| expr lop expr | primary aop primary
| true | false

lop : ’&&’ | ’||’
aop : ’>=’ | ’<=’ | ’>’ | ’<’

| ’==’ | ’!=’ | ’REG’

Primary
primary : predefined | jsonpath | literal
predefined: ’subject.’

(’role’ | ’user’)
| ’action.’

(’uri’ | ’query’ | ’method’)
| ’environment.’

(’date’ | ’time’ | ’week’)
jsonpath : ’$.’ string (’.’ string)*
literal : int | float | string | bool | null

“?” indicates 0 or 1 occurrences of the preceding element.
“*” indicates 0 or more occurrences of the preceding element.

ACKNOWLEDGEMENTS

This work is supported by National Key R&D Program
of China (2017YFB0801703) and the Key Research and
Development Program of Zhejiang Province (2018C01088).

REFERENCES

[1] “Cloudfabric, a sdn-based data center developed by huawei,” accessed
on 2018-2-24. [Online]. Available: https://goo.gl/mp9E9J

[2] “Novodc, a sdn-based data center developed by china mobile,” accessed
on 2018-2-24. [Online]. Available: https://goo.gl/pdktxv

[3] I. D. Corporation, “A report on datacenter by idc,” accessed on
2017-07-31. [Online]. Available: https://goo.gl/ZLv2Pg

9

[4] “Aaa, a project of opendaylight controller,” accessed on 2018-1-2.
[Online]. Available: https://goo.gl/LvfRoH

[5] Y. E. Oktian, S.-G. Lee, and J. Lam, “Oauthkeeper: An authorization
framework for software defined network,” Journal of Network and
Systems Management, pp. 1–22.

[6] Opendaylight, “A mainstream sdn controller,” accessed on 2017-10-12.
[Online]. Available: https://goo.gl/JwB2G6

[7] X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen,
“Sdnshield: Reconciliating configurable application permissions for sdn
app markets,” in Dependable Systems and Networks (DSN), 2016 46th
Annual IEEE/IFIP International Conference on. IEEE, 2016, pp. 121–
132.

[8] M. Lee, Y. Kim, and Y. Lee, “A home cloud-based home network auto-
configuration using sdn,” in Networking, Sensing and Control (ICNSC),
2015 IEEE 12th International Conference on. IEEE, 2015, pp. 444–
449.

[9] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[10] D. Levin, M. Canini, S. Schmid, and A. Feldmann, “Incremental sdn
deployment in enterprise networks,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 473–474.

[11] H. Ali-Ahmad, C. Cicconetti, A. De la Oliva, V. Mancuso, M. R. Sama,
P. Seite, and S. Shanmugalingam, “An sdn-based network architecture
for extremely dense wireless networks,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for. IEEE, 2013, pp. 1–7.

[12] A. Basta, A. Blenk, K. Hoffmann, H. J. Morper, M. Hoffmann, and
W. Kellerer, “Towards a cost optimal design for a 5g mobile core
network based on sdn and nfv,” IEEE Transactions on Network and
Service Management, 2017.

[13] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn controller,” in ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
7–12.

[14] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang,
“Meridian: an sdn platform for cloud network services,” IEEE Com-
munications Magazine, vol. 51, no. 2, pp. 120–127, 2013.

[15] T. Wang, F. Liu, and H. Xu, “An efficient online algorithm for dynamic
sdn controller assignment in data center networks,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 5, pp. 2788–2801, 2017.

[16] A. Greenberg, “Sdn for the cloud,” in Keynote in the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015.

[17] “Microsoft azure and software defined networking,” accessed on
2017-11-8. [Online]. Available: https://goo.gl/t2QVUm

[18] “Ibm network services for software defined networks,” accessed on
2017-11-8. [Online]. Available: https://goo.gl/xP6cLh

[19] “Google cloud platform,” accessed on 2017-11-8. [Online]. Available:
https://goo.gl/B2fMfJ

[20] “Synergy research group,” accessed on 2017-11-8. [Online]. Available:
https://goo.gl/f7yTH9

[21] H. developer, “Northbound interface of sdn,” accessed on 2017-10-25.
[Online]. Available: https://goo.gl/D2wv2L

[22] C. R. Taylor, D. C. MacFarland, D. R. Smestad, and C. A. Shue,
“Contextual, flow-based access control with scalable host-based sdn
techniques,” in Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

[23] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Access control for
sdn controllers,” in Proc. 3rd ACM HotSDN, 2014, pp. 219–220.

