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Abstract—WebAssembly (WASM) has rapidly emerged as a
ubiquitous target for web browsers, server-side applications,
and blockchain platforms, with promising performance and
portability. As WASM grows in popularity, ensuring its security
and resilience becomes paramount. However, traditional fuzzing
approaches struggle to detect potential security vulnerabilities in
existing WebAssembly runtimes due to their lack of perception
of the WASM file structure.

In this paper, we introduce SwFuzz, a dedicated fuzzing
framework tailored for WASM binaries. SwFuzz integrates com-
prehensive structure-sensitive policies that capture the nuances
and intricacies within the WASM binaries. Our proposed fuzzing
framework not only identifies vulnerabilities present in conven-
tional binaries but also emphasizes the detection of WASM-
specific bugs that have previously gone unnoticed. Experimental
results demonstrate that SwFuzz has discovered numerous new
bugs, with 17 CVEs being assigned, underscoring the importance
of a specialized fuzzing framework for evolving platforms like
WASM. Our findings also highlight the critical requirement for
a proactive approach to securing the WASM landscape.

Index Terms—WebAssembly, Fuzzing, Vulnerability Detection

I. INTRODUCTION

In the rapidly evolving landscape of the Internet, the emer-
gence of Web3.0 represents a significant paradigm shift, em-
powering decentralized applications (dApps), blockchain sys-
tems, and other domains [1]. At the heart of this transformation
lies WebAssembly (WASM), a cutting-edge technology that is
redefining the boundaries of development and deployment of
applications [2]. WASM provides a compact binary format that
enables near-native performance for web applications, making
it a cornerstone for a wide range of applications in the Web3.0
ecosystem. From improving the efficiency of decentralized
applications to enabling complex computation tasks in web
browsers without compromising on speed or security, WASM
is emerging as a key technology across multiple domains. Its
universal compatibility across different web platforms ensures
that it is not only a powerful tool for developers but also a
foundational element for the future of web innovation.

In particular, WASM is instrumental in enabling smart
contracts to execute with higher efficiency and security, thus
improving the scalability and interoperability of blockchain
networks [3]. Within web browsers, WASM’s ability to run
code at near-native speeds has revolutionized the user experi-
ence, allowing complex applications such as gaming, graphics
rendering, and scientific simulations to run smoothly without
the need for plugins or external software [4]. Moreover,
WASM’s platform-agnostic nature facilitates its deployment
in serverless computing, mobile applications, and Internet of

Things (IoT) devices [5], demonstrating its potential to drive
innovation and improve performance across various computing
landscapes. This widespread applicability of WASM under-
scores its importance in the current technology era and signi-
fies its role in shaping digital infrastructure and applications.

When it comes to existing WebAssembly fuzzing tech-
niques, it is important to recognize the advancements and
limitations that have characterized the field thus far. Traditional
fuzzing methods applied to WASM, such as Fuzzm [6] and
WasmFuzzer [7], have laid the groundwork for identifying
vulnerabilities and ensuring the robustness of WASM appli-
cations. They mainly focus on generic fuzzing strategies, ap-
plying broad and rigid test inputs without a deep understanding
of the unique WASM structure. While effective to a degree,
these approaches often fall short in efficiently navigating the
complex and dense landscape of WASM’s binary format,
resulting in suboptimal coverage and the potential oversight
of deep-seated vulnerabilities.

Moreover, many existing fuzzing solutions [8]-[10] lack
the specificity to detect and exploit the structure nuances
of WASM files, resulting in a higher rate of false positives
and an inefficient allocation of fuzzing resources. While these
tools can perform broad security assessments, they often fail
to accurately identify structure-specific vulnerabilities that
adversaries may exploit in real-world scenarios. Additionally,
the adaptability of these tools to the evolving standards and
features of WASM has been another point of contention.
This leaves security gaps that are increasingly exploited as
technology advances.

To address these problems, we propose SwFuzz, a novel
approach that leverages the inherent structure of WASM files
to provide more efficient and targeted fuzzing for WASM.
Unlike its predecessors, SwFuzz is designed to deeply un-
derstand the binary composition and execution flow of WASM
modules, enabling it to generate test inputs that are much more
likely to uncover vulnerabilities hidden in deep state space. By
focusing on the WASM structure, SwFuzz is able to reduce
the noise of irrelevant test cases and concentrate on the critical
paths that traditional fuzzing tools might overlook. Such a
structure-sensitive strategy not only increases the effectiveness
of fuzzing campaigns but also significantly reduces the time
and computation resources required for security assessments
of WASM applications. We anticipate SwFuzz to set a new
standard in the field of WASM fuzzing, addressing the short-
comings of existing methods and pushing the boundaries of
WebAssembly security testing.

Contributions. The key contributions of our work can be



summarized as follows:

e Design and Implementation. We present SwFuzz, a novel
fuzzing framework specifically tailored for the structure
of WASM files. This framework represents a significant
advancement in detecting vulnerabilities in WASM run-
times by leveraging a deep understanding of the WASM
binary format.

o Comprehensive Evaluation. SwFuzz has been rigorously
tested across various WASM runtimes, demonstrating its
effectiveness in identifying vulnerabilities and showcas-
ing its advantages over existing fuzzing methods through
detailed benchmarks and analysis.

o Advancement in WASM Runtime Development. We pro-
vide new insights into WASM runtime development and
illustrate how SwFuzz can uncover and help fix vulner-
abilities, thereby contributing to the improvement and
security of WASM runtime environments.

e Discovery and Patching of Vulnerabilities. Our proposed
SwFuzz not only identifies new vulnerabilities in real-
world WASM runtimes but also facilitates the patching
of bugs by working collaboratively with developers.

