
Automatic Policy Generation for Inter-Service Access Control of Microservices

Xing Li∗

Zhejiang University
Yan Chen

Northwestern University
Zhiqiang Lin

The Ohio State University

Xiao Wang
Northwestern University

Jim Hao Chen
Northwestern University

Abstract

Cloud applications today are often composed of many mi-
croservices. To prevent a microservice from being abused by
other (compromised) microservices, inter-service access con-
trol is applied. However, the complexity of fine-grained access
control policies, along with the large-scale and dynamic nature
of microservices, makes the current manual configuration-
based access control unsuitable. This paper presents AU-
TOARMOR, the first attempt to automate inter-service access
control policy generation for microservices, with two fun-
damental techniques: (1) a static analysis-based request ex-
traction mechanism that automatically obtains the invocation
logic among microservices, and (2) a graph-based policy man-
agement mechanism that generates corresponding access con-
trol policies with on-demand policy update. Our evaluation on
popular microservice applications shows that AUTOARMOR
is able to generate fine-grained inter-service access control
policies and update them timely based on changes in the ap-
plication, with only a minor runtime overhead. By seamlessly
integrating with the lifecycle of microservices, it does not
require any changes to existing code and infrastructures.

1 Introduction

As an emerging software architecture, microservices have
been widely used in modern cloud applications [27]. In this
architecture, a large, complex application is split into multi-
ple microservices according to its business boundaries. Each
of them can be independently developed, deployed, and up-
graded, thereby significantly improving the flexibility of soft-
ware development and maintenance. However, communica-
tions among microservices are exposed through the network,
which creates a potential attack surface. In particular, an adver-
sary may attack the entire application through a compromised
microservice by sending malicious requests to other microser-
vices. Therefore, to defend against this kind of attacks, popular

∗The work was performed when the first author was visiting Northwest-
ern University.

microservice infrastructures such as Kubernetes [42] and Is-
tio [22] provide inter-service access control mechanisms to
specify what resources a microservice can access.

However, to achieve high control flexibility, these mecha-
nisms often employ complex policies for fine-grained autho-
rization. Currently, these policies still rely on manual config-
urations from administrators, which are time-consuming and
error-prone. Given the sheer scale of modern microservice
applications [30], it is impractical to manually configure and
maintain access control policies for thousands of microser-
vices. Even worse, their frequent iterations require the policies
to be updated accordingly in time, which can also be an “im-
possible mission” for manual configuration. Hence, to make
a robust access control mechanism function well, automatic
policy generation is essential.

Nevertheless, in distributed systems, the automatic genera-
tion of security policies is not new. Over the past few years,
significant efforts have been made to achieve this goal. These
studies fall into three categories based on how they acquire
business logic or security intent. (1) The first is document-
based approaches [3,34,51,55], which utilize natural language
processing (NLP) to infer security policies from application
documents. Although documents can properly reflect devel-
opers’ high-level intentions, it is not trivial to extract them
accurately. For example, Text2Policy [51] achieved an av-
erage recall of 89.4%. (2) The second is history-based ap-
proaches [23, 35, 50] that mine security policies from histor-
ical operations. However, it relies heavily on the quality of
training data, which means only sufficient historical data can
lead to complete security policies. For instance, P-DIFF [50]
infers access control policies by monitoring access logs, but
its average precision is only 89%. (3) The last category is
model-based approaches [7, 25], which formally model soft-
ware behavior and generates security policies accordingly.
Unfortunately, it is hardly agile and scalable to build and
update the system model manually when accommodating
frequently iterated and large-scale microservice applications.

As such, automatic policy generation for inter-service
access control in microservices is still an open problem,
which cannot be achieved by merely adopting the existing

approaches of security policy generation. To advance the
state-of-the-art, we present AUTOARMOR, a practical policy
generator that can automatically generate fine-grained inter-
service access control policies and keep them updated over
time with the application’s evolution. There are two funda-
mental challenges when building AUTOARMOR: (1) how to
obtain complete and fine-grained invocation logic, and (2)
how to generate and update access control policies.

To solve the first challenge, we propose a static analysis-
based request extraction mechanism, through which all pos-
sible invocations a microservice may initiate are extracted
from its source code. Such extraction employs the usage and
semantic models of inter-service communication libraries to
identify the requests. After that, the detailed attributes of the
invocations are collected for fine-grained access control.

To address the second challenge, we design a novel graph-
based policy management mechanism, which considers the
unique characteristics of microservices and takes over the gen-
eration, update, and removal of access control policies through
a permission graph. Respecting the application evolution, AU-
TOARMOR is designed to be integrated into the lifecycle of
microservices and does not require any modification to the
current application code and infrastructures.

Contributions. Our paper makes the following contributions:

• We present AUTOARMOR, the first automatic policy gen-
eration tool for the inter-service access control of mi-
croservices, which improves the availability of current
service-level authorization.
• We develop a static analysis-based request extraction

mechanism (§4), which uses program slicing and
semantic analysis to extract the inter-service invocation
logic with details.
• We design a graph-based policy management mech-

anism (§5), which translates the invocation logic to
fine-grained access control policies and continues to
update them with the evolution of the application.
• We implement AUTOARMOR for Kubernetes and Istio,

the two most widely applied microservice infrastruc-
tures, and evaluate it with 5 popular microservice
applications (§6). The results show that AUTOARMOR
is sound and practical in handling the policy generation
for inter-service access control of microservices.

2 Background and Motivation

2.1 Microservice Architecture

The architecture of cloud applications is constantly evolving.
Traditional monolithic software (Figure 1 (a)) is packaged
and deployed as a whole containing all modules. It is effi-
cient when the application is relatively simple. Nevertheless,
growth in complexity destroys its flexibility and makes the

(a) Monolithic (b) Microservice (c) Service Mesh

Figure 1: The evolution of cloud application architecture.

system clumsy: modifying a single module requires retest-
ing, repackaging, and redeploying the whole application; the
accurate scaling of system bottlenecks is also unachievable.

Aiming to elegantly and flexibly develop and maintain
complex applications, the microservice architecture (Figure 1
(b)) emerged. It splits an application into several microser-
vices1 running on different machines (or VMs and containers).
Each microservice can be independently developed, deployed,
upgraded, and scaled. Through lightweight network API invo-
cations, multiple services can be combined as service chains
to achieve complicated functionalities. Microservices signifi-
cantly improve the agility of cloud applications.

As a side effect, the invocation relationships among ser-
vices become cumbersome as the service quantity grows. To
solve this problem, service mesh takes the stage and enhances
the microservice architecture as a dedicated communication
infrastructure layer. It uses proxies (blue boxes in Figure 1 (c))
to manage all network traffics among microservices and trans-
parently add features like access control, traffic management,
and monitoring to inter-service communications.

To prevent service interruptions, microservices adopt a pro-
gressive upgrade method in practice. Administrators first de-
ploy the new version of a service (also called canary deploy-
ment) and steer a small amount of business traffic into it for
evaluation. After confirming that the new version works ap-
propriately, all traffic will be gradually migrated to it, and the
old version will then be offline. Such an update strategy is a
crucial property that we need to deal with and utilize.

Currently, microservices are widely applied [27]. A survey
conducted in 2018 [13] showed that 74% of respondent com-
panies are using microservices. Based on a survey from Cloud
Native Computing Foundation (CNCF) [6], Kubernetes [42]
is the leading infrastructure, accounting for 83% of the market.
As for service mesh, Istio [22] is generally recognized as the
most popular implementation [9]. In this paper, we use them
as the foundation infrastructures and work towards securing
microservice applications built atop of them.

2.2 Motivation
As a cloud application architecture, microservices should
give security a high priority. In this architecture, communi-
cations that were previously conducted within a monolithic
application by local invocations are now exposed through the

1In this paper, we use microservice and service interchangeably and regard
an application as a collection of microservices.

After istio: threat model 2

Internal External

Diagnosis Service Patients Service

HTTP mTLS

Logging Service

mTLS
proxy

Diagnosis

proxy

Patients

proxy

LoggingDoctor

Figure 2: The architecture of a medical application. An attack
is initiated from a compromised logging service.

network, which creates a potential attack surface. Although
network isolation enhances security to some extent, the com-
munication channels still need to be protected. Two methods
are currently adopted to secure the inter-service communi-
cation, one is encryption, such as SSL/TLS, and the other is
inter-service access control.

Inter-Service Access Control. According to a CNCF survey
in 2018 [6], 73% of microservices are deployed in containers.
However, third-party libraries may introduce exploitable vul-
nerabilities to containers. In particular, Tak et al. [41] found
that more than 92% of the container images contain unpatched
software vulnerabilities. Therefore, attackers can compromise
a microservice by breaking into the corresponding container.
Hiding behind the IP address and certificate of a compromised
service, they can send malicious requests to other microser-
vices to initiate attacks or steal data. As microservices work
together to accomplish complex functionalities, their natu-
ral mutual trust makes the entire application vulnerable to a
single compromised service.

Considering Figure 2 as an example, there are 3 microser-
vices in a medical application: a diagnosis service, a patients
service, and a logging service. Doctors can access the infor-
mation stored in the patients service through the diagnosis
service. However, a compromised logging service may di-
rectly talk to the patients service to obtain sensitive patient
information, even with mutual-TLS enabled.

This is where inter-service access control comes in. By
specifying services’ permissions (i.e., the resources they can
access), it can regulate the behavior of microservices and
prevent such attacks. In our example, the administrator can
specify that only the diagnosis service can access the patients
service to defend against the attack described above.