[24] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proc. 1st ACM
HotSDN, 2012, pp. 121–126.

[25] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending sdns from
malicious administrators,” in Proc. 3rd ACM HotSDN, 2014, pp. 103–
108.

[26] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An api for application control of sdns,”
vol. 43, no. 4, pp. 327–338, 2013.

[27] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to

[28] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard: building robust
firewalls for software-defined networks,” in Proceedings of the third

express and automatically reconcile network policies,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 29–42, 2015.
workshop on Hot topics in software defined networking. ACM, 2014,
pp. 97–102.

[29] Symantec, “Cloud data protection and security,” accessed on 2017-09-
28. [Online]. Available: https://goo.gl/yud9Mq

[30] DoorCloud, “Cloud access control,” accessed on 2017-10-18. [Online].
Available: https://goo.gl/bxBAkF

[31] A. R. Khan, “Access control in cloud computing environment,” ARPN
Journal of Engineering and Applied Sciences, vol. 7, no. 5, pp. 613–615,
2012.

[32] R. Charanya and M. Aramudhan, “Survey on access control issues in
cloud computing,” in Emerging Trends in Engineering, Technology and
Science (ICETETS), International Conference on. IEEE, 2016, pp. 1–4.

[33] Y. A. Younis, K. Kifayat, and M. Merabti, “An access control model for
cloud computing,” Journal of Information Security and Applications,
vol. 19, no. 1, pp. 45–60, 2014.

[34] R. Aluvalu and L. Muddana, “A survey on access control models in cloud
computing,” in Emerging ICT for Bridging the Future-Proceedings of
the 49th Annual Convention of the Computer Society of India (CSI)
Volume 1. Springer, 2015, pp. 653–664.

[35] M. S. Malik, M. Montanari, J. H. Huh, R. B. Bobba, and R. H. Camp-
bell, “Towards sdn enabled network control delegation in clouds,” in
Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on. IEEE, 2013, pp. 1–6.

[36] R. Miao, M. Yu, and N. Jain, “Nimbus: cloud-scale attack detection and
mitigation,” in Acm sigcomm computer communication review, vol. 44,
no. 4. ACM, 2014, pp. 121–122.

[37] W. Han and C. Lei, “A survey on policy languages in network and
security management,” Computer Networks, vol. 56, no. 1, pp. 477–489,
2012.

[38] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen, “Policy core
information model–version 1 specification,” Tech. Rep., 2001.

[39] T. Moses et al., “Extensible access control markup language (xacml)
version 2.0,” Oasis Standard, vol. 200502, 2005.

[40] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain:
Races in the sdn control plane,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[41] S. Scott-Hayward, “Design and deployment of secure, robust, and
resilient sdn controllers,” in Network Softwarization (NetSoft), 2015 1st
IEEE Conference on. IEEE, 2015, pp. 1–5.

[42] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang,
Z. Liu, A. El-Hassany, S. Whitlock et al., “Troubleshooting blackbox
sdn control software with minimal causal sequences,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 395–406, 2015.

[43] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, 2012.

[44] A. Gounares, “Interactive graph for navigating application code,”
May 23 2017, uS Patent 9,658,943. [Online]. Available: https:
//www.google.com/patents/US9658943

[45] I. BAKER, K. BASSIN, S. Kagan, and S. Smith, “System and method
to classify automated code inspection services defect output for defect
analysis,” Sep. 13 2016, uS Patent 9,442,821. [Online]. Available:
https://www.google.com/patents/US9442821

[46] “Code inspections in the intellij platform,” accessed on 2017-11-10.
[Online]. Available: https://goo.gl/kDqenJ

[47] “Project floodlight,” accessed on 2017-11-7. [Online]. Available:
https://goo.gl/8CxYdF

[48] Onosproject, “Onos,” accessed on 2017-10-12. [Online]. Available:
https://goo.gl/Sdsc6X

[49] “Ryu sdn framework,” accessed on 2017-11-7. [Online]. Available:
https://goo.gl/Mdxewq

[50] ANTLR, “Another tool for language recognition,” accessed on
2017-10-28. [Online]. Available: https://goo.gl/bxBAkF

[51] “Akka, building highly concurrent, distributed and resilient message-
driven applications on the jvm,” accessed on 2018-1-7. [Online].
Available: https://goo.gl/3yU63u

[52] OpenStack, “Neutron,” accessed on 2017-10-27. [Online]. Available:
https://goo.gl/LDC2jq

10