The rest of this paper is organized as follows. Section II in-
troduces the necessary background to understand WebAssem-
bly and fuzzing techniques, and presents our motivation to
adopt structure-sensitive WebAssembly fuzzing. Section III
gives the high-level idea of the design of our proposed fuzzing
framework SwFuzz. Section IV illustrates the implementation
details of our SwFuzz. Section V evaluates the bug-finding
ability of the proposed fuzzing approach on real-world WASM
runtimes, and presents the coverage and ablation studies.
Section VI discusses the security of the WASM runtime, and
Section VII provides the related work. Finally, we conclude
this paper and present the future work in Section VIIIL.

II. BACKGROUND AND MOTIVATION
A. WebAssembly Format

WebAssembly (WASM) is a binary instruction format de-
signed for stack-based virtual machines, primarily aimed at fa-
cilitating the high-speed execution of code on web pages [11].
It serves as a compilation target for source languages such as
C, C++, and Rust, allowing developers to run code written in
these languages within the browser environment at near-native
performance. WASM binaries are encapsulated in a modular
format, with each module containing a sequence of sections
that provide detailed information such as function definitions,
global variables, and data segments. A key feature of the
WASM format is its consistent and compact binary encoding,
which ensures fast loading times and efficient execution.

More specifically, each WASM binary begins with a 4-byte
magic number, followed by a version number that indicates the
version of WASM being used [12]. Sections within the binary
are identified by unique single-byte code and can appear in
any order, subject to certain restrictions. Each section contains
details such as type, import, export, function, and memory.
During execution, WASM employs a stack-based execution

model. Functions within WASM operate on a numeric stack,
where operands are pushed onto and popped off the stack. Ad-
ditionally, WASM’s memory model includes a resizable linear
memory array and a table of function references, facilitating
efficient memory management and function invocation.

B. WebAssembly Runtime

WASM runtimes are specialized environments designed for
the execution of WASM modules. These runtimes provide
the necessary infrastructure to load, validate, and execute
WASM code, thereby ensuring a secure and efficient execution
process. WASM runtimes can be broadly categorized into two
types, i.e., browser-based runtimes and standalone runtimes.

Browser-based WASM engines [13], [14], such as those
integrated into modern web browsers like Chrome, Firefox,
and Edge, enable the execution of WASM code alongside
JavaScript, providing a seamless integration with existing web
technologies. These runtimes take advantage of the security
model of web browsers, ensuring that WASM code operates
within a sandboxed environment and is isolated from the un-
derlying system. Standalone runtimes, such as Wasmtime [15],
WAVM [16], and Wasmer [17], extend the utility of WASM
beyond the browser. These runtimes allow WASM modules to
run on multiple platforms, including servers, IoT devices, and
embedded systems. They provide a lightweight and portable
execution environment that can be easily integrated into di-
verse systems, facilitating the deployment of WASM-based
applications across different environments.

C. WebAssembly Workflow

The WebAssembly workflow is a multi-step process that
transforms high-level language code into a WASM binary,
which can be executed within a browser or other WASM-
compliant environment. This process begins with a program
written in a high-level language, most commonly C, C++,
or Rust. The code is then compiled into a WASM binary, a
compact and optimized format designed for fast loading and
execution. The WASM binary retains the modular nature of the
original code, containing functions, data segments, and other
necessary components. Modern web browsers are equipped
with built-in support for WASM, allowing them to efficiently
load and run these binaries. Upon loading, the WASM binary
is instantiated within a sandboxed execution environment. This
ensures that it runs safely without posing a threat to the host
system. After the WASM module has been executed, it cleans
up the resources it has used. Operating in a memory-managed
environment, WASM ensures that resources such as memory,
table, and other WASM sections are deallocated, promoting
optimal system performance and preventing resource leakage.

D. WebAssembly Fuzzing

Fuzzing is a software testing technique that dynamically
generates inputs for a program to identify bugs and vulnera-
bilities. While fuzzing techniques have been widely adopted to
test traditional software [18]-[20], newly developed software
like WebAssembly presents new challenges to existing fuzzing



methods. WASM binaries are constructed with specialized
structures, each of which is parsed during the execution of the
WASM file at a given WASM runtime. Based on the parsing
result, the code within the WASM file is executed as distinct
instructions. This implies that WASM runtimes include both
the parsing of structured data and the subsequent code execu-
tion based on those parsing results. However, current fuzzing
techniques for WASM lack a comprehensive understanding of
the structured data. To address this issue, we propose SwFuzz,
a structure-sensitive WASM fuzzing framework designed to
detect potential vulnerabilities in WASM runtimes.

E. Motivation

Originally designed to improve the performance of web
browsers, WASM has demonstrated significant potential across
various industries, including blockchain, edge computing, and
portable cloud applications [21]. One of the most notable
adoptions of WASM has occurred in consortium blockchains,
where multiple organizations require a robust platform to
execute shared business processes. In this context, WASM’s
ability to execute code securely and at near-native speeds
is particularly valuable. Blockchain platforms such as Sub-
strate [22] and Ethereum 2.0 [23] have adopted WASM as their
default execution environment, leveraging its inherent security
features and performance advantages.