Policy Generation Gap. Currently, popular microservice in-
frastructures are equipped with policy-based inter-service
access control mechanisms. A policy is a list of legitimate
requests, that is, a whitelist. After being issued by the admin-
istrator, policies are installed in the proxies corresponding
to the related services. At runtime, proxies verify each in-
coming request based on the installed policies and return the
authorization result for policy enforcement.

The access control policy is designed sophisticated for flex-
ible authorization. As shown in Figure 3, there are three key
fields in a policy: from (specifies the source of the request),
to (specifies allowed operations), and when (specifies the

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:

name: diagnosis-v1-to-patients
namespace: default

spec:
selector:
matchLabels:

app: patients
rules:
- from:
- source:

principals:["cluster.local/ns/default/sa/diagnosis"]
to:
- operation:

paths: ["/patients/*"]
methods: ["GET"]

when:
- key: request.headers[version]

values: ["v1"]

Figure 3: An inter-service access control policy in Istio.

conditions). This policy allows the v1 version of diagnosis
service to access the resources under the “/patients/” path
of patients service with GET method. By this means, Istio
achieves fine-grained access control at the workload level.

While these mechanisms seem powerful and promising, cur-
rently they still rely on careful manual configuration, which
is error-prone and inflexible. Moreover, manual configuration
may be unrealistic when facing large-scale microservice ap-
plications (e.g., Twitter has O(103) different microservices
and O(105) service instances2 in 2016 [30]). Further, service
upgrades may lead to changes in the invocation logic, and
consequently affect related access control policies. Frequent
iteration of microservices requires frequent policy updates,
which is also challenging for manual configuration.

As such, there is a vast “policy generation gap” between
currently adopted mechanisms and the requirements of the dy-
namic, large-scale microservice applications, which severely
prevents them from being fully utilized in practice. This mo-
tivates us to design a tool to bridge this gap and help these
mechanisms realize their full potential.

3 Overview

3.1 Threat Model, Scope, and Assumptions

Threat model. To sum up, in this paper, we consider that at-
tackers can compromise running microservices by exploiting
vulnerabilities in their containers. These attackers are capable
of perceiving other services in the network as well as their
exposed APIs, and also initiating arbitrary requests from the
subverted services. In this manner, the adversary can perform
illegal access to other microservices.

Scope. Inter-service access control mechanisms are designed
to resist these attacks. Instead of developing new mechanisms,
we aim to prompt microservice security by bridging the pol-
icy generation gap with an automated approach. Specifically,
our goal is to automatically generate least privileged access

2In production, administrators use multiple identical instances of a mi-
croservice to improve performance and provide high availability.

control policies for services and to keep them up to date as
the application evolves. Since this paper focuses on inter-
service access control, security policies to resist attacks from
end-users or against hosts or platforms are beyond our scope.

Assumptions. Our design is based on two reasonable assump-
tions. First, although microservices could be compromised,
their source code can be benign. In other words, the program-
mers do not take the initiative to be malicious. Second, we
assume that the source code of microservices can be obtained,
which is common in practices. In §7, we discuss scenarios
where the source code is unavailable or cannot be trusted.

3.2 Challenges
There are enormous challenges in designing a practical au-
tomatic policy generator for inter-service access control. We
organize them into five categories and briefly describe the
corresponding countermeasures based on some key insights
derived from existing efforts and observations.

C1: Finding the suitable target that reflects the normal
behavior of microservices. The first step in policy generation
is to define normal system behavior. Many sources imply such
information. Current works focus on documents, system logs,
and monitoring data. The target we choose must completely
and accurately reflect the expected behavior of services, which
sets the approach’s upper bound.

Microservices’ code is the direct source of its behavior.
This correspondence makes it a better representation than
documents in terms of accuracy. Compared with logs, its
acquisition does not require complete tests or pre-runs.
Therefore, when a microservice initiates a request that
is inconsistent with its code to other services or external
networks, we regard the request as an intent violation. That
is, the service is compromised, and the request is malicious.
Based on this insight, we aspire to extract inter-service
communication logic from the service code.

C2: Handling the inherent limitations of static analysis. It
is challenging to extract the invocation logic from services’
code. Microservices can communicate in various ways with
different implementations. Performing comprehensive static
analysis with brute force could be extremely heavy, which
may cause state explosions and make the approach unfeasible.
Thus, we need to find a way to reduce the search space while
ensuring complete and sound results.

To this end, we can consider only the code related to net-
work invocations. Compromised microservices affect other
services through network invocations. This means that instead
of the entire service code, we can focus on the program slices
related to inter-service communications to narrow the analy-
sis space. Besides, to understand the specific communication
methods between microservices and obtain relevant insights,
we select five popular open-source microservice applications
and observe the protocols and libraries used for inter-service

Application Protocol # of Used
Libraries

of Initiated
Requsets

Share of the
Main Library

Bookinfo HTTP 3 5 60%
TCP 2 2 50%

Online Boutique gRPC 2 20 95%
TCP 1 7 100%

Sock Shop HTTP 2 39 85%
TCP 3 47 51%

Pitstop HTTP 2 48 69%
TCP 4 73 52%

Sitewhere
HTTP 1 4 100%
gRPC 1 270 100%
TCP 5 240 61%

Table 1: The inter-service communication protocols and li-
braries used in our collected microservice applications. The
last column represents the proportion of requests initiated by
the library that initiated the most requests to the total requests.

invocations. As shown in Table 1, the amounts of involved
protocols and libraries are limited, and the invocation manner
is relatively uniform, especially in the same application: for
each protocol, more than half of the requests are initiated
using the same library. These characteristics make it feasible
to model them for accurate identification, thereby providing
an opportunity to extract the inter-service invocation logic
efficiently with static analysis.

C3: Analyzing microservices implemented in various pro-
gramming languages. Due to the loose coupling of microser-
vices, developers can choose the most appropriate language
to implement each service. As a result, an application may
include services developed in multiple languages. To obtain
invocations throughout the entire application, it is inevitable
to support every used programming language. This is tricky
since they have different syntax, libraries, and tools.

Although programming languages have different features,
they can be divided into statically typed languages and dy-
namically typed languages. The static analysis processes are
similar for languages in the same category. Besides, as afore-
mentioned, the modeling task is relatively tractable, and these
languages have powerful static analysis tools available, which
is of great benefit to our work.

C4: Mining detailed attributes of inter-service invoca-
tions. Fine-grained access control relies on detailed attributes,
but extracting them is not straightforward. First, the attributes
are diverse since the parameters in each invocation method are
distinct. We need to identify the useful ones. Second, variables
may be modified multiple times from declaration to use, mak-
ing it challenging to obtain accurate parameters. For example,
a URL may be generated from a combination of numerous
strings; having only part of them may be meaningless.

Although many parameters are involved in inter-service
communications, we do not need to extract them all. The ex-
pressiveness of the policy language determines the expected
level of granularity for attributes. That is, it defines which pa-
rameters are needed. Therefore, we only extract the attributes
that can be used for access control, such as URL and method

How does it works?

Code Submit

Microservice Infrastructure

Master Node

DB

C

A

E

Source Code
of Service E

Static Analysis
Engine Worker Node-1

Worker Node-2
Service Deploy

CI Server

Service E

Service Build

Manifest
File of E

Master Node

Deployment File of E

Master Node

Control Plane of Istio/Kubernetes

Policy
Generator

Permission Engine

❶

❷ ❸

❹
❺

Figure 4: The architecture of AUTOARMOR and the deployment of service E.

Figure 5: Average policy checking time with different number
of policies installed for details service of Bookinfo app [20].

of HTTP requests. Additionally, for accuracy, we track the
definitions and usage of key parameters, and construct the
final attributes with string analysis.

C5: Managing access control policies. Tailoring a policy
management mechanism for microservices needs to consider a
series of unique characteristics. For example, their progressive
upgrade method makes it common to have multiple versions
of a particular service present simultaneously, and these ver-
sions may raise different inter-service dependencies. Thus it
is necessary to distinguish them in the authorization. Besides,
microservices are frequently released and iterated. Hence,
prompt policy generation and update are indispensable, espe-
cially in large-scale scenarios.

Moreover, since network communication is slower than lo-
cal invocations, performance has become a notable limitation
of microservices. Policy enforcement for each request will
introduce extra latency at runtime, which could further slow
down large-scale applications that need to process thousands
of requests per second. With this in mind, we also need to
produce a policy set with an optimal runtime performance.

Inter-service access control policies are generated based
on the dependencies among services, which can be naturally
represented by a graph. Besides, as aforementioned, proxies
match incoming requests with installed policies one by one at
runtime, which implies that the number of policies may affect
policy enforcement. We measured this impact in Figure 5. It
shows that the policy checking time increases linearly with
the number of installed policies. Therefore, redundant access
control policies will degrade the entire application, and we
can reduce the runtime overhead by generating an optimal
policy set with minimized redundancy.

3.3 AUTOARMOR Overview

From the insights above, we have created AUTOARMOR, an
inter-service access control policy generator that acquires
the invocation logic among microservices and translates it
to corresponding access control policies. AUTOARMOR’s
workflow contains two separate phases: the request extraction
phase, and the policy management phase.

