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Abstract—A complete flow statistics report should include
both flow size (the number of packets in a flow) counting and
flow volume (the number of bytes in a flow) counting. Although
previous studies have contributed a lot to the flow size counting
problem, it is still a great challenge to well support the flow volume
statistics due to the demanding requirements on both memory size
and memory bandwidth in monitoring device. In this paper, we
propose a DIScount COunting (DISCO)method, which is designed
for both flow size and flow bytes counting. For each incoming
packet of length , DISCO increases the corresponding counter
assigned to the flow with an increment that is less than . With
an elaborate design on the counter update rule and the inverse
estimation, DISCO saves memory consumption while providing an
accurate unbiased estimator. The method is evaluated thoroughly
under theoretical analysis and simulations with synthetic and real
traces. The results demonstrate that DISCO is more accurate than
related work given the same counter sizes. DISCO is also imple-
mented on the network processor Intel IXP2850 for a performance
test. Using only one microengine (ME) in IXP2850, the throughput
can reach up to 11.1 Gb/s under a traditional traffic pattern. The
throughput increases to 39 Gb/s when employing four MEs.

Index Terms—Counter, flow statistics, network measurement,
unbiased estimation.

I. INTRODUCTION

I NTERNET becomes a critical infrastructure component of
our global information-based society, but as it grows more

elaborate, network operators spend ever more time to monitor
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and manage Internet. Passive measurement provides the net-
work operators an efficient tool for charging, engineering, man-
aging, and securing the communication networks. Instead of
actively injecting probes into the network like active measure-
ment does, passive measurement monitors the traffic traversing
the measurement beacons without the disruption of the normal
traffic [3], [20]. A passive measurement system/infrastructure
typically consists of four components. A measurement beacon
tapped into the network link uses a data collection strategy to do
flow statistics and then forwards the measured flow information
to a reporting component. The reporting component aggregates
the flow information into flow records and exports them to a re-
mote storage system after a specific measurement interval. The
data center is equipped with high-density data storage, which
makes the measurement results available to the last compo-
nent, i.e., the analysis system, which is responsible to generate
analyses for different applications. In this paper, we study the
flow statistics method in the measurement beacon, which gen-
erates the basic flow information for passive measurement, and
many other measures like flow distribution can be calculated
from the flow size estimation result.
In this paper, we study the fast flow statistics that support

both flow size counting (which counts the number of packets
in a flow) and flow volume counting or flow byte counting
(which counts the number of bytes in a flow). The continuous
increase of link speed and the number of flows leaves two
choices to us: One is keeping the statistics results in DRAM
and trying to match the updates frequency to the counters with
the input/output (I/O) bandwidth of DRAM [17], [18], [21],
[24], and the other is the SRAM-based solution, whose key is to
reduce the required counter size. Previous works propose a Hy-
brid SRAM&DRAM (SD) counter architecture [17], [18], [24],
which slows down the updates to the counters in order to match
the I/O speed of DRAMs. However, this solution also has its
limitations on read access speed, significant communication
traffic between SRAMs, and the extra pin connections [8], [10].
Based on modern fast DRAM, [21] and [23] proposed a ran-
domized DRAM architecture that can harness the performance
of fast DRAM offerings by interleaving counter updates to
multiple memory banks. However, without any compressing
on the statistics, this method still faces the risk to overflow
their counters when counting flow bytes or needs a quite
large fast DRAM. Previous SRAM-based solution susually
employed random sampling as a common approach to control
the memory consumption of flow size statistics [2], [6], [7],
[9]. However, simple extensions of sampling methods for flow
volume counting will lead to awkward performance in accuracy
or processing speed. Small Active Counters (SAC) [19] can
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Fig. 1. Counting example of DISCO. For the four packets of length 81, 1420,
142, 691, a full-size counter is simply increased by the packet length, while
DISCO increases with discounted values as 59, 220, 9, 33. The counter value is
compressed seven times (2334/321) in this case.