Deploying WASM in critical systems requires rigorous
assurance of reliability and security. Blockchains handle sen-
sitive transactions and data that require high levels of integrity
and security. However, the complexity and diversity of WASM
bytecode introduce unique vulnerabilities and potential attack
surfaces that malicious entities could exploit. Ensuring the
robustness of WASM runtimes is therefore paramount. This
motivates us to develop an effective vulnerability detection
tool for WASM. By employing a structure-sensitive fuzzing
approach, we aim to uncover and mitigate vulnerabilities
that could otherwise lead to severe security vulnerabilities
or system failures. Structure-sensitive fuzzing is particularly
well-suited to the binary format of WASM, allowing it to
identify deep-seated, complex bugs more effectively than tradi-
tional fuzzing methods. This approach focuses on the internal
structure of WASM modules, allowing for more precise and
thorough testing.

ITI. DESIGN

In this section, we present the design and methodology
of our proposed WASM fuzzing framework. First, we illus-
trate the overall architecture and workflow of SwFuzz. Then,
we introduce the structure-sensitive mutation technology of
SwFuzz, including file structure mutation, instruction muta-
tion, and LLMs-assisted mutation.

A. Architecture and Workflow

Figure 1 illustrates the overall architecture and workflow
of SwFuzz. When a WASM file is input to the WASM
runtime, the process begins by parsing and processing the
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Fig. 1: The overall architecture and workflow of SwFuzz.

structure of the file. The runtime then determines the ap-
propriate actions based on the parsing results. During this
initial phase, the WASM runtime initializes the execution state
by allocating resources, setting global fields, and performing
memory-related operations. Subsequently, the runtime selects
and executes the instructions within the WASM file. Each
instruction in the WASM virtual machine will be accurately
recognized and safely executed, which inherently improves
the security of WASM-based applications. SwFuzz’s workflow
integrates several mutation techniques to adapt to the unique
characteristics of the WASM workflow. During the critical
stages of file structure parsing, SwFuzz performs structure-
sensitive mutations and employs a corresponding structure
recovery mechanism to ensure the integrity of the file. This
approach tests the robustness of the file structure parsing pro-
cess. At the instruction parsing and execution stages, SwFuzz
applies traditional instruction mutations along with policy-
based mutations to improve the overall mutation strategy.
To further improve WASM fuzzing, SwFuzz introduces a
large language model (LLM)-assisted mutation policy. This
advanced policy enhances the instruction mutation and directs
the fuzzer to reach deep logic within the WASM runtime, thus
increasing the likelihood of uncovering hidden vulnerabilities.

B. File-Structure Fuzzing Stage

Let us first dive into the file structure mutation. Figure 2
shows an overview of our structure-level mutation of WASM
files, which can be divided into the following three aspects.

Header Rebuild. Initially, SwFuzz deconstructs the
WASM file into its constituent headers and further dissects
the binary into distinct sections. This process involves not only
parsing the headers but also delving into each section to extract
both control information and associated data. This meticulous
extraction leverages the native control mechanisms inherent
in the WASM format, allowing SwFuzz to accurately map the
fundamental structural blueprint of WASM files. By breaking
down the WASM binary, SwFuzz can identify and isolate
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Fig. 2: The structure mutation of WASM files.

key components such as type, import, function, and other
sections critical to the execution of WASM modules. Each
of these components is carefully analyzed to understand their
role and interdependencies within the overall binary structure.
This granular level of parsing ensures that SwFuzz has a
comprehensive understanding of the layout of the WASM file
and the relationships between its various elements.

Mutation. Following the header rebuild, SwFuzz moves
on to the mutation phase. By further segmenting the sections
into nodes, the framework gains a more detailed under-
standing and control over the binary, setting the stage for
precise byte mutations. SwFuzz categorizes the WebAssembly
structure into five distinct fields: BytesField, RepeatField,
UnsignedLebl28Field, SignedLebl28Field, and UlntNField.
Based on strategic selection among these fields, SwFuzz
implements structure-level mutations, adjusting the subnodes
in a manner that introduces variability while preserving the
overall structural integrity.

Structure Fix. The structure fix stage is designed to repair
the mutated file to a state that is both structurally sound and
executable in a WASM runtime environment, without diluting
the effectiveness of the introduced mutations. This involves
two primary tasks: Length Adjustment and Dependency and
Data-Flow Correction.

Length Adjustment. SwFuzz recalculates and adjusts the
length attributes of various sections and nodes within the
WASM file. Since mutations can change the byte size of
sections or elements, adjusting the length fields ensures that
the file conforms to the WASM format specifications so that
the runtime can correctly parse and execute the file.

Dependency and Data-Flow Correction. Mutations can
disrupt the intricate dependencies and data flows between
different sections and elements of the WASM module, such

as references between function definitions and their calls. The
structure fix stage meticulously examines these relationships,
repairing broken links and ensuring that data flows and depen-
dencies are logically consistent.

This repair process is essential for maintaining the delicate
balance between inducing meaningful mutations to expose
vulnerabilities and preserving the executability of the WASM
module. Without the structure fixing, there is a significant risk
that mutated files would be too corrupted to run, effectively
eliminating the potential to discover critical security flaws
through dynamic execution and analysis. By implementing this
stage, SwFuzz ensures that each mutated file remains a viable
candidate for vulnerability detection, thereby maximizing the
effectiveness and efficiency of the fuzzing process.