In the request extraction phase, AUTOARMOR uses a static
analysis based request extraction to obtain the requests a
microservice may initiate. It first identifies the statements
that initiate network API invocations, and then uses them as
starting points to perform backward taint propagation on the
control flow graphs to get the program slices associated with
each invocation. Finally, it extracts the relevant attributes, such
as URL and method, from the slices via semantic analysis.

In the policy management phase, we design a graph-based
policy management to generate policies according to the inter-
service invocation logic extracted in the first phase. With the
permission graph, it achieves on-demand and incremental pol-
icy updates, and minimizes redundant policies by aggregating
the same permissions of different service versions.

Architecture. As shown in Figure 4, AUTOARMOR consists
of an offline Static Analysis Engine responsible for request
extraction, an online Permission Engine for maintaining and
updating the permission graph, and an online Policy Genera-
tor for translating the graph into access control policies.

AUTOARMOR aims to integrate with the microservice life-
cycle and infrastructures seamlessly. The lifecycle involves
continuous integration / continuous delivery (CI/CD), an au-
tomatic workflow for service development and deployment.
To naturally access the code of services, the Static Analysis
Engine is placed on the CI server, where a series of tools run
for code checking and automatic testing. Besides, located on
the master node, the Permission Engine receives and parses
the commands from the administrator, and then passes them
to the control plane of the infrastructure. In this manner, AU-
TOARMOR can sense all changes of microservices.

Workflow. The dotted black line in Figure 4 depicts the stan-
dard CI/CD pipeline of service E. At first, its source code is
submitted to the CI server. The Static Analysis Engine ana-
lyzes its code and generates a manifest file to describe the
invocations that it may initiate (¶). Subsequently, service

Languages Java Python Go JavaScript Ruby C#
Source Code 3 3 3 3 3 3
Bytecode 3 3 7 7 3 3
Binary Code 7 7 3 7 7 7

Table 2: The code forms of some programming languages
used in microservices.

E is built and ready for deployment. At deployment time,
the Permissions Engine parses the manifest file to generate
a permission node for E and inserts it into the application’s
permission graph (·). With the change of the graph, the Pol-
icy Generator calculates the access control policies that need
to be added or modified (¸). Afterward, it issues the poli-
cies to the control plane of the microservice infrastructure
(¹), which further distributes them to services’ proxies for
subsequent policy enforcement (º).

4 Static Analysis-Based Request Extraction

4.1 The Input of Static Analysis
A service program may have multiple code forms, which is
determined by the execution process of its programming lan-
guage. Some languages’ source files will be interpreted and
executed by the corresponding interpreter (e.g., JavaScript),
some will be compiled into binaries (e.g., Go), and some
will be compiled into bytecode as an intermediate form
(e.g., Java). Table 2 lists the code forms associated with the
programming languages used in our collected microservices.
As we can see, their code forms are not the same, and the
most suitable forms for static analysis are also diverse. Nev-
ertheless, we use source code as the input of static analysis to
illustrate the proposed method for facilitating understanding.

Apart from the source code, some external files also carry
critical information related to service invocations, and we also
treat them as the analysis input:

(1) The .proto files contain all gRPC API definitions, which
can guide us to identify gRPC invocations in the service code;

(2) The deployment file contains the environment variables
of the service container, which may indicate some custom
fields in the invocation URLs, such as hostname and port.
It also declares the metadata of the service, such as service
name and service version.

Generally, only the above two external files need to be
considered. Nonetheless, if there are other configuration files
containing invocation-related information, it is also necessary
to model and parse them for analysis.

4.2 Request Extraction
With the above input of a microservice, we aim to extract
all network API invocations it may initiate and generate a
manifest file to describe them.

Languages Libraries Methods

Java
(23 svcs)

javax.ws.rs.client
SyncInvoker: get(), post(), put(),

delete(), head() ,method()
Invocation: invoke()

org.springframework
.web.client

RestTemplate: execute(), exchange(),
getForObject(), getForEntity(),
postForObject(), postForEntity(),
delete(), put()

org.apache.solr
.client.solrj SolrClient: query(), request(), ping()

JavaScript
(4 svcs) request request(), request.get(), request.post(),

request.put(), request.del()

Table 3: The modeled HTTP request libraries and methods for
Java and JavaScript services in our evaluation applications.

There are several ways to extract requests statically from
the source code. Simple pattern matching methods (e.g., regu-
lar expression matching) are fast, but almost inaccurate since
the key variables may be defined elsewhere and modified mul-
tiple times. Tracking the definitions and usages of all variables
overcomes this drawback, but it may result in state explosions
or being extremely slow.

Static taint analysis is commonly utilized to track and an-
alyze untrusted information flows for vulnerability mining.
Nevertheless, recent work [29] showed that it could be ap-
plied to obtain the program slice related to a specific instruc-
tion, which contains all associated data flows. Inspired by
this, we employ it to perform program slicing from state-
ments that make network API invocations, and then extract
attributes from these slices. Further, since we only focus on
the attributes that can be used for access control, we involve
semantic models for semantics-aided program slicing. That
is, identifying and tainting only the key parameters in the
API invocation statements to obtain the smallest but sufficient
program slices. In this manner, we can reduce the state space
and acculturate the analysis while ensuring the accuracy.

At a high level, our approach is designed to be general
for different programming languages and invocation proto-
cols, even if the detailed implementations are not the same.
Specifically, it consists of the following steps.

Step-I: Identifying inter-service invocation statements.
Our static analysis is performed on the control flow graphs
(CFGs) describing the intra-procedural program execution
and the call graphs (CGs) describing the inter-procedural call
relationships. Therefore, we first scan the source files of the
target service, and construct CFGs, CGs, and constant/variable
tables accordingly to prepare for the following analysis. There
are many mature tools that can assist this process for different
programming languages.

Usage Models. Next, we build usage models for inter-service
communication libraries to identify the statements that initi-
ate network requests. As demonstrated in Table 1, the inter-
service invocations in the same application are relatively
uniform, and the number of libraries involved is also lim-
ited. Therefore, we can carry out targeted modeling to reduce

1 import requests
2 from flask import request, session
…

3 reviews = {
4 "name" : "http://reviews:9080",
5 "endpoint" : "reviews"
6 }
…

7 @app.route('/api/v1/products/<product_id>/reviews')
8 def reviewsRoute(product_id):
9 headers = getForwardHeaders(request)
10 user = session.get('user', ")
11 status, reviews = getProductReviews(product_id, headers)
…

12 def getProductReviews(product_id, headers):
13 try:
14 url = reviews['name'] + "/" + reviews[

'endpoint'] + "/" + str(product_id)
15 res = requests.get(url, headers=headers, timeout=3.0)
…

1 reviews = {
2 "name" : "http://reviews:9080",
3 "endpoint" : "reviews"
4 }

5 @app.route('/api/v1/products/<product_id>/reviews')
6 url = reviews['name'] + "/" + reviews[

'endpoint'] + "/" + str(product_id)
7 res = requests.get(url, headers=headers, timeout=3.0)

{
"type": "HTTP",
"url": "http://reviews:9080/reviews/*",
"path": "/reviews/*",
"method": "GET"

}

Library: requests
Method: get(url, params=None, **kwargs)

Semantics: HTTP-GET
Key parameters: url (Semantics: HTTP-URL)

(a) Source Code (b) Semantic Model

(c) Program Slice

(d) Extracted Request

Ⅲ

Ⅰ

Ⅱ

Figure 6: Request extraction for the productpage service of Bookinfo app [20]: I. using semantic (usage) models (b) to identify
the network API invocation statement (line-15 in (a)), II. performing backward taint propagation to obtain the corresponding
program slice (c), and III. extracting the request with its attributes from the slice (d).

1 import javax.ws.rs.client.*;
2 import javax.ws.rs.core.MediaType;
…
3 ClientBuilder cb = ClientBuilder.newBuilder();
…
4 Client client = cb.build();
5 WebTarget ratingsTarget = client.target(

ratings_service + "/" + productId);
6 Invocation.Builder builder = ratingsTarget.request(

MediaType.APPLICATION_JSON);
…
7 Response r = builder.get();
…

Method Signature:
javax.ws.rs.client.SyncInvoker#get()Ljavax/ws/rs/core/Response;

Figure 7: Java example of a unique method identifier in stat-
ically typed programming languages. (This code snippet is
from the review service of Bookinfo app [20].)

the workload. Table 3 lists the HTTP request libraries and
methods that we model for services developed in Java and
JavaScript in the evaluation applications. For gRPC requests,
we can parse the API definitions in the.proto file to figure
out which statements can initiate inter-service invocations.
Note that the sufficiency of usage models directly affects the
completeness of request extraction and subsequent access
control, which will be discussed further in §7.

In statically typed programming languages, such as Java
and Go, a method can be uniquely identified due to its bind-
ing to the corresponding type. Hence, as shown in Figure 7,
we only need to model the methods that ultimately initiate
the requests, and then locate their uses in the code. Never-
theless, in dynamically typed programming languages, such
as Python and other scripting languages, it is not easy to de-
termine whether the method invoked in a statement is the
method of our interest. The types of methods are checked at
runtime, which makes it impossible to uniquely distinguish
a method in static analysis. For example, in the code snip-
pet in Figure 6 (a), the two get methods at line 10 and line
15 have completely different functionalities. Therefore, for

these languages, we start from the “import” statements and
model each step in the request initiation processes. As shown
by the dotted red arrow in Figure 6 (a), we can identify the
statements that actually initiate network API invocations by
scanning these steps from top to bottom along the syntax tree.