be utilized to count flow byte in SRAMs, but needs an extra
storage overhead to keep parameters for each counter and extra
processing overhead to frequently renormalize the counter
values.
In this paper, we propose a memory efficient and accurate

flow statistics method named DIScount COunting (DISCO) to
support both flow size and flow byte counting and provide both
offline and online access to measurement results. The accessing
speed of the up-to-date SRAM or fast DRAM is sufficient for
per-packet processing, so the goal of DISCO is to compress the
required counter bits so as to fit the counters in a small but fast
memory (SRAM or small fast DRAM [21], [23]). The idea of
DISCO is to regulate the counter value to be a real increasing
concave function of the actual flow length (flow byte or flow
size) . Fig. 1 illustrates how DISCO counter updates with a
real trace segment input. For the four packets of length 81,
1420, 142, 691, a full-size counter is simply increased by the
packet length, while DISCO increases with discounted values
as 59, 220, 9, 33. The counter value is compressed seven
times (2334/321) in this case. In general, for each incoming
packet of bytes, the counter is increased by a number
that is smaller than . With the compact increase each time,
the required counter size is greatly compressed compared to
a full-size counter-like SD solution. In this way, the technical
challenge is how to determine and its inverse estimation,
and the proposed solution to this challenge is the major merit
of this paper.
Especially, wemake the following contributions in this paper.
• We propose a flow statistics collection method for both
flow size and flow byte counting with better accuracy than
the related work under the samememory size. Thememory
consumption grows sublinearly with the increase of the
flow length, making the counters easily implementable in
an SRAM for online access.

• We conduct theoretic analysis and extensive evaluations
on real traces and synthetic data. The results validate the
design of DISCO on the high accuracy and small memory
consumption.

• We embed DISCO into Intel IXP2850 network processor
for real implementation evaluation. The results indicate
that only 96 kb on-chip memory is required for both flow
size and flow volume counting. When using one micro-
engine (ME), the throughput can reach up to 11.1 Gb/s, and
the throughput keeps increasing if more MEs are utilized.

It is worth noting that DISCO goes a big step beyond our
previous work, Adaptive Non-Linear Sampling (ANLS) [9],

which is used for flow size counting only, and in this paper,
DISCO is developed to further support both flow volume and
flow size statistics. Although we leverage the same unbiased
estimator for DISCO and ANLS for the sake of same memory
compression ratio, the counter update algorithms are quite
different. ANLS counter is always increased by one for the
sampled packets, while DISCO updates the counter for every
packet, and the counter increment depends on the packet length
as well as the counter value being accumulated, instead of
always one. As we will be discussed in Sections II and V,
simple extensions on ANLS do not work for flow volume
counting. The experiment results demonstrate that DISCO is
fast, accurate, and memory-efficient. We use SRAM (or fast
DRAM1) to implement counters, and one read/write operation
on the counter per-packet is not a big concern, but counter
width is the issue that our approach mostly addresses. The
basic idea of DISCO is presented at its previous conference
version [8]. This paper gives more theoretic analysis on the
relative error and memory cost of DISCO and describes the
detailed information about the implementation.
The rest of the paper is organized as follows. Section II re-

views the related work. Section III presents the detailed design
of DISCO, including the architecture, the counter update algo-
rithm, and the unbiased estimation of DISCO. Section IV ana-
lyzes the properties of DISCO theoretically. Section V evalu-
ates the performance of DISCO under real and synthetic traces.
In Section VI, an implementation of DISCO is described and
tested. In Section VII, we conclude the paper.

II. RELATED WORK

A. Dram-Based Full-Size Counters

A combined SD counter architecture is first proposed
in [18]. The increments are first made only to SRAM counters,
and the values of each SRAM counter are then committed
to the corresponding DRAM counters before being over-
flow. The key problem of this architecture is the design of a
counter management algorithm (CMA), which determines the
order of the SRAM counters to be flushed to DRAM coun-
ters [17], [18], [24]. While the contribution of the SD solution is
significant for many application scenarios, it has its limitations.
First, the read operation of SD can only be done on the DRAM
side, and thus it is quite slow. Second, SD also significantly
increases the amount of traffic between SRAM and DRAM
across the system bus, which may lead to a serious bottleneck
in real system implementation [10]. Third, it is a trend to
integrate measurement functions into routers. However, SD
needs a dedicated SRAM and a dedicated DRAM, which will
consume extra pins connections as well as board areas. Lever-
aging modern fast DRAM, it is proposed a randomized DRAM
architecture in [21], [23], which can harness the performance
of fast DRAM offerings by interleaving counter updates to
multiple memory banks. However, without any compressing on
the statistics, this method still faces the risk to overflow their
counters when counting flow bytes or needs a quite large fast
DRAM.