C. Instruction Fuzzing Stage

In the instruction fuzzing stage, SwFuzz transitions to
mutating instructions based on the analysis of various fields
within the WASM file structure. Upon encountering a Bytes-
Field, SwFuzz decides whether to use native byte-level muta-
tors or instruction-level mutators. The choice of byte mutators
allows SwFuzz to perform mutations that are agnostic to the
specific instructions, affecting byte-level data without regard
to the instruction semantics. Conversely, selecting instruction
mutators prompts SwFuzz to apply mutations that are sensitive
to the semantics of the instructions, treating the data at a more
granular, instruction-aware level.

Within this stage, SwFuzz employs two primary mutation
functions:
insertInstruction function is capable of inserting one of
four types of instructions at a random position within the
data of a relevant subnode. This allows for the dynamic
addition of new behaviors or functionalities within the code
structure. The eraseInstruction function, on the other hand,
facilitates the removal of existing instructions from a subnode,
randomly erasing instructions to assess the impact on the
program’s robustness and behavior. These mutation strategies
are designed to explore the robustness of WASM applications
by introducing or removing instructions, thereby simulating
potential points of failure or vulnerability.

insertInstruction and eraseInstruction. The

D. LLMs Assisted Fuzzing Stage

In this part, we explore the integration of Large Language
Models (LLMs) into the fuzzing process of WebAssembly,
specifically focusing on the mutation of WASM instructions
once they are converted to WebAssembly text format (WAT)
representation. This innovative approach leverages the sophis-
ticated understanding and generation capabilities of LLMs to
enhance the complexity and potential vulnerability exposure
within the target applications. The mutation process is gov-
erned by several distinct policies, each designed to introduce
or amplify specific aspects of the code’s behavior or structure:

Insertion. Under the insertion policy, LLMs are tasked
with inserting new WAT instructions into the existing code-
base. This method aims to increase the overall complexity
of the application, potentially finding hidden flaws as the



execution paths become more complex. The challenge lies in
selecting and positioning new instructions in a way that con-
tributes meaningful complexity without rendering the program
non-functional or drastically altering its intended purpose.

Modification. This policy involves that LLMs modify
existing portions of the WAT code. The goal is to increase
the complexity of the code while ensuring that the control
flow is minimally altered. Modifications may include changing
variables, operators, or instruction sequences, as long as they
do not disrupt the basic logic and flow of the program. Such
adjustments require a deep understanding of WAT syntax and
semantics, and highlight the role of the LLM in maintaining
the delicate balance between innovation and integrity.

Injection. The injection policy focuses on adding poten-
tially vulnerable code snippets to the current WAT code. This
strategy aims to simulate real-world attack vectors and test
the application’s resilience against them. By incorporating
known vulnerabilities or patterns that have been exploited in
the past, researchers can directly assess the robustness of the
application’s security measures. The involvement of the LLM
ensures that these injections are both contextually relevant and
strategically placed, maximizing the likelihood of uncovering
significant security issues.

Following the mutation phase facilitated by LLMs, it is criti-
cal to perform a semantic check to verify the correctness of the
mutated WAT code. This verification process ensures that de-
spite the changes introduced, the mutated code remains valid,
executable, and reflects its intended functionality. Semantic
checking involves analyzing the mutated code to confirm that
there are no syntax errors, that logical structures are preserved,
and that there are no unintended changes in the behavior of the
program. This step is essential to maintain the balance between
exploring the application’s security boundaries and ensuring
the relevance and applicability of the fuzzing process.

Reduce LLMs Invocation Frequency. Invoking Large
Language Models (LLMs) is an expensive operation, both in
terms of computational resources and time. Each invocation
requires significant processing power and can lead to increased
operational costs. To optimize the efficiency of our system and
manage resources effectively, we propose a strategy to reduce
the frequency of LLM invocations.

Our approach is to invoke large language models (LLMs)
only after no new path has been discovered for a period of
5 minutes. This strategy ensures that the LLMs are utilized
efficiently, focusing their powerful capabilities on scenarios
where conventional methods have plateaued in effectiveness.
By doing so, we aim to strike a balance between leveraging the
advanced capabilities of LLMs and controlling the associated
costs. The benefits of this approach include:

Cost Efficiency.  Significant reduction in the cost associated
with frequent LLM invocations.

Resource Optimization. More efficient use of computa-
tional resources, ensuring that they are allocated where they
can have the most impact.

Improved Performance. By invoking LLMs only when
necessary, we can maintain high levels of performance without

Runtime Crash Number Unique Bug Number

wasm-micro-runtime 41 3
wasm3 53 4
wac 45 7
vmir 415 40

TABLE I: The crash number and the unique bugs number
SwFuzz identified in different real-world runtimes.

the overhead of constant LLM processing.

Additionally, by delaying the invocation of LLMs, we allow
conventional methods to fully demonstrate their effectiveness,
thereby further enhancing overall efficiency. This incremental
application not only maximizes the utilization of existing
resources but also reserves more computational power for
critical issues, enabling more precise and efficient solutions.

IV. IMPLEMENTATION

To implement our structure-sensitive WASM fuzzing frame-
work SwFuzz, with related algorithms and components for
WASM file structure parsing and WASM instruction execution,
we build SwFuzz from scratch. We use AFL as the backbone
and implement a separate module using Python to construct
the related mutation algorithms and components. We also
integrate the LLM-based assistant strategy into SwFuzz using
the LangChain framework with ChatGPT-4 [24].