Step-II: Performing semantics-aided program slicing. In
this step, we first augment the usage models with semantic
information to build semantic models. As shown in Figure 6
(b), these semantics indicate the key parameters we need to
focus on during subsequent program slicing.

Program slicing. Starting from the invocation statements col-
lected in Step-I, we taint the key parameters and perform
backward taint propagation along their data flows to mark all
relevant variables (the blue arrows in Figure 6 (a)). Namely,
(1) a variable on the left-hand side of an assignment state-
ment will taint the variables used on the right-hand side, (2) a
tainted method argument will propagate the taint to the corre-
sponding arguments in the statements that call this method,
and (3) if a method’s return value is tainted, the taint propaga-
tion also needs to be performed on its method body from the
return statements. This process will iterate until the current
variable comes from an incoming request or is assigned by a
constant; that is, no more variables to propagate. In this way,
we get a streamlined program slice associated with a request,
which contains minimal but sufficient information for access
control (Figure 6 (c)).

In the process of taint propagation, we may encounter
branches in the reverse control flow. Generally, there are only
two types of branches that will affect our program slicing:
(1) there is a conditional statement in the code, which has
multiple branches containing tainted variables, and (2) the
arguments of a method are tainted, and the method has multi-
ple callers. These branches indicate that various invocations
may be initiated through an identical statement. Therefore, to

deal with the situations, we duplicate the program slice and
perform taint analysis on each path separately.

Step-III: Extracting the details of invocations. From the
program slices, we need to further extract useful attributes
(Figure 6 (d)). The path attribute of gRPC requests are ex-
plicitly defined in the .proto files, and some attributes (e.g.,
method of HTTP requests) are often reflected in semantic
models (e.g., Figure 6 (a)). Nevertheless, many attributes still
need to be obtained from the program slices, such as hostname,
port of TCP requests, and path of HTTP requests. These at-
tributes are usually included in URLs and may involve a series
of string processing operations. This means that they may be
modified multiple times after their definitions, and we need
to reconstruct them for accurate access control.

String reconstruction. Contrary to program slicing, we start
from the end of taint propagation and reconstruct variables in
the program slice along the forward direction of data flows. To
this end, we model a series of basic string processing methods,
such as ‘+’ and ‘append()’. Since the program slice has been
duplicated for branches in Step-II, we do not need to handle
them during the reconstruction. Besides, as described in §4.1,
some environment variables defined in the deployment file
may be tainted due to their participation in URL generation.
Thus we also employ them for string reconstruction.

The finally constructed URLs may include some fields
from incoming requests, which can not be determined by
static analysis (e.g., the product_id in Figure 6 (c)). We use
wildcards to fill these undetermined fields. Note that even if
prefix and suffix matching is common in access control, this
uncertainty could lead to over-authorization. We will discuss
this further in §6.3.

After these three steps, we generate a JSON-based manifest
file to describe the requests that a microservice might initiate.
The syntax of the manifest file is displayed as follows:

‘service’: service name
‘version’: service version
‘request’: [{‘type’ : ‘http’ | ‘grpc’ | ‘tcp’

‘url’ : url | host name
‘path’ : only for ‘http’ and ‘grpc’
‘method’: only for ‘http’
‘port’ : only for ‘tcp’}]

5 Graph-Based Policy Management

5.1 Motivation
As described in Challenge C3, multiple service versions that
exist simultaneously may have different inter-service depen-
dencies in a microservice application. To distinguish these
versions in access control, a strawman approach is specifying
permissions for each version separately. However, although
inter-service requests may differ in various service versions,
they serve similar responsibilities because they belong to the
same microservice. Hence most requests should be identical.

Consequently, generating separate access control policies for
each version may introduce plenty of redundancy, which will
decrease the application’s performance in two aspects:
(1) Additional policy checks. At runtime, a proxy needs to
match the incoming requests with all installed policies in-
dividually. Thus redundant policies will involve additional
policy checking time (as shown in Figure 5).
(2) Unnecessary policy installations. The installation of redun-
dant policies is not free. Due to caching and other propagation
overhead, it will take seconds before the policies are activated,
which may also affect the data plane’s performance.

Therefore, to defeat policy redundancy, we design a per-
mission graph to depict inter-service dependencies and guide
policy generation, which can be formalized as follows.

5.2 Data Structure
A permission graph G= (Ns,Nv,Eb,Er) consists of the sets of
two kinds of permission nodes (Ns, Nv) and two kinds of edges
(Eb, Er). A service node a ∈ Ns describes the permissions
(i.e., the requests a microservice can initiate) common to all
versions of the service, while a version node ai ∈Nv describes
the permissions specific to that version. Besides, a belonging
edge in Eb connects a version node with the service node
it belongs to, and a request edge in Er indicates a possible
inter-service request.

Take Figure 8 as an example. It shows an application com-
posed of four microservices A, B, C, and D. Figure 8 (a) shows
the service behavior in this application. As we can see, ver-
sion V 1, V 2, and V 3 of service A can all initiate a request
r1 to service B, whereas V 2 may also call service C, D with
request r3, r2, and V 3 may send r4 to service D. In this case,
as shown in Figure 8 (b), we place their common permissions
in service node a, and put the unique permissions of V 2 and
V 3 in the version nodes a2, a3, respectively. Note that the
version node a1 still exists, but its permission is null.

By this means, we no longer need to maintain the permis-
sions shared by each service version separately. This not only
reduces the redundant policies and optimizes policy enforce-
ment, but also eliminates unnecessary policy installation and
realizes on-demand policy distribution. Consider an applica-
tion with s services that can initiate inter-service invocations.
On average, suppose each of these services has v versions,
each version may send r different requests, and the share of
the requests that can be initiated by all versions is x. If we gen-
erate a policy for every request, comparing to the strawman
approach, the total number of saved policies will be:

policysaved = s(vr− (vr(1− x)+ rx)) = srx(v−1)

which can be substantial for large-scale applications.
The extraction of shared permissions could involve numer-

ous permission node comparisons. To accelerate this process,
we represent each permission node with a hash-based skele-
ton tree, whose leaves are the abstractions of the requests it

a a3

a2

a1

b

d

c

b1 c1

d1

c2

r1
r3

r4

r5
r6

Service B

Service B – V1

Service C – V1

Service C – V2

Service A – V1

Service A – V2

Service A – V3

Service A

Service C
Service D – V1

Service D

r1

r3

r5

r6

r4

(a) System Behavior (b) Permission Graph

Target Service Path Method

Target Service Path Method

Abstraction – r2

Service A – V2Skeleton Tree:

Request Abstractions: Abstraction – r3

… … …

Requests: … … …

(c) Permission Node
r3r2

Descriptions:

String Concatenation

Hashing

r2 r2

Figure 8: A demonstration of the permission graph and the skeleton tree representation of permission node a2.

may launch. The abstraction of a request is a hash value for a
string concatenation of its target service’s name and a series
of attributes like path and method. Figure 8 (c) demonstrates
the skeleton tree representation of version node a2. Hence,
comparing two permission nodes is transformed into solv-
ing the intersection of two sets, and the time complexity is
O(m+n), where m, n are the number of these nodes’ permis-
sions. Through this skeleton tree comparison method, we can
quickly extract the permissions shared by all service versions
and identify their differences if they are not identical.

5.3 Policy Generation
When a microservice is being deployed, AUTOARMOR gener-
ates access control policies based on its manifest file. First, the
manifest file will be transformed into a permission node and
added to the application’s permission graph. We then translate
each related request edge into an access control policy.

One thing to consider in this process is the deployment
order of services. A permission should not be granted if the
request’s target service has not been deployed. Otherwise,
it will result in over-authorization. Therefore, we mark the
requests whose target services have not been deployed, that is,
the request edges with a missing endpoint in the permission
graph, and postpone the corresponding policy generation to
the deployment of these callee services.

In the initial stage of an application, the administrator
usually deploys a series of microservices simultaneously
with a single deployment file. In this case, we abstract the
permission graph to a directed acyclic graph (DAG) at ser-
vice granularity, and perform topological sorting on it. After
that, we reorganize the deployment file in reverse topological
order and generate access control policies to ensure that the
entire application comes up quickly and correctly.

5.4 Policy Update
The interdependencies of microservices evolve with the appli-
cation behavior. This dynamic nature requires that the access
control policies keep updated over time. Service upgrade and
service rollback are two operations that cause microservice ap-
plication changes. Owing to the progressive upgrade strategy,

Algorithm 1: Add the version v of service s
Input :G - current permission graph

Psv - permission set for the version v of service s
Output :G′ - updated permission graph

1 ns = get the service node of s
2 Ps = get the permission set of ns
3 if Ps ⊂ Psv then
4 P′sv = Psv−Ps
5 else

// split the service node
6 P′sv = Psv− (Ps ∩Psv)
7 Pd = Ps− (Ps ∩Psv)
8 remove permissions in pd from ns
9 Vs = get version nodes of s

10 for nv in Vs do
11 add permissions in Pd to nv

12 nsv = generate version node for v with P′sv
13 G′ = add nsv to G
14 return G′

they can be regarded as the addition and removal of specific
versions of services.

Service Addition. When deploying a new service version,
we first compare its permission node with the corresponding
service node. If its permissions are a superset of the service
node, we keep the service node unchanged and insert the
unique permissions of this version as a version node into the
permission graph. If the service node contains permissions
not in this version, which means this version will not send
some requests that other versions will initiate, we need to split
the service node. That is, put the permissions shared by other
versions to those version nodes and generate a new service
node. Algorithm 1 describes the entire process.