1When fast DRAM is employed, complementary mechanism exploring burst
input/output may be needed to guarantee throughput [21].
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B. Sampling-Based Method

Sampling-based method selects packets with a proba-
bility, and each selected packet will trigger an update to the
counter [2], [4]. With a sampling rate of , if packets have
been sampled in an -packet flow train, the unbiased estima-
tion of the total packets is . There are a number of
variations of sampling-based methods [1], [5], [6], [9], [12],
[22], however they are designed for only flow size counting,
and there could be two extensions of it to possibly support flow
volume counting.
The first extension (E1) is to increase the counter by the size

of the sampled packets instead of always one in the setting of
flow size statistics. Using the example in Fig. 1, if E1 samples
the first and the third packets, the counter is
. However, it may also only sample the first and the fourth

packets, which increase the counter by 772. The inverse es-
timations from these two samples are 446 and 1544, respec-
tively. Such method will easily mislead the estimation of the
total traffic unless the packet length variation of each flow is
rare. However, it is not the case as the examination on real trace
as Section V demonstrated.
The second way (E2) to extend sampling-based method is to

view a packet of bytes as independent packets, i.e., to trigger
the sampling times/rounds for the packet. Obviously, the un-
biased estimation, relative error, and memory consumption of
such an extension are the same as the original sampling method.
However, the per-packet processing complexity is as large as

on average and as in the worst case, where and
are the average and largest packet length, respectively.

ANLS is also a sampling-based method proposed in our
previous work [9], which improves the measurement accuracy
for small flows. We extend ANLS in these two ways to ANLS-I
(like E1) and ANLS-II (like E2). Taking ANLS-I and ANLS-II
as illustration, we will use experiments to demonstrate in
Section V that the extensions of sampling-based methods work
awkwardly for flow volume counting.

C. Elaborate Counter Organization

Traditional counting system configures all the counters as
the same size, and this implementation is not efficient for flow
length counting. A recent work in [10] proposed Bucketized
Rank Index Counter (BRICK) to organize efficient “variable-
length” counters. The basic idea of BRICK is intuitive and is
based on statistical multiplexing, which bundles groups of a
fixed number (say 64) of counters randomly selected from the
array into buckets. BRICK allocates just enough bits to each
counter in the sense that if its current value is , BRICK allo-
cates bits to it. Counter Braids (CB) [13] is an-
other novel counter organization for accurate flow measure-
ment, which builds a hierarchy of counters braided via random
graphs in tandem. CB allows the sharing of counter bits, and
thus the required counter bits are reduced. The motivations and
gains of BRICK and CB are different from our solution in this
paper. BRICK and CB achieve the memory compression by or-
ganizing the counters with statistical multiplexing, but they do
not compress the size for each single counter. DISCO is a statis-
tical counter-updating algorithm to save memory consumption

Fig. 2. Architecture of DISCO. For simple illustration, only one directional
line is drawn to show the main signals between any two modules.

of each counter. In this paper, DISCO uses a uniform length
for each counter for easy presentation and understanding, but in
fact, we can combine BRICK/CB with DISCO, i.e., we orga-
nize the counters with BRICK/CB and update the counter using
DISCO. In this way, we will achieve more memory savings.

D. Small Active Counters

The term “active counter” is introduced in [19], which allows
estimation on a per-packet basis without DRAM access. Small
Active Counters (SAC) is proposed to reduce the SRAM space
needed for the statistic counters [19]. For a -bit counter, it is
divided into two parts: an estimation part and an exponent
part . The estimator of SAC is , where
is a global parameter for all the counters. When a packet of

size comes, SAC updates the counter with on av-
erage. If overflows, SAC increases and renormalizes
the counter. If overflows, is incremented, and all the
counters are renormalized. SAC compresses the counter size
with small error, but it needs to be improved for two main prob-
lems. First, SAC divides a counter into two parts, and the
part of the counter is an extra overhead. Second, when in-
creases, SAC needs to renormalize all the counters, and this
renormalization will suspend the counter update and cause po-
tential loss of necessary packet updates.