In detail, we hook the main fuzz function in AFL into a
crafted Python version which is more suitable for customiza-
tion and LLMs interaction. Our SwFuzz supports WASM
runtimes for different purposes, such as blockchains, browsers,
and so on. Moreover, we modularize the SwFuzz and provide
different versions of our SwFuzz. SwFuzz-Format is used
for WASM file parse fuzzing, while SwFuzz-Instruction is
designed for WASM instruction and file parsing. Due to the
modular design and implementation, it can be easily extended
to support other fuzzing components in the future.

V. EXPERIMENT

In this section, we perform experiments to measure the
traceability of our SwFuzz on real-world WASM runtimes. To
ensure the effectiveness of the evaluation, we set up the exe-
cution environment on a bare-metal machine with an Intel(R)
Xeon(R) Platinum 8358 CPU, 15T memory, and 1.0T RAM,
running Ubuntu 22.04 LTS version. For each experiment, we
limit the runtime to 48 hours. For other fuzzers, we use their
default settings and configurations, such as AFL and AFL++.

A. Discovering Zero-Day Vulnerabilities

Table I shows the bug detection results of SwFuzz on four
real-world WASM runtimes, including wasm-micro-runtime,
wasm3, wac, and vmir. We collect all the crashes detected
by SwFuzz. Furthermore, we manually analyze the crashes to
check if multiple crashes are attributed to the same root cause.
Quantitatively, SwFuzz detects 3, 4, 7, and 40 vulnerabilities
on the four WASM runtimes, respectively. Below, we present
three case studies to show the effectiveness of SwFuzz in
finding new vulnerabilities in real-world WASM runtimes.



1 result = m3_ParseModule (env, &module, wasm,
— fsize);
if (result) goto on_error;

// err module is connected with runtime
result = m3_LoadModule (runtime, module);

2
3

4

5

6 if (result) goto on_error;

7T ..

8 m3_SetModuleName (module, modname_from_fn (fn));
9

10 // err module trigger err and goto on_error;

11 result = link_all (module);

12 if (result) goto on_error;

13

14 if (wasm_bins_qgty < MAX_MODULES) {

15 wasm_bins[wasm_bins_gty++] = wasm;
16 }

17 return result;

19 on_error:
20 m3_FreeModule (module) ;

Listing 1: Bug logic of Wasm3 Use-After-Free

Case Study 1: Use-After-Free in Wasm3. We reveal sev-
eral critical bugs in the Wasm3 runtime, which is currently one
of the most popular runtimes in the world. During the fuzzing
process, we successfully trigger a deep bug by mutating the
WASM structure-level data. We show the associated bug logic
in Listing 1.

Once our SwFuzz crafts a malicious Wasm binary file, it is
first parsed by function m3_ParseModule. And when entering
the function m3_LoadModule, the malicious WASM module is
linked to a global-level object, called runtime. Due to our
crafted module, the m3_LoadModule operations will result in
an error and fail to load the module. Then break into the error
handling logic. However, due to the malicious module having
been linked into the global runtime, the error handling and
finalization operations will result in a use-after-free because
of the reference to the error module from global runtime.

Case Study 2: Trigger Ignored Logic in Wasm-Micro-
Runtime (WAMR). We generate an error module that
could be parsed and interpreted maliciously, and we suc-
cessfully trigger a heap-based-buffer-overflow vulnerability
in *loader_ctx->frame_offset++ = 0; which the developers
previously believe is a benign operation and would not trigger
any error. The associated logic is shown in Listing 2.

Case Study 3: Trigger Compatibility of WASI in Wasm-
Micro-Runtime (WAMR). WASI (WebAssembly System
Interface), known as a critical part of WebAssembly, is often
treated as a modular system interface for WebAssembly. As
described in the original announcement, it focuses on security
and portability. We successfully trigger a WASI-related vul-
nerability in the corresponding module of WAMR, resulting
in a malicious memory address dereference through a crafted
read operation. The associated logic is shown in Listing 3.

Until now, we have reported and disclosed all the
bugs/vulnerabilities that we found to the corresponding
providers. As a result, 7 of them have been fixed under
our assistance, and 17 CVEs numbers have been assigned,
including CVE-2024-35410, CVE-2024-35418, CVE-2024-

1 if (BLOCK_HAS_PARAM (block_type)) {
2 for (i = 0; i <
— block_type.u.type->param_count; i++) {
3 #if WASM_ENABLE_FAST _INTERP != 0
4 uint32 cell_num =
— wasm_value_type_cell_num(
5 block_type.u.type->types[i]);
6 if (i >= available_params) {
7 /* If there isn't enough data on
— stack, push a dummy
8 * offset to keep the stack consistent
— with
9 * frame ref.
10 * Since e stack is already in
— polymorphic state,
1 * the opcode will not be executed, so
— the dummy
12 * offset won't cause any error */
13 +*loader_ctx->frame_offset++ = 0;
14 if (cell_num > 1) {
15 *loader_ctx->frame_offset++ = 0;
16 }
17 }
18 else {
19 loader_ctx->frame_offset += cell_num;

20 }

21 #endif

2 PUSH_TYPE (block_type.u.type->types[i]);
23 }

Listing 2: Bug logic of WAMR ignored logic.

if (start) {
// Bug trigger
WASMType =func_type =

module->functions[start->index -
— module->import_function_count]

5 ->func_type;

6 if (func_type->param_count ||

— func_type->result_count) {

w0 =

7 set_error_buf (error_buf, error_buf_size,
8 "the signature of builtin
— _start function is

— wrong");
9 return false;

Listing 3: Bug logic of WAMR’s WASI check.