Service Removal. When a specific service version is offline,
we need to remove the corresponding version node. If this
version is the only version of its service, the relevant service
node will be deleted at the same time. Note that removing
a node also implies removing all of its outgoing edges and
inactivating its incoming edges. After the removal, we re-
perform the permission aggregation for the remaining version
nodes to ensure that the permission set of the service node is
the largest subset of the permissions shared by each version.
This process is demonstrated in Algorithm 2.

Algorithm 2: Remove the version v of service s
Input :G - current permission graph

sv - the version v of service s
Output :G′ - updated permission graph

1 nsv = get the version node of sv
2 G′ = remove nsv from G
3 ns = get the service node of s
4 Vs = get the version nodes of s
5 if Vs is /0 then
6 remove ns from G′

7 else
8 Pc = extract common permissions of versions in Vs
9 add permissions in Pc to ns

10 return G′

Components Target Languages Base Modified LoCs

Static
Analysis
Engine

Java Java SonarJava ~4000
JavaScript Java SonarJS ~3000
Python Java SonarPython ~2000
C# C# Roslyn ~3000
Go Go Go Tools ~2000
Ruby Ruby Parser ~1000

Permission Engine Python - ~1000
Policy Generator Python - ~500

Table 4: The implementation detail of AUTOARMOR.

Complexity. Let n be the number of permissions of the ser-
vice version to be processed, and m be the number of versions
this microservice has. Assuming that the proportion of per-
missions shared by these versions is a constant x, the best and
worst time complexity to deal with the addition of this version
is O(n) and O(mn), respectively. As for the removal of this
version, due to the permission re-aggregation, the correspond-
ing complexity is O(mn).

6 Evaluation

We have implemented a prototype of AUTOARMOR on Kuber-
netes [42] and Istio [22], two of the most popular microservice
infrastructures at present. The prototype is implemented in
three components, with ~16,500 LoCs in total. A detailed
breakdown is shown in Table 4. To adapt to our evaluation
applications, the Static Analysis Engine is implemented on
the basis of a series of existing static analysis tools, including
SonarJava [37], SonarJS [38], SonarPython [39], Roslyn [31],
Go Tools [17], and Parser [49].

In this section, we present our evaluation results by testing
AUTOARMOR’s functionality and performance, as shown in
Table 5. Specifically, our evaluation seeks to answers the
following six questions:

• Q1: Can AUTOARMOR extract the invocation logic
among microservices? (§6.2, E1: Effectiveness)
• Q2: How much time does it take to complete the offline

program analysis? (§6.2, E2: Analysis Time)
• Q3: Can the generated access control policies enhance

application security? (§6.3, E3: Security Evaluation)

Evaluation Request Extraction Policy Management
Functionality E1: Effectiveness E3: Security Evaluation

Performance E2: Analysis Time
E4: Efficiency
E5: Scalability
E6: End-to-End Performance

Table 5: Our experiment design.

Name # of
Svcs LoCs Type Multi-

Lang
H on

GitHub
Bookinfo [20] 6 2,702 Demo 3 24.7k
Online Boutique [18] 11 23,219 Demo 3 8.8k
Sock Shop [48] 13 20,150 Demo 3 2.5k
Pitstop [14] 13 45,028 Demo 7 630
Sitewhere [36] 21 53,751 Industrial 7 717

Table 6: The microservice applications used in our evaluation.

• Q4: Is it efficient to generate, manage, and update the
access control policies? (§6.3, E4: Efficiency)
• Q5: Can it be applied to large-scale microservice appli-

cations? (§6.3, E5: Scalability)
• Q6: Can it optimize the performance of policy enforce-

ment at runtime? (§6.3, E6: End-to-End Performance)

6.1 Evaluation Environment
As shown in Table 6, our prototype was evaluated with five
popular open-source microservice applications. The first four
are demonstration applications for teaching purposes, and the
fifth is an industrial application: Bookinfo [20] is a simple
example application of Istio, Online Boutique [18] and Sock
Shop [48] are relatively complex e-commerce website applica-
tions, Pitstop [14] is a garage management system, and lastly,
Sitewhere [36] is an industrial IoT application enablement
platform. These applications contain 64 unique services, and
all of them are deployed in containers. Since these applica-
tions are designed to accomplish different tasks, they have no
service overlap. Assessing how services applied in multiple
applications affect the policy generation is future work.

The microservice infrastructure used in our experiments is a
3-node Kubernetes cluster (v.1.18.6) with Istio (v1.6.8). Each
node is equipped with eight 2.30-GHz Intel(R) Core(TM)
CPUs (i5-8259U) and 32 GB of RAM.

6.2 Request Extraction Evaluation
E1: Effectiveness. Among the 64 unique microservices out
of our 5 applications, 48 are business services, and the rest
are infrastructure services that do not contain business code
and only provide functions such as data storage and message
queues. Therefore, our evaluation of the request extraction
mechanism only considers business services.

The effectiveness of request extraction is indicated by two
metrics: (1) whether it can identify inter-service invocations in
the code, and (2) whether it can extract the detailed attributes
of these invocations. To measure them, we first model the
inter-service invocation libraries used in each application,

Application Microservice Language LoCs Identified Requests Extracted Attributes Time
HTTP gRPC TCP URL Method Port

Bookinfo

productpage Python 2,061 3/3 - - 3/3 3/3 N/A 21s
details Ruby 122 1/1 - - 1/1 1/1 N/A 4s
reviews Java 301 1/1 - - 1/1 1/1 N/A 27s
ratings JavaScript 218 - - 2/2 2/2 N/A 2/2 27s

Online Boutique

frontend Go 3,666 - 11/11 - 11/11 N/A N/A 35s
cartservice C# 5,941 - - 7/7 7/7 N/A 7/7 38s
productcatalogservice Go 2,460 - - - N/A N/A N/A 18s
currencyservice JavaScript 359 - - - N/A N/A N/A 25s
paymentservice JavaScript 343 - - - N/A N/A N/A 26s
shippingservice Go 2,458 - - - N/A N/A N/A 18s
emailservice Python 2,146 - - - N/A N/A N/A 20s
checkoutservice Go 2,816 - 8/8 - 8/8 N/A N/A 21s
recommendationservice Python 2,112 - 1/1 - 1/1 N/A N/A 28s
adservice Java 918 - - - N/A N/A N/A 29s

Sock Shop

front-end JavaScript 9,922 33/33 - - 33/33 33/33 N/A 125s
orders Java 2,187 6/6 - 2/2 4/8 6/6 2/2 55s
payment Go 863 - - - N/A N/A N/A 11s
user Go 2,515 - - 24/24 24/24 N/A 24/24 33s
catalogue Go 1,439 - - 8/8 8/8 N/A 8/8 23s
carts Java 1,840 - - 7/7 7/7 N/A 7/7 48s
shipping Java 929 - - 3/3 3/3 N/A 3/3 34s
queue-master Java 926 - - 3/3 3/3 N/A 3/3 31s

Pitstop

webapp C# 40,461 16/16 - - 16/16 16/16 N/A 52s
customermanagementapi C# 423 - - 5/5 5/5 N/A 5/5 19s
vehiclemanagementapi C# 451 - - 5/5 5/5 N/A 5/5 18s
workshopmanagementapi C# 1,563 4/4 - 20/20 24/24 4/4 20/20 46s
workshopmanagementeventhandler C# 685 10/10 - 14/14 24/24 10/10 14/14 30s
auditlogservice C# 136 1/1 - 2/2 3/3 1/1 2/2 7s
notificationservice C# 511 7/7 - 12/12 19/19 7/7 12/12 42s
invoiceservice C# 641 9/9 - 14/14 23/23 9/9 14/14 45s
timeservice C# 157 1/1 - 1/1 2/2 1/1 1/1 7s

Sitewhere

web-rest Java 6,648 - 215/215 - 215/215 N/A N/A 242s
instance-management Java 4,069 - - 35/35 35/35 N/A 35/35 99s
event-sources Java 6,619 - 1/1 3/3 4/4 N/A 3/3 130s
inbound-processing Java 825 - 2/2 4/4 6/6 N/A 4/4 49s
device-management Java 6,381 - - 74/74 74/74 N/A 74/74 156s
event-management Java 4,799 - 4/4 60/60 64/64 N/A 60/60 204s
asset-management Java 5,993 - - 10/10 10/10 N/A 10/10 142s
schedule-management Java 1,964 - - 10/10 10/10 N/A 10/10 77s
batch-operations Java 2,122 - 6/6 16/16 22/22 N/A 16/16 105s
device-registration Java 1,075 - 10/10 4/4 14/14 N/A 4/4 57s
device-state Java 1,739 - 1/1 7/7 8/8 N/A 7/7 61s
event-search Java 769 4/4 - - 4/4 4/4 N/A 34s
label-generation Java 1,379 - 10/10 - 10/10 N/A N/A 66s
rule-processing Java 1,091 - 2/2 2/2 4/4 N/A 2/2 50s
command-delivery Java 3,417 - 6/6 3/3 9/9 N/A 3/3 123s
streaming-media Java 736 - - 10/10 10/10 N/A 10/10 49s
outbound-connectors Java 4,125 - 13/13 2/2 15/15 N/A 2/2 145s

Total 48 unique services 6 languages - 96/96 290/290 369/369 751/755 96/96 369/369 -

Table 7: The request extraction evaluation for business services in our evaluation applications. In this table, A/B means that there
are B requests or attributes in the code, and A of them are successfully identified or extracted. (E1, E2)

mark the code folders and configuration files, and then use
the Static Analysis Engine to analyze all services and record
the identified requests and extracted attributes. Finally, we
compare the analysis results with the ground truth obtained
by manual analysis for verification.