III. DISCO: DISCOUNT COUNTING

A. Architecture

A descriptive architecture of DISCO is depicted in Fig. 2.
An incoming packet is first inputted to a “packet identification”
module for extraction of the flow ID and the packet length. The
flow ID is a number used to identify the different flows, and the
packet length is set to be the bytes of the packet for flow bytes
statistics or to be one for flow length statistics.
The packet length is paged to a counter array, which contains

one counter for each flow. When paging the packet length into
the counter array, a probabilistic counting algorithm is proposed
to compress the counter for flow statistics. The packet identi-
fication process is a packet/flow classification task, which has
been extensively discussed in the literature [25]. We study in
this paper the counting algorithm, which consists of two parts:
the counter update part and the inverse estimation part. The
former one determines the increase of the counter for an in-
coming packet of length , while the latter one estimates the
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TABLE I
NOTATIONS

actual flow length from the counter value with the counter up-
date rule.2

B. Counter Update

For convenience, the main notations utilized in this paper are
first illustrated in Table I.
As mentioned in Section I, the goal of DISCO is to com-

press the required counter bits so as to fit the counters in a fast
but small memory. Suppose is the counter value and is the
flow length. We regulate the relationship between flow size and
counter value as or . Specifically,
DISCO uses such a function to control the increments of
the counter value

(1)

where is a predefined constant parameter. It is obvious
that is an increasing convex function and its inverse func-
tion is an increasing concave function.3 In this way, the
“growing” of the counter value will be slower than the linear
increasing, and thus the counting is scalable. Although other in-
creasing convex functions may be used as , our analysis and
simulation show that (1) is a good formula.
If the counters could record decimal fraction, the problem

would be simple. The counter could be just increased by
from its previous value when a packet of bytes comes, where

. The actual flow length can be
calculated from the counter value by with no error. Since
there is not enough memory size to maintain decimal counters
in SRAM, we could only rely on the integer counters. The error
will be accumulated if one simply rounds or truncates .
Instead, we give a probabilistic counter update algorithm as il-
lustrated in Algorithm 1 . When counter value is and a packet
of bytes comes, DISCO increases the counter by
with probability of , and increases the counter by
with probability , where and are de-
fined as

(2)

2 is set to be one for flow size counting, and is set to be the packet length for
flow volume counting.
3A real-valued function defined on an interval is called convex, if for any

two points and in its domain and any in , we have
. A real-valued function defined on an interval

is called concave, if for any two points and in its domain and any in in
, we have

(3)

Please note that the larger the counter value and/or packet
length is, the smaller the increase of a counter is. It is guaranteed
that .4

Algorithm 1: Counter update algorithm

A packet of bytes comes
; A random variable between 0 and 1

calculate and as formulated in (2) and (3);
if then

else
;

end if

Theorem 1: When and are defined as (2) and (3), it holds
that .

Proof: Start the proof from the definition of in (2)

Since is an increasing function, we have

(4)

Namely, .

C. Flow Size Counting

The above algorithm is obviously suitable for flow volume
counting, and when the packet length of each packet is viewed
as one, DISCO counts the flow size. In this way, and

(5)

(6)

Therefore, the counting process of DISCO can be presented
as with probability , where is the counter value
and .

D. Estimation From Counter Value

With the counter update rule described above, we can esti-
mate the actual flow length with an unbiased estimator ,
where is the counter value. Prior to the proof on the unbi-
ased estimation, we first describe a general scenario of counting
process. Without loss of generality, we concentrate on a single
counter and suppose that, during a measurement interval, there
are packets whose packet lengths are (

can be positive integer), respectively. The counter
value is updated to after the arrival of the th packet. Learned

4We use and , and and , interchangeably in the rest of the
paper.
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from Algorithm 1, there are two possible choices for the prob-
abilistic update of the counter when a packet comes. Therefore,
after the arrival of the th packet, the counter value can
be one of the values. Denote these possible counter
values as . For , the probability

is denoted as . Similarly, after the arrival of
the th packet, the counter value will have possibil-
ities, denoted as . Ror , the prob-
ability is denoted as . The following equations
hold:

(7)

(8)

(9)

(10)

Theorem 2: If is the counter value, is an unbiased
estimation for DISCO.

Proof: From the general counting scenario described
above, if , then is an unbiased
estimation for DISCO.
Denote , then we have

(11)

The counter value is zero when the first packet of size
comes, therefore

(12)

(13)

(14)

Combining (11) and (14), the following equation holds by a
mathematical induction argument:

(15)

The assertion of the theorem follows.

IV. PROPERTIES

A. Variation and Error

Denote as the random variable counter value (of a corre-
sponding flow) after a number of packets (of the same flow)
and as the estimation of the total traffic amount from the
counter value . Since the coefficient of variation (COV) is an
indication of relative error, we analyze in this paper to for-
mulate relative error. COV is defined as

(16)

Lemma 1: Given two flows (or packet sequences) with the
same volume. Suppose that the first flow has packets,
whose packet lengths are , and the
second packet sequence is .
Using DISCO to count and estimate the volumes of these two
flows, the COV of the packet sequence one is larger than the
COV of the second flow.