35419, CVE-2024-35420, CVE-2024-35421, CVE-2024-
35422, CVE-2024-35423, CVE-2024-35424, CVE-2024-
35425, CVE-2024-35426, CVE-2024-35427, CVE-2024-
25431, CVE-2024-27527, CVE-2024-27528, CVE-2024-

27529, CVE-2024-27530, CVE-2024-27532. As for the distri-
bution of different vulnerabilities, we list the results in Table II.

More specifically, after conducting a comprehensive study
of all the zero-day vulnerabilities we found, we identified
the main reason for the difficulty in finding these zero-day
vulnerabilities, and why previous security or reliable tests
failed to detect them. Specifically, most of the zero-day vulner-
abilities we found are in the WASM module handling-related
code, which may be related to initialization, error handling,
parsing, and so on. However, previous tools lack the ability
to test these components in different runtimes, which makes
these vulnerabilities hidden in the deep part of the codes. On



Vulnerability Type Number
Use-After-Free 8
Out-Of-Bound 18
Null-Pointer-Deref 12
Invalid-Memory-Access 10
Denial-of-Service 6

TABLE II: The bug type distribution of vulnerabilities detected
by SwFuzz.

the other hand, due to the lack of testing for these parts of
the code, developers usually ignore the potential logic errors
when trying to handle multiple WASM modules. Furthermore,
developers also leave some redundant code in the codebase
when performing WASM module parsing operations in the
codebase, which eventually leads to the bug trigger. These
empirical results show that SwFuzz is able to conduct effective
fuzzing in real-world WASM runtimes and detect potential
vulnerabilities.

B. Coverage Discussion

To evaluate the effectiveness of SwFuzz in real-world
scenarios, we conducted a comprehensive coverage study
across different WASM runtimes. Specifically, we targeted the
wasm-micro-runtime (WAMR) and wasm3, which are widely
used in the industry for deploying WASM applications in
various environments. Over a period of 48 hours, SwFuzz was
executed on these platforms to collect extensive coverage data,
providing insight into the tool’s performance and effectiveness.

Our comprehensive coverage analysis demonstrates that
SwFuzz significantly outperforms traditional fuzzing tools
such as AFL in the context of WebAssembly runtime environ-
ments. This enhancement is primarily attributed to SwFuzz’s
innovative use of structure-sensitive information, which allows
for a more nuanced and effective exploration of the code-
base. By analyzing the results, we found that the efficiency
of SwFuzz outperforms the traditional non-structure-sensitive
fuzzers due to the following points:

Ignorant Binary Format Parsing in WASM. Traditional
fuzzing tools often struggle with opaque binary formats such
as WebAssembly, leading to inefficient and superficial test
case generation. SwFuzz overcomes this limitation by imple-
menting an informed parsing mechanism that understands the
binary structure of WebAssembly files. This knowledge allows
SwFuzz to intelligently navigate and manipulate the binary
data, ensuring that the generated inputs are both valid and
diverse, leading to more effective and thorough testing.

Mutation and Structure-Level Data Influence. SwFuzz
enhances the fuzzing process by integrating structure-aware
data mutation strategies. Unlike conventional fuzzers that
apply mutations randomly, SwFuzz targets its mutations based
on the structural dependencies within the code. This approach
ensures that dependent data fields are affected in a manner
that respects their contextual relevance, thereby increasing the
likelihood of triggering subtle, complex bugs that depend on
specific conditions or states.

Combination of Binary Structure Information and In-
struction. One of the most innovative aspects of SwFuzz is
its ability to combine insights from the binary structure with
the executable instructions of the WebAssembly code. This
synthesis allows SwFuzz to tailor its fuzzing strategy to the
specific characteristics of each instruction, taking into account
how it interacts with the binary structure. As a result, SwFuzz
can generate more precise and powerful inputs that are capable
of exploring deeper code paths and exposing vulnerabilities
that are tightly coupled with the architectural and logical
design of the application.

C. Ablation Discussion

In this subsection, we aim to understand the different roles
within SwFuzz. To provide a comprehensive analysis, we
decouple two separate components of SwFuzz, dividing them
into SwFuzz-Structure and SwFuzz-Instruction. To evaluate
the effectiveness of these two components, we applied each
to multiple targets, including Wasm3, wasm-micro-runtime,
vmir, and wac. The results demonstrate that SwFuzz-Structure
contributes the most to mutation path finding. In compari-
son, SwFuzz-Instruction contributes relatively less to mutation
paths. Based on our analysis of the results, we have derived
the following insights.

Rethinking the Attacking Surface of WASM Binary
Format. Parsing a WASM module is a critical step in the
execution of WASM applications. Although vulnerabilities
in WASM module parsers are relatively rare, their potential
impact is significant. A flawed parser can misinterpret the
binary format, resulting in a variety of problems, including
Due to the complexity of the WASM binary format, errors can
occur in the parsing logic. These errors may go undetected
during standard testing but could be exploited by crafted
malicious input. Buffer overflows and memory corruption,
incorrect handling of input sizes and bounds can lead to buffer
overflows, potentially allowing an attacker to execute arbitrary
code or cause a denial of service. Type confusion, Incorrect
parsing of types and structures in the WASM binary can lead to
type confusion where the runtime misinterprets data, resulting
in undefined behavior.