Table 7 shows the result of this experiment. AUTOARMOR
identified 96 HTTP requests, 290 gRPC requests, and 369
TCP requests from the code of these services, which achieved
100% coverage in request identification. In terms of attribute
extraction, AUTOARMOR achieved a 100% extraction rate for
the method and port attributes whose extractions are more
dependent on the usage models and configuration files. Re-

garding URL extraction that relies more on program slicing,
the extraction rate is 99.5%. 0.5% (4/755) of the invocations’
URLs could not be obtained. This is because Sock Shop’s
orders service directly accesses the URLs in its received re-
quests. These URLs do not exist in its code and cannot be
extracted. This incompleteness indicates some limitations
of AUTOARMOR. In the following, we rigorously discuss
the false negatives and false positives, and define the precise
conditions under which a request can be properly extracted.

False Negative. Overall, three situations may lead to false
negatives in request extraction, thereby invalidating the sub-
sequent access control:

(1) Attributes from the input. Such attributes cannot be ob-
tained by static analysis, as they do not exist in the code or
configuration files. Nevertheless, reckless access to the URLs
in incoming requests increases the risk of injection attacks.
Introducing input validation and sanitization or dynamic anal-
ysis could be helpful in this situation.

(2) Incomplete library modeling. The identification of re-
quests relies on the usage and semantic models of inter-service
communication libraries. Invocations initiated via unmodeled
libraries will not be covered, leading to incomplete request
identification. Therefore, AUTOARMOR requires efforts to
model the used invocation libraries.

(3) Sophisticated parameter processing. As a proof-of-concept
prototype, AUTOARMOR currently does not support some ad-
vanced features. For example, aliasing reflects changes to
one variable to another. This may result in incomplete pro-
gram slices since we only perform one-way taint propagation.
These advanced features may lead to further research chal-
lenges. Since we did not witness such a case in the collected
applications and are not committed to prompting current static
analysis techniques, we believe this is not a fundamental limi-
tation. Support for the advanced features of different program-
ming languages is future work.

False Positive. Due to the conservative extraction strategy,
our request extraction is more prone to false negatives
than false positives. However, deserted or dead code could
indeed cause false positives, even if the modeling is correct.
Removing such code in time or enhancing AUTOARMOR
with invalid code analysis could alleviate this problem.

Conditions for Correct Extraction. Based on the results of
E1 and our implementation, we summarize the sufficient con-
ditions for correct request extraction as follows:

(1) All attributes are contained in the code or supported config-
uration files. These materials are the target of static analysis.
Therefore, if some attributes are not included, they must not
be obtained via static analysis. For the path attribute, since
some fields may come from input requests, partial inclusion is
also acceptable. However, a completely missing request URL
will cause the callee service’s hostname not to be identified.
This is also the reason why the URL extraction of the four
requests in E1 failed. Our experiment result shows that most
of the requests can meet this condition.

(2) CFGs and CGs can be constructed from the service code.
They are data structures on which static analysis relies. Both
request identification and program slicing are performed on
them. Incomplete call graphs will cause the interruption of
taint propagation and affect the integrity of program slices.
Thanks to the existing static analysis tools, both CFGs and
CGs can be built smoothly in our experiment.

(3) The involved inter-service invocation libraries are com-
pletely modeled. Usage models are the core for request iden-
tification. Although the communication methods used in each

application may be different, as shown in Table 1, the in-
vocation methods are fairly uniform in a single application,
and the number of used libraries is also limited. Thus, com-
plete modeling of them is feasible. Besides, some applications
encapsulate dedicated libraries to initiate inter-service invo-
cations (e.g., Sitewhere). Therefore, it is inevitable to model
them to identify the corresponding invocations.

(4) The URL constructions do not involve complex string op-
erations. We extract the URL mainly to obtain the callee ser-
vice’s service name (hostname) and the path attribute. gRPC
requests’ paths are defined in the .proto file as part of the
API definition, so it will not be modified in the code. More-
over, the hostnames and ports of TCP requests are usually
defined in the deployment or configuration files. For an HTTP
request, unlike ordinary strings, the URL has special seman-
tics. Therefore, it usually does not involve complicated string
operations, especially in small programs such as microser-
vices. For example, although we considered the possibility
of complex string operations, we did not encounter intricate
URL processing in the evaluation, such as modifying in loops
or using aliasing. Nonetheless, if there are complex operations
on URLs in the target application, a series of work [45,47,56]
dedicated to string analysis can provide support. Exploring
too profoundly in this aspect is beyond the scope of this paper.

E2: Analysis Time. As shown in Table 7, AUTOARMOR
takes 57s to extract the requests from a microservice’s code
on average. This result varies according to the amount of
code and the requests initiated by each service. Since we only
focus on the key parameters when starting program slicing,
and the number of variables involved in constructing the use-
ful attributes (e.g., URL and Method) is usually limited, the
state space is significantly narrowed. Moreover, microservices
reduce a single service’s internal complexity, which further
facilitates the efficient execution of static analysis. Overall,
we consider the analysis time acceptable for an offline process
performed before service building.

6.3 Policy Management Evaluation

E3: Security Evaluation. This experiment is to verify the
security improvements AUTOARMOR brings to microservice
applications and the correctness of the generated policies.
To this end, according to the threat model defined §3.1, we
generate three different types of unauthorized requests as
simulated attacks (A1–A3) to challenge three of our evaluation
applications with and without AUTOARMOR installed.

A1: Accessing Unauthorized Microservices. This attack
refers that a microservice initiates a request to an endpoint
of a service that it has no dependencies on. We assume that
any service in the application can be compromised. Thus,
to generate such unauthorized requests, we start from each
service and build a request pointing to all endpoints of all
services that the current service should not access.

Application BookInfo O-Boutique Sock Shop

w/ AUTOARMOR Policies 7 3 7 3 7 3

A1 # of Requests 140 (78%) 316 (79%) 2,092 (85%)
Blocked Requests 0 140 0 316 0 2,092

A2 # of Requests 24 (13%) 42 (11%) 290 (12%)
Blocked Requests 0 24 0 42 0 290

A3 # of Requests 16 (9%) 40 (10%) 78 (3%)
Blocked Requests 0 16 0 40 0 78

Total: # of Requests 180 (100%) 398 (100%) 2460 (100%)
Blocked Requests 0 180 0 398 0 2,460

Table 8: Security evaluation of applications with and without
policies generated by AUTOARMOR. (E3)

(a) Bookinfo

(c) Sock Shop (d) Pitstop

(b) Online Boutique

Figure 9: The extracted system behavior of the evaluation
applications. (The TCP requests are marked in blue, and the
outside requests are marked with dashed orange lines; texts
and Sitewhere are not shown for space reasons.)(E3)

A2: Accessing Unauthorized Resources. This attack refers
that a microservice that can access an endpoint of another
service tries to access other endpoints or resources of the
target service. We generate such requests by changing the
request target to unauthorized endpoints or modifying the
legal requests’ paths or ports.

A3: Performing unauthorized operations. This attack refers
that a microservice uses the wrong methods to access REST-
ful resources. Such requests can be generated via modifying
the methods of legal HTTP requests.

After the generation, we login to each service’s container
and send the related requests on behalf of them. To record
the experiment result, we use Prometheus [43] to monitor
the processing of the requests. The HTTP status code 403
indicates that the request is blocked. As shown in Table 8, the
generated policies can successfully block all three types of
attacks. Besides, in E6, we use the load generators provided
by these applications to inject external requests to them and
find that none of the triggered internal requests were blocked
by the policies. This further indicates the correctness of the

Request
Type

Distribution of
Wildcards in URLs

Service-Level
Over-Authorization

Affected
Attributes

HTTP 30/96 (31%) 0 (0%) path (100%)
gRPC 0/290 (0%) N/A N/A
TCP 0/369 (0%) N/A N/A

Table 9: The distribution and impact of wildcards. (E3)

generated policies: no normal requests are blocked, while
unauthorized requests are all blocked.

Based on the extracted inter-service invocation logic, we
can also plot the actual system behavior models for microser-
vice applications (e.g., Figure 9). In this sense, AUTOARMOR
can also help administrators better understand the actual oper-
ation logic of microservice applications and timely identify
system behaviors that are not consistent with the design.

Wildcards in URLs. As mentioned in §4.2, some variables
from the input may introduce wildcards into extracted URLs,
leading to a certain degree of over-authorization. We also
assessed the distribution and impact of this phenomenon.

GRPC requests will not introduce wildcards due to their
fixed paths in the API definitions. TCP requests’ authoriza-
tion granularity is at the port level. Since port information
is stable and usually defined in the deployment file, undeter-
mined fields will also not be involved. As shown in Table 9,
all the introduced wildcards belong to the URLs of HTTP
requests, accounting for 31% of them. Nevertheless, we found
that these wildcards are all located in the path attribute and
are used to identify a specific object in a collection (e.g.,
session_id and product_id). None of them can cause service-
level over-authorization. That is, no microservice will be able
to access unauthorized targets due to wildcards.