Proof: With DISCO, the counter is updated times
or times for each packet in the first or the second packet
sequence. The same as the analysis in Section III-D, after the

th update (no matter the first flow or the second flow),
the counter value can be one of the total values,
which is denoted as . In addition, the probability

is denoted as .
As to the first flow, on the condition that the counter value

is with probability after the th packet, there are
(at most) four possibilities on counter values after two more
counter updates (the th and the th packet). There
are (at most) four possible counter values; we denote them as

. The probability
that the counter value equals , or can
be formalized as the following:

(17)

(18)

(19)

(20)

Since the first packets in the second flow are of same
length as the first flow, we also use and to denote the
counter value after the th packet and its corresponding
probability for the second flow. After the th update for the
second flow with , the counter value will have two possibili-
ties, denoted as . The probability is

denoted as , . Thus, we have

(21)

(22)

(23)

(24)

We denote for the flow one and
for the flow two. We also denote
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and as the COVs for the first and the second flow, respec-
tively. According to the counter Algorithm 1, is convex,
therefore there can be only three possible cases.
1) In the first case,

, . We have

(25)

(26)

Substituting (3) and (17)–(20) into (25) and substituting (3)
and (21)–(24) into (26), we have

Therefore, in this case, the variation and the coefficient of
the variation of the two flows are the same.

2) In the second case,
,

(27)

(28)

It is easy to obtain that by substituting (3) and
(17)–(20) into (27) and substituting (3) and (21)–(24) into
(28).

3) In the third case,
, .

is the same as the formulation in (27), and can be
calculated as above

(29)

Again, substitute (3) and (21)–(24) into (29), and it is ob-
vious that in this case.
Since and ,

in all the cases. In other words, the relative error (or
COV) of the first flow is larger than the second flow.

Theorem 3: The coefficient of variation of DISCO is bounded
by , where is the actual flow volume.

Proof: Suppose a packet sequence of a flow is of
length , and the total traffic volume is

. Using DISCO to count this original sequence,
the coefficient of variation is .
Also, we have another packet sequence that has packets.

Each packet in this packet sequence is length of one. Counting

such a packet sequence with unit-size packets using DISCO, the
coefficient of variation is .
The expected estimations ( ) of these two counting processes

are the same, i.e., . We have according to a
simple deduction from Lemma 1.
Now let us calculate first. denotes the probability

that counter value equals when current actual flow size is .
Since in this case each packet length is thought to be one, we
simply use to represent . We have

(30)

(31)

Let denote the expectation of when the current flow
size is

(32)

Thus, from (31) and (32), we get

Since and

(33)

From (1), we have

(34)

Consequently, (33) is equivalent to
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Since , we have

(35)

The variation and coefficient of variation can be formulated by

(36)

(37)

Therefore, .
The relative error is zero when is one. The coefficient of

variation decreases as diminishes and increases with the in-
crement of , but converges to when .

B. Memory Cost

When the actual flow length is , the expected counter value
is not equal to . In fact, it is bounded by .
Theorem 4: An upper bound of expected counter value

is , where is the inverse function of
, and is an increasing concave function when

is chosen from (1).
Proof: As indicated in (1), is a convex function, which

satisfies

(38)

where is the derivative of on the right. Now, let
and . We get

(39)

(40)

From Theorem 2, , then we obtain

(41)

Since is an increasing function, we can have

(42)

Since is an increasing function, its inverse function
is also an increasing function.

As defined in (1), is an increasing convex function.
Hence, for , we have

(43)

(44)

Since is an increasing function, we have the fol-
lowing inequality from (44):

(45)

Fig. 3. Gap between the bound and the expected counter value.

Substituting (43) into (45), we have

(46)

Therefore, is an increasing concave function if
is an increasing convex function.
We run DISCO under different flow lengths for 50 times

and calculate the expected (average) counter value for each
flow size. We compare these values with the bound indicated
in Theorem 4 and plot the gap between them in Fig. 3. The
figure shows that the bound in Theorem 4 is a tight one for the
specific sampling function defined in (1): The absolute gap is
quite small, and the relative gap (absolute gap divided by ) is
approximately on the order of 10 or even below.
Theorem 3 depicts the relationship between parameter and

the relative error, and Theorem 4 describes how determines
the memory cost. With the two theorems, we can derive given
a constraint on relative error or memory cost.