Vulnerabilities in the parsing of the WASM module/binary
format can have far-reaching consequences for the runtime
environment. Exploitation of these vulnerabilities can result in
various forms of malicious behavior. (1) Invalid global initial-
ization. A parser vulnerability could allow the creation of in-
valid global variables or improperly initialized memory, which
could be exploited to affect the behavior of the application at
runtime. (2) Incorrect module behavior. Flaws in the parsing
process can lead to misinterpretation of the module’s intended
behavior, resulting in security vulnerabilities or unexpected
application actions. (3) Malicious memory manipulation. By
exploiting parsing vulnerabilities, an attacker could manipulate
memory in harmful ways, such as injecting malicious code or
altering control flow within the application.

WASM Instruction Attack Surface and Effectiveness.
We analyze the effectiveness of fuzzing at the WASM instruc-



tion level by examining the coverage achieved by SwFuzz.
Ablation studies show that the number of new execution
paths found by fuzzing individual WASM instructions is
significantly lower than that found by fuzzing the binary
structure of WASM runtimes through structured compilation.
This discrepancy can be attributed to several factors.

Simple implementation of lightweight WASM runtimes.
Many lightweight WASM runtimes implement instruction
execution in a straightforward and minimalist manner. This
simplicity reduces the complexity and variability of execution
paths, limiting the potential for instruction-level fuzzing to
discover new paths.

Limited number of WASM instructions. The WASM in-
struction set is designed to be compact and efficient, with
a limited number of instructions. This limitation inherently
limits the range of behaviors and execution paths that can be
exercised by instruction-level fuzzing, compared to the more
complex and varied binary structures of WASM runtimes.

The results suggest that while instruction-level fuzzing can
identify specific vulnerabilities, it is less effective at uncov-
ering new execution paths compared to fuzzing techniques
that target the entire binary structure of WASM runtimes.
Therefore, a comprehensive fuzzing strategy that includes both
instruction-level and binary structure-level fuzzing is recom-
mended to maximize coverage and vulnerability detection in
WASM applications.

VI. DISCUSSION: SECURE WASM RUNTIME

WebAssembly (WASM) is becoming increasingly important
in a variety of industrial applications. Companies are using
WASM to build high-performance, secure, and portable appli-
cations. One notable example is the development of private
blockchains using WASM as the underlying infrastructure.
These blockchains rely on WASM to execute smart contracts
and manage transactions securely and efficiently. However, the
importance of WASM in these applications means that any
vulnerabilities or issues within the WASM environment can
result in severe financial and reputational losses. Ensuring the
security and robustness of WASM is therefore paramount.

A. Improving the Security Watermark of WASM

Our primary goal is to identify and mitigate vulnerabilities
in WASM virtual machines, specifically in the parsing and
execution of WASM files. The robustness of a WASM virtual
machine has a direct impact on the security of the applications
running on it. To achieve this, we use fuzzing techniques to
stress test the virtual machine and uncover potential security
flaws. Current fuzzing tools, such as AFL (American Fuzzy
Lop) and libFuzzer, offer significant power and ease of use,
enabling the detection of many issues. However, these tools are
generally designed for broader applications and lack specific
adaptations for WASM virtual machines. As a result, the level
of security achieved with these tools may only be at a generic,
industry-wide standard.

To address this gap, we have developed custom fuzzing
tools tailored to the unique characteristics of WASM. These

specialized tools allow us to uncover vulnerabilities that are
otherwise difficult to detect using standard fuzzing techniques.
Our approach includes:

Customization of Fuzzing Engines. We customize
fuzzing engines to understand the nuances of the WASM
binary format and execution model.

Targeted Test Cases. We generate test cases that specif-
ically target known vulnerabilities in the WASM virtual ma-
chine, such as boundary checking, memory management, and
opcode handling.

Enhanced Coverage Metrics. We implement coverage
metrics designed specifically for WASM to ensure that our
fuzzing efforts are comprehensive and thorough.

By using these customized tools, we have been able to
identify a variety of security issues within WASM virtual
machines. This proactive approach significantly reduces the
number of undiscovered vulnerabilities, thereby improving the
overall security posture of WASM-based systems. The key
takeaway is that by reducing the attack surface and proactively
addressing potential vulnerabilities, we can ensure a higher
level of security for WASM applications.

B. Collects Better Seeds During WASM Runtime Development

Effective fuzzing relies heavily on the quality and diversity
of the initial seed corpus. Seeds are the initial input for fuzzing
tools, and a well-curated set of seeds can significantly improve
the effectiveness of the fuzzing process. Our goal is to collect
seeds that provide unique coverage and reveal different facets
of the behavior of the WASM virtual machine. We use two
primary methods to collect seeds.

Crawling and Minimizing Public WASM Files. We
use web crawlers to collect a large number of WASM files
from public repositories, focusing primarily on platforms such
as GitHub, where many open source WASM projects are
hosted. These collected files often exhibit a wide range of
programming styles, functionality, and complexity. Using tools
such as AFL’s cmin script, we distill these samples to create
a minimized corpus that retains maximum coverage with the
smallest possible set of files.

This approach ensures that our seed corpus contains diverse
and representative examples of how WASM is used in the
wild, thereby improving the fuzzing tool’s ability to detect
vulnerabilities.

Collecting Exceptional and Crashing Samples. We also
focus on obtaining samples from existing WASM projects that
have historically caused virtual machine crashes or exhibited
anomalous behavior. These samples are invaluable as they
highlight potential edge cases and vulnerabilities. To collect
these samples, we manually review issues and vulnerability
reports from various WASM projects and repositories. We
prioritize high-quality samples that have been linked to secu-
rity incidents or notable failures. This process often involves
close collaboration with the open source community and other
stakeholders to ensure we have access to the most relevant and
impactful samples.