Overapproximation of file system policies may cause se-
curity problems. However, it is practical to use wildcards for
inter-service access control, especially when configuring man-
ually. Otherwise, it may lead to too many policies. Therefore,
we believe that wildcards are acceptable here, and further re-
duction of the brought over-authorization will be future work.
Administrators can also supplement custom policies.

E4. Efficiency. To evaluate the efficiency of our graph-based
policy management mechanism, we employ a series of stan-
dard events in microservices’ lifecycle and measure the pro-
cessing time in dealing with policy generation, update, and
removal tasks. Specifically, with the evaluation applications,
we performed the following three steps:

(1) Deployment (DEP): Deploy the evaluation applications
as version 1 services into the infrastructure.
(2) Re-Deployment (Re-DEP): Deploy these applications
again and mark the newly deployed services as version 2.
Note that the requests that can be initiated by version 1
and version 2 services are identical.
(3) Removal (REM): Take offline the version 1 services
deployed in the first step.

Through the above three steps, we complete the standard pro-
cedure of microservice deployment and a version upgrade.

(a) Bookinfo (b) Online Boutique (c) Sock Shop (d) Pitstop (e) Sitewhere

Figure 10: AUTOARMOR’s policy management performance for the evaluation applications. (E4)

Figure 11: Distribution of processing time for generating
policies for Sitewhere services. (E4)

Meanwhile, the tasks of policy generation, update, and re-
moval are created accordingly.

To measure the permission graph’s effect in the policy gen-
eration phase, we implement “generating policies for all ser-
vice versions separately” as the baseline method and compare
its performance with AUTOARMOR under the same situa-
tion. Besides, as mentioned in §5.1, it takes a few seconds
for access control policies to propagate and install after being
issued, which implies potential overhead. Therefore, we also
mark the processes that will trigger policy installation. The
experiment result is shown in Figure 10.

As we can see, in the initial deployment, AUTOARMOR is
slightly slower than the baseline method due to the permission
graph’s construction. However, at Re-DEP and REM steps,
AUTOARMOR found that the newly deployed/removed ser-
vices have the same permissions and can be fully covered by
the corresponding service node. So it would not generate new
or modify existing policies. This brings a notable performance
improvement and eliminates subsequent policy installations.
Moreover, reducing redundant policies can also accelerate
runtime policy enforcement, which will be evaluated in E6.
In Figure 11, we recorded the time distribution of generating
policies for Sitewhere services at DEP step. The processing
time shows a strong positive correlation with the number of
invocations initiated by the service.

Compared to the average deployment time of microservices
(40s to 1min per service [26]), the overhead introduced by
AUTOARMOR is almost negligible. In this case, even consid-
ering the propagation and installation costs, the policies can

Figure 12: AUTOARMOR’s policy management performance
for large-scale applications. (E5)

be fully deployed before a service is ready so that all requests
related to this service will be protected.

E5: Scalability. To evaluate whether AUTOARMOR can be
applied to large-scale microservice applications, we employ
the Istio load tests mesh [21], a tool used by Istio for perfor-
mance and scalability testing. It can generate microservice
applications with a large number of services and inject heavy
load into them. Due to the limited capacity of the server, we
simulate AUTOARMOR’s processing for applications of dif-
ferent scales. The experimental method is consistent with
the experiments on the evaluation applications (E4). That
is, deploying the application, disposing a new version, and
removing the original one. The results are shown in Figure 12.

As shown, AUTOARMOR’s processing time increases lin-
early with the scale of microservice applications. Nonetheless,
it can complete all policy generation in 12s for an extensive
application with 1,000 unique services. This is acceptable in
practice considering the service deployment time and indi-
cates its potential for large-scale microservices.

E6: End-to-End Performance. To evaluate the permission
graph’s effect on runtime policy enforcement, we utilize the
end-to-end latency of the evaluation applications as the metric
to provide a clear view of the latency reduction for employing
AUTOARMOR optimized policies.

In the experiment setup stage, we selected some microser-
vices that have large workloads from the evaluation applica-

Application External Requests Average End-to-End Latency

URL Method Quantity w/o Policies w/ Baseline Policies w/ AutoArmor Policies
Bookinfo http://<bookinfo-url>/productpage GET 100000 319ms 323ms s 4ms(1.25%) 321ms t 2ms (0.62%)

Online Boutique

http://<boutique-url>/ GET 4,400 82ms 86ms s 4ms (4.88%) 84ms t 2ms (2.33%)
http://<boutique-url>/cart GET 13,000 80ms 91ms s 11ms (13.75%) 86ms t 5ms (5.81%)
http://<boutique-url>/cart POST 13,000 139ms 158ms s 19ms (13.67%) 144ms t 14ms (8.86%)
http://<boutique-url>/cart/checkout POST 4,400 112ms 129ms s 17ms (15.18%) 121ms t 8ms (6.20%)
http://<boutique-url>/product/* GET 56,000 76ms 85ms s 9ms (11.84%) 82ms t 3ms (3.53%)
http://<boutique-url>/setCurrency POST 9,000 91ms 93ms s 2ms (2.20%) 94ms s 1ms (1.08%)

Sock Shop

http://<sockshop-url>/ GET 11,000 95ms 104ms s 9ms (9.47%) 98ms t 6ms (5.77%)
http://<sockshop-url>/basket.html GET 11,000 101ms 111ms s 10ms (9.90%) 105ms t 6ms (5.41%)
http://<sockshop-url>/cart DELETE 11,000 190ms 204ms s 14ms (7.37%) 197ms t 7ms (3.43%)
http://<sockshop-url>/cart POST 10,000 364ms 436ms s 72ms (19.78%) 401ms t 35ms (8.03%)
http://<sockshop-url>/catalogue GET 11,000 168ms 177ms s 9ms (5.36%) 169ms t 8ms (4.52%)
http://<sockshop-url>/category.html GET 11,000 96ms 105ms s 9ms (9.38%) 98ms t 7ms (6.67%)
http://<sockshop-url>/detail.html?id=* GET 11,000 95ms 105ms s 10ms (10.53%) 98ms t 7ms (6.67%)
http://<sockshop-url>/login GET 11,000 350ms 373ms s 23ms (6.57%) 367ms t 6ms (1.61%)
http://<sockshop-url>/orders POST 9,500 392ms 476ms s 84ms (21.42%) 468ms t 8ms (1.68%)

Table 10: The end-to-end latency of the external requests generated by each evaluation application’s load generator. (E6)

Application Service with
Multi-Versions

of
Versions

of Generated Policies

Baseline AutoArmor
Bookinfo reviews 3 8 6 t 2 (25%)

Online Boutique
frontend
checkoutservice
cartservice

3
5
4

78 21 t 57 (73%)

Sock Shop
orders
carts
catalogue

5
2
3

57 34 t 23 (40%)

Table 11: The service deployed with multiple versions used
in E6 and the number of generated policies. (E6)

tions and deployed multiple versions3 for them to simulate the
real-world production environment. Subsequently, we gener-
ate access control policies for all services with the baseline
method and AUTOARMOR, respectively. Table 11 shows the
specific deployment configuration and the number of gener-
ated policies for each experiment.

After that, to generate external requests for end-to-end la-
tency measurement, we utilize the workload generation tools
provided by Online Boutique and Sock Shop, and develop
a similar load generator for Bookinfo using Locust [8]. We
recorded the end-to-end latency of the three applications with
policies generated by the baseline method and AUTOARMOR,
respectively. In addition, as a control group, we also measured
each application’s performance without any access control
policy installed. The final result is shown in Table 10, where
the red and green triangles represent the data changes in the
column relative to the previous column.

As we can see, the overall latency shows an increasing trend
after applying the baseline policies, and a decreasing trend
when the AUTOARMOR policies replace the baseline policies.
This result is consistent with the change of the policy quantity
in Table 11 and our observation in Figure 5. Nonetheless,
the table indicates one case against the general trend. This is
because despite the policy enforcement has some influence,
the dominating factors that affect the end-to-end performance

3The requests that different versions can initiate are identical.

are still the applications themselves. Besides, AUTOARMOR
did not eliminate all inter-service access control policies. To
sum up, this experiment shows that through a streamlined
policy set, AUTOARMOR can speed up the runtime policy
checking, thereby achieving a better end-to-end performance.

7 Discussion

AUTOARMOR has made the first step towards automatic pol-
icy generation for inter-service access control of microser-
vices. However, it is still preliminary and has several limita-
tions for future improvement, which we discuss below.

Source Access of the Microservice Code. In this paper, we
assume that administrators can get the source code of mi-
croservices. However, there may be situations where the
source code is not available, such as the microservices pur-
chased from third parties. These services are generally mid-
dlewares or databases, which usually do not initiate requests.
Nevertheless, if a service does need to invoke other microser-
vices, it’s necessary to configure the appropriate access con-
trol policies for it. To this end, there are several options:
(1) require the corresponding manifest file from the service
provider and review it; (2) manually configure the access
control policy for it; (3) employ reverse engineering or static
analysis for binary code. Our future work will seek methods to
develop binary analysis approaches to achieve more general
business logic extraction.

Trustworthiness of the Microservice Code. We also as-
sume that the code of microservices is benign. Although
the mature code review mechanisms guarantee this to some
extent, as artifacts, bugs in the code are inevitable. Multi-
company collaborations or third-party services can also lead
to untrusted code. In these cases, the administrators can be
involved in the review of manifest files. This is an offline pro-
cess and therefore does not increase the runtime overhead. In

addition, the administrators can periodically check the system
behavior model (e.g., Figure 9) to detect possible anomalies.