V. EVALUATION

In this section, we present the experiment configurations and
results when DISCO is adopted to count flow volume and flow
size.

A. Simulation Settings

As mentioned in Section I, SAC is the only method in liter-
ature that can be implemented on SRAM for both flow volume
and flow size counting, so numerical comparisons on estimation
accuracy and memory consumptions between SAC and DISCO
are investigated.
For each counter, SAC needs bits to record the exponent

part of the estimator (named as mode in [19]) and bits to keep
the estimation part (named as A in [19]). Therefore, the counter
size of SAC is and in all our experiments is set
to be 3. In the simulations, we adjust the value of parameter
for DISCO according to Theorem 4 so as to make the counter
size be the expected size. The parameter for SAC is also tuned
to keep the total counter size of SAC the same as DISCO’s
counter size for fair comparisons.
We study how the accuracy changes with the increment of

counter size based on the real trace input. Relative error is
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Fig. 4. Average relative error for flow volume counting.

defined as the absolute value of the distance between the real
flow length and the estimated flow length, i.e., . We
introduce three metrics for accuracy evaluation.
• Average relative error is the mean value of over all
the counters.

• Maximum relative error is the largest over all the
counters, which is a descriptor of the worst case.

• -optimistic relative error indicates the probability
guarantees of the relative error, which can be formulated
as

(47)

B. Simulation Results

The performance behaviors of DISCO and SAC are first
investigated under a real trace for flow volume counting. The
real trace on OC-192 link is obtained from NLANR [15],
which represents totally 40 GB traffic volume. In this real trace,
the number of flows is 100 728, and the average flow size is
409.5 kB.
Fig. 4 depicts the relationship between average relative error

and counter size when SAC and DISCO are used to count flow
volume. It is as expected that the average relative error de-
creases with the increase of counter size for both methods. We
observe from the figure that the average relative error of DISCO
is smaller than SAC with the same counter size. The margin be-
tween the two error curves becomes smaller when the counter
size increases. The reason is that the relative error for both SAC
and DISCO should converge to zero when the counter size is set
to be large enough as a full-size counter (like SD). Fig. 5 shows
the maximum relative error and indicates the similar trends as
Fig. 4. It is demonstrated that DISCO is more accurate than SAC
even in the worst case. Fig. 6 depicts the 0.95-optimistic rela-
tive error curves for the two methods. The relative error of 95%
of the counters should be under the 0.95-optimistic error curve
for each counting method. Obviously, DISCO provides better
probabilistic guarantees of relative error than SAC.
The cumulative probability function of relative error using

the real trace is investigated, and the result is shown in Fig. 7
with the snapshot of 10-bit counters. Under DISCO, for 90% of
the flows, the flow volume estimation error is less than 0.04, and
the estimation error of all the flows is less than 0.15. However,

Fig. 5. Maximum relative error for flow volume counting.

Fig. 6. Optimistic relative error for flow volume counting.

Fig. 7. Cumulative probability distribution of relative error.

when employing SAC, these two numbers are increased to 0.22
and 0.4, respectively.
The compression ratio of the counter size is also studied. Al-

though full-size SD counters do not have estimation errors, its
counter value increases linearly with the increase of flow length
(the slope is one). With a small estimation error, SAC or DISCO
only consumes a smaller counter for the statistics of a large flow.
Without renormalization, the counter value of SAC increases
linearly with a slope that is less than one, and the counter in-
crement of DISCO is an increasing convex function of the flow
size/bytes as shown in Fig. 8. The larger the flow volume, the
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TABLE II
EXPERIMENT RESULTS UNDER DIFFERENT TRAFFIC SCENARIOS

Fig. 8. Counter bits required under different flow volume. The parameter of
DISCO is 1.01. The parameter of SAC is 2, i.e., two bits are required to keep
the exponential part of the SAC estimate. The renormalization of SAC is not
applied in the figure.