By integrating these two methods, we create a robust set of
initial seeds that include both high-coverage normal samples
and critical edge cases. This comprehensive seed corpus en-
ables our fuzzing tools to perform more effectively and iden-
tify vulnerabilities that might otherwise go undetected. The
end result is a more secure and resilient WASM environment
capable of withstanding a wide range of potential threats.

In summary, continuously improving the security and ro-
bustness of WASM is essential for its adoption in critical
industrial applications. By customizing fuzzing tools and col-
lecting high-quality seeds, we can proactively identify and mit-
igate vulnerabilities, ensuring that WASM remains a reliable
and secure platform for future industry development.

VII. RELATED WORK
A. Fuzzing Technique

Fuzzing techniques have been applied to various domains,
showing different approaches and innovations. For example,
REDQUEEN [25] serves as a lightweight yet effective alter-
native to taint tracking and symbolic execution. It optimizes
state-of-the-art feedback fuzzing and easily scales to large
binary applications and unknown environments. Li et al. [26]
propose a program-state-based binary fuzzing approach called
Steelix, which increases the penetration power of a fuzzer
while maintaining an acceptable slowdown in execution speed.
T-Fuzz [27] demonstrates that transforming the target program
can lead to more effective bug detection compared to heavy-
weight program analysis techniques.

Additionally, VUzzer [28] highlights how an application-
aware mutation strategy can improve the input generation
process of state-of-the-art fuzzers. Qsym [29] introduces a
fast concolic execution engine that supports hybrid fuzzing by
integrating symbolic emulation with native execution through
dynamic binary translation. BandFuzz [30], a novel collab-
orative fuzzing framework, intelligently coordinates multiple
fuzzers using a reinforcement learning algorithm. This algo-
rithm dynamically allocates fuzzing resources to the most
effective fuzzer for a given target program, allowing Band-
Fuzz to continuously adapt and refine its fuzzing strategy
in response to environmental changes. These advancements
in fuzzing techniques illustrate the ongoing evolution and
improvement of security testing methods.

B. WebAssembly Fuzzing

One of the most promising approaches towards enhanc-
ing WebAssembly security is through fuzzing. For example,
Fuzzm [6] is designed as a binary-only fuzzing method for
WebAssembly, specifically aimed at detecting and testing
memory safety bugs. WasmFuzzer [31] focuses on WebAssem-
bly bytecode level fuzzing. It emphasizes grammar checking
within the WASM virtual machine and employs an adaptive
mutation strategy to reach deep logic in the WebAssembly
environment. Wasm-Semantics-Fuzzer [32] is a WebAssembly
implementation through generative fuzzing. This approach
involves creating valid WASM programs that self-check their
results during execution, helping to detect potential semantic

implementation errors. WasmBench [33] provides a large
dataset of more than 8,000 real-world WebAssembly binaries,
collected from various sources. WARF, the WebAssembly
runtime fuzzing project, aims to enhance the security and ro-
bustness of WebAssembly VMs, runtimes, and parsers using a
variety of fuzzing techniques. Inspired by previous work [34]-
[38], we propose the structure-sensitive fuzzing framework
SwFuzz, which is built on top of AFL, excepting to facilitate
research in the field of WebAssembly fuzzing.

C. WebAssembly Protection

Another effective approach to improving WebAssembly
security is to protect WebAssembly from various types of
attacks. Several methods and tools have been developed for
this purpose. vWasm and rWasm [39] are verified sandboxing
compilers for WASM. vWasm utilizes traditional machine-
checked proofs to ensure security, while rWasm provides a
provably secure sandboxing compiler with competitive run-
time performance. eWASM [40] introduces a framework for
software fault isolation (SFI) using WASM on resource-
constrained embedded systems. This framework enhances the
security and robustness of WASM in resource-constrained
environments. Sledge [41] facilitates low-latency serverless
computing at the edge by leveraging WASM. Lehmann et
al. [42] provide a systematic analysis of the binary security of
real-world WebAssembly applications. Swivel [43] strengthens
WebAssembly against Spectre attacks by ensuring that poten-
tially malicious code cannot exploit these attacks to escape the
WASM sandbox. These methods improve the security posture
of WebAssembly by addressing various aspects of its execu-
tion environment and potential attack vectors. CAMP [44] and
ShadownBound [45] utilize compiler-based optimization to
enhance user-space memory security which is also compatible
with protecting WASM.

VIII. CONCLUSION AND FUTURE WORK

In summary, SwFuzz marks an improvement in secu-
rity testing for WebAssembly, employing structure-sensitive
fuzzing to adeptly uncover unique, structurally related bugs
in WebAssembly runtimes that traditional tools might miss.
Its ability to provide comprehensive code coverage ensures
that even obscure code paths prone to vulnerabilities are
thoroughly examined. The success of SwFuzz in detecting
a wide array of unique bugs emphasizes its importance in
environments where security and reliability are paramount,
such as consortium blockchains. By integrating SwFuzz into
the development lifecycle, organizations can strengthen the
resilience and trustworthiness of their WASM applications,
paving the way for safer, more reliable software deployment
across various industries.

In the future, we plan to extend SwFuzz to support more
programming languages that are used in WebAssembly run-
times, beyond the currently supported ones, which could
increase its utility. Different languages may introduce unique
challenges and vulnerabilities when compiled into WebAssem-
bly, thus broadening the applicability of the tool.
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