Incompleteness of Request Extraction. Although AU-
TOARMOR is committed to extracting the complete inter-
service invocation logic, as discussed in E1, it still has false
positives or false negatives. Since false negatives lead to false
denials, every effort must be made to reduce them. Therefore,
in practice, developers should try to program in a unified style
to facilitate static analysis, or even use annotations to ensure
the completeness. Combining it with dynamic methods can
also benefit the soundness. After deploying AUTOARMOR
for a new application, the administrator can first use dynamic
testing or manual inspection to evaluate its results, and make
corresponding adjustments (e.g., add missing usage models or
define supplementary policies). After that, as a member of the
CI/CD automation pipeline, it can truly realize its potential.

Granularity of Access Control. At present, AUTOARMOR is
dedicated to generating policies to indicate whether microser-
vice can access resources. It attempts to achieve fine-grained
authorization with detailed attributes. However, there are al-
ways ongoing efforts for finer granularity of access control.
To be integrated with existing infrastructures, AUTOARMOR
follows current policy-based mechanisms, but is also limited
by the expression ability of policies.

Attacks That May Still Occur. AUTOARMOR uses wild-
cards to represent undetermined fields in request paths, which
may cause over-authorization. Nevertheless, this kind of over-
authorization may be unavoidable, and it is also a common
practice in the real-world. Input validation and sanitization
may alleviate such problems. Besides, administrators can de-
ploy their own access control policies based on other insights,
which is also a powerful supplement to the AUTOARMOR
policy set. Moreover, the adversary can still launch mimicry
attacks [46], that is, imitating normal system behavior, and try-
ing to cause damages in the permission space and avoid being
blocked or detected. Access control is incompetent against
such attacks. They may require other security mechanisms,
such as Intrusion Detection Systems (IDS) and rate limiting.

8 Related Work

Service Dependency Extraction. To obtain the dependen-
cies among microservices at a fine-grained level, many dif-
ferent methods have been adopted in the present works. They
can be divided into two categories, namely intrusive work
and non-intrusive work. Manual annotation [57] and code
injection (e.g., [12, 15, 40]) are two common kinds of intru-
sive work. Although these methods can guarantee the full
coverage of service dependencies, the modification of the
source code of applications is required. On the contrary, non-
intrusive methods obtain the service dependencies through
network packet/flow inference (e.g., [2,4,5,52]) or log mining
(e.g., [1,28,50,54]), which do not intrude into source code but

cannot guarantee that all APIs will be covered. AUTOARMOR
can be classified as non-intrusive work, but it does not require
actual program execution due to static analysis.

Automatic Security Policy Generation for Distributed
Systems. Currently, these methods can be divided into three
categories. The document-based approaches (e.g., [3, 34, 51,
55]) usually generate security policies by applying NLP meth-
ods to analyze the security requirements and syntax descrip-
tion. Although the documents could better express the devel-
oper’s intentions, they are not always there. Meanwhile, these
approaches are usually coarse-grained and incomplete due
to the limitation of NLP [51]. The history-based approaches
(e.g., [23, 35, 50]) utilize the collected traces or historical
data to infer the rule criteria and policy structure from the
traffic. Thus, their effectiveness depends on the granularity
and completeness of the traces, which is hard to be guaran-
teed. Besides, they require applications to run in advance
to collect data, which may cause attack windows. The last
category is model-based approaches (e.g., [7,25]), which man-
ually build models to understand the security requirement of
the system, then generate security policies accordingly. How-
ever, the modeling process is time-consuming and error-prone,
making them not suitable for flexible microservice applica-
tions. Seamlessly integrated with the microservice lifecycle
and infrastructure, AUTOARMOR can build accurate real-time
system behavior models, thus conquering their weaknesses.

Methods Using Static Analysis to Generate Policies. Us-
ing static analysis for policy generation is not a recent innova-
tion. In the host security field, many studies [10, 24, 32] have
tried to obtain privileged behaviors required by programs,
such as file access or system calls, through static analysis.
They then generate different types of access control policies
accordingly to reduce security risks. A recent study [16] ap-
plied this idea to containers. It utilized code analysis to extract
the system calls required by containerized applications and
generated Seccomp policies to narrow the attack surface. Un-
like these efforts, AUTOARMOR is active at the application
layer of the modern cloud environment; it extracts the horizon-
tal invocations between services and infers the corresponding
permissions, thereby solving the policy generation gap for
inter-service access control of microservices.

Policy Dynamic Update. When the system status changes
(e.g., service deployment/removal or security demands are
modified), the security policies need to be updated to adapt to
the new status. The general procedure for updating policies
starts with analyzing and verifying changes from the intents,
and consequently constructing a reference model to obtain
the minimal update (e.g., [19, 44]). However, these works
can only handle high-level update requests from administra-
tors and cannot respond to the system changes. Besides, it
can be computationally expensive to obtain minimal updates
through formal methods. In contrast to them, AUTOARMOR

is committed to starting with the system changes and strives
to respond to them quickly and reasonably.

Graph-Based Policy Management. Abstracting policies to
graphs is the state-of-the-art of automatic policy management.
Various graph structures can be constructed based on different
intentions and policy definitions. Xu et al. [53] construct a
directed graph to model the information flows in the system
for integrity. Prakash et al. [33] leverage a network commu-
nication graph to detect and resolve network policy conflicts
as well as to model and compose service chaining policies.
Chen et al. [11] build a permission event graph that connects
permissions events and handlers to specify and enforce poli-
cies automatically. Different from the structures used in these
works, we design a novel permission graph that ingeniously
combines the characteristics of microservices. On this basis,
we reduce the redundant policies and realize the agile genera-
tion and update for inter-service access control policies.

9 Conclusion

We have presented AUTOARMOR, the first automatic
policy generation tool for inter-service access control of
microservices. It includes two fundamental techniques: (1) a
static analysis-based request extraction mechanism that can
extract the inter-service invocation logic of the application,
and (2) a graph-based policy management mechanism that
can swiftly generate fine-grained access control policies
and keep them up-to-date over time. We have implemented
a prototype for Kubernetes and Istio, and tested it with
five popular microservice applications. Our experimental
results show that AUTOARMOR can effectively bridge the
policy generation gap of the inter-service access control for
microservices with only a minor overhead.

Acknowledgments

We thank Xue Leng for the assistance and many constructive
discussions. We also thank the anonymous reviewers and our
shepherd, Trent Jaeger, for their insightful comments.

References
[1] Manoj K. Agarwal, Manish Gupta, Gautam Kar, Anindya Neogi, and

Anca Sailer. Mining activity data for dynamic dependency discovery
in e-business systems. IEEE Transactions on Network & Service
Management, 1(2):49–58, 2004.

[2] Marcos Kawazoe Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick
Reynolds, and Athicha Muthitacharoen. Performance debugging for
distributed systems of black boxes. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles 2003, SOSP, 2003.

[3] Manar Alohaly, Hassan Takabi, and Eduardo Blanco. A deep learning
approach for extracting attributes of abac policies. In Proceedings of the
23nd ACM on Symposium on Access Control Models and Technologies,
pages 137–148. ACM, 2018.

[4] Paramvir Bahl, Ranveer Chandra, Albert G. Greenberg, Srikanth Kan-
dula, David A. Maltz, and Ming Zhang. Towards highly reliable enter-
prise network services via inference of multi-level dependencies. In
Proceedings of the ACM SIGCOMM 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, pages 13–24, 2007.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
Using magpie for request extraction and workload modelling. In Con-
ference on Symposium on Opearting Systems Design & Implementation,
2004.

[6] Kaitlyn Barnard. Cncf survey: Use of cloud native technologies in
production has grown over 200%. http://bit.ly/cncf-survey, 2018. Ac-
cessed on 2020-01-20.

[7] Wu Bei, Xingyuan Chen, Yongliang Wang, Dai Xiangdong, and Peng
Jun. Network system model-based multi-level policy generation and
representation. In International Conference on Computer Science and
Software Engineering, CSSE, pages 283–287, 2008.

[8] Carl Byström, Jonatan Heyman, Joakim Hamrén, and Hugo Heyman.
Locust - a modern load testing framework. https://locust.io/, 2019.
Accessed on 2020-01-20.

[9] Brad Casemore and Mehra Rohit. Vendors stake out positions in emerg-
ing istio service mesh landscape. http://bit.ly/idc05, 2018. Accessed
on 2020-01-20.

[10] Paolina Centonze, Robert J Flynn, and Marco Pistoia. Combining static
and dynamic analysis for automatic identification of precise access-
control policies. In Twenty-Third Annual Computer Security Applica-
tions Conference (ACSAC 2007), pages 292–303. IEEE, 2007.

[11] Kevin Zhijie Chen, Noah M. Johnson, Vijay D’Silva, Shuaifu Dai, Kyle
MacNamara, Thomas R. Magrino, Edward XueJun Wu, Martin Rinard,
and Dawn Xiaodong Song. Contextual policy enforcement in android
applications with permission event graphs. In 20th Annual Network
and Distributed System Security Symposium, NDSS 2013, San Diego,
California, USA, February 24-27, 2013. The Internet Society, 2013.

[12] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and
Eric A. Brewer. Pinpoint: Problem determination in large, dynamic
internet services. In 2002 International Conference on Dependable
Systems and Networks (DSN), pages 595–604, 2002.

[13] Dimensional Research. Global microservices trends report