larger the memory efficient gain achieved by using DISCO. As
indicated in (1), and , the memory consump-
tion of DISCO will not be larger than SD and SAC, even for
the smallest flow. Fig. 8 also demonstrates that DISCO is scal-
able for the potential dramatic increase of flow volume in the
Internet.
Similar experiments are also conducted to study the perfor-

mance of SAC and DISCO when they are used to count the flow
size, i.e., the number of packets in a flow. In this case, SAC is
actually the same as Better NetFlow (BNF) [6], and DISCO is
equivalent to ANLS. Fig. 9 plots the average relative error of
estimated flow size for each flow under the same counter size,
which indicates that DISCO is more accurate than SAC given
the same memory resources.
Besides the experiments under the real trace, we employ other

three synthetic traffic scenarios for evaluations.
• Scenario 1: Each flow has packets, where is a random
variable following Pareto distribution. The shape param-
eter is 1.053, and the scale parameter is 4. The packet
length (bytes in a packet) follows truncate exponential dis-
tribution between 40 and 1500 with location parameter

. On average, a flow has 48.99 packets and 5.2 kB
traffic in this scenario.

• Scenario 2: Each flow has packets, where is a random
variable following exponential distribution with location
parameter of 800. The packet length follows truncate ex-
ponential distribution between 40 and 1500 with location

Fig. 9. Relative error of each flow for flow size counting. (a) Results for DISCO
where the parameter is set to be 1.002. (b) Results for SAC where the param-
eter is set to be 8. The two methods consume the similar counter size.

parameter . On average, a flow has 778.30 packets
and 82.7 kB traffic in this scenario.

• Scenario 3: Each flow has packets, where is a random
variable following uniform distribution between 2 and
1600. The packet length follows truncate exponential
distribution between 40 and 1500 with location parameter

. On average, a flow has 772.01 packets and
83.6 kB traffic in this scenario.

Table II illustrates three snapshots when the counter sizes
are set to be 8, 9, and 10 bits, respectively, for both SAC and
DISCO. Since the counter memory is determined by the largest
counter value for the fixed-length counter system, in this paper,
we use the largest counter bits for evaluation. From the exper-
iments, we observe that: 1) the accuracy can be improved with
the increases of counter size, and 2) DISCO is also more accu-
rate than SAC even if their counter sizes are configured to be the
same. In other words, DISCO consumes less counter size with
the same accuracy as SAC.
Although DISCO converges to ANLS when it is used to

flow size counting, simple extensions of ANLS presented in
Section II do not work well for flow volume counting. To be
fair, we compare DISCO to ANLS-I and ANLS-II given the
same memory size, i.e., all use 10-bit counters for each flow.
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TABLE III
EXPERIMENTAL RESULTS FOR ANLS-I

TABLE IV
RATIO BETWEEN EXECUTION TIME OF ANLS-II AND DISCO

If ANLS-I is utilized, the relative errors are too large to be ac-
ceptable as indicated in Table III, compared to the results of
DISCO shown in Table II. The large relative error of ANLS-I
is caused by the large variations of the packet length. For ex-
ample, the variation is larger than 10 for 62.78% of the flows
in real trace and for 100% of other three synthetic traces. The
mean variation over all the flows in each trace scenario is in the
magnitude of . In addition DISCO is at least 10 times
faster than ANLS-II. The execution time ratio of DISCO over
ANLS-II is illustrated in Table IV. It increases with the growth
of the average flow length in different scenarios.

VI. IMPLEMENTATION AND PERFORMANCE TEST

DISCO employs relatively more complicated math opera-
tions including exponent, logarithm, and randomness, while
SAC only uses exponent and randomness. Therefore, SAC
should be faster than DISCO when implemented in a real
system. Since the implementation details are not mentioned
in [19], we did not implement SAC in order not to potentially
degrade its performance due to our simple implementation
design. Instead of directly comparing the throughput of DISCO
and SAC, we check whether DISCO can achieve wire speed in
a core network by implementing it on the Intel network pro-
cessor IXP2850 platform [11], [14]. IXA SDK 4.0 simulation
environment is employed for performance validation.
The architecture of the DISCO implementation and its test-

bench is depicted in Fig. 10. Four IXP2850 MEs are utilized
to function as traffic generators (TGEN). In order to mimic
ultra-high traffic input rate, TGEN only generates packet han-
dlers instead of the whole packets. Each packet handler con-
tains the flow ID and the packet length. The packet handlers are
first forwarded to a specific “Scratchpad Ring,” which is typ-
ically used as a packet handler FIFO in IXP2850. Next to the
packet handler FIFO, four MEs are equipped with DISCO logic
(Algorithm 1) to update counters. In order to check the accu-
racy, an exact counting element is also designed, and a copy of
each synthetic packet handler is passed to it. Only one external
SRAM is used in the implementation. The IXP2850 itself can
handle the potential I/O conflicts between multiple MEs to at
most four parallel SRAMs. The random number is generated by
an instruction provided by the IXP network processor.

TABLE V
THROUGHPUT ON IXP 2850 PLATFORM

Fig. 10. Implementation of DISCO and the test-bench on IXP 2850.

IXP2850 does not have instructions to calculate logarithm
and power computation directly. We precompute and
, and then use a lookup table to get its value when a logarithm

or an exponentiation operation occurs. The logarithm table and
power table are combined into one “Log Exp” table in our
implementation. For each 32-bit entry of the table, the leftmost
20 bits are used for power computation, and the rightmost 12 bits
are employed to keep logarithm results. There is no need to keep
too many table entries for very large , and we only store 3 K
entries for and , , and the memory of the
precomputation table is 96 kb with 3 K entries. For ,

can be calculated using shift and sum operations by

(48)

The following formulation helps us obtain when
:

(49)

The pseudocodes for logarithm and power computation are
in Algorithms 2 and 3. For , a direct table lookup
is performed to get the logarithm or power of ; otherwise for

, (48) and (49) are used to decompose the compu-
tation. Algorithm 2 introduces implementation errors, but the
evaluation in Table V shows acceptable false since the ceiling
function in (2) mitigates the wipe error. A larger table to keep
the precomputing result of log operation would decrease the
chance of wiping off least significant bits. Also, the implemen-
tation uses 3 K entries, which could store the value for
to .
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Algorithm 2:

while do
;
; bit shift. Divide by 2

end while
lookup table for and
return

Algorithm 3:

;
while do

;
;

end while
lookup table for and

;
while do

;

end while
return

Prior to presenting the experimental results, we first describe
the traffic pattern generated for performance tests. There are
2560 flows generated, where 20% of flows carry 80% of the
traffic volume.5 The packet length is uniformly distributed be-
tween 64 B and 1 kB. We first check the situation where burst
length of any flow is only one, i.e., any two packets from a same
flow are intersected by packets of other flows. We enable one,
two, and four MEs in this experiment, and the results are shown
in the first half of Table V. The throughput with only one ME
reaches up to 11.1 Gb/s with a relative error of 0.013, and it is
competent enough to serve for flow statistics on the majority
of the Internet backbone links. In addition, the throughput in-
creases slightly smaller than the linear increase of the number
of MEs.
Real traffic often shows burst of flows, i.e., a number of

back-to-back packets from a same flow comes continuously.
In this case, the performance can be improved by delaying the
update to SRAM counters. Instead of updating the counter for
each incoming packet, the counter is increased at the end of
each burst period. A small naive on-chip counter is first used
to fully record the flow length in a burst before its possible
overflow. When a burst is over, the counter value is viewed
as the bytes from a single packet, and Algorithm 1 is used to
update the counter. We check the performance improvement
for this modification on processing. When the burst length is
a uniform random number between 1 and 8, the throughput is
increased by about 2.5 times, and the relative error is reduced to
a half value. Considering the worst case where all the packets
are 64 B and arrive without burst, eight MEs are needed to
achieve 10 Gb/s throughput. Table lookup and counter update

5It is well known today that Internet exhibits an “80–20” feature for its traffic
[16], i.e., 80% of Internet packets are generated by 20% of the flows.

on SRAM are the main operations of DISCO. One write and a
read operation on SRAM using IXP 2850 take about 186 ns,
and the time can be approximately reduced to 10–20 ns using
FGPA/ASIC to implement operations on SRAM. Therefore,
the performance of DISCO can be roughly improved 10 times
when porting the implementation to a FPGA/ASIC design.

VII. CONCLUSION

Acquiring both the flow size and the flow byte statistics in the
same algorithm with improved accuracy and low memory oc-
cupation is always a target when implementing in real network
equipment. In this paper, we have proposed a DISCO method to
achieve this goal by an elaborate design of the counter update
rule and the unbiased estimator. We theoretically model the
DISCO algorithm and give a systemic analysis on its accuracy
and counter/memory requirements. Extensive experimental
evaluations with real traces and synthetic data validate the
theoretical results. A real implementation is made on the Intel
IXP2850 network processor with an inspiring outcome that only
96 kb memory is required and a throughput of 11.1 Gb/s can
be achieved by only using one ME. The throughput increases
almost linearly when multiple MEs are employed. This makes
DISCO performance/cost-effective for practical applications.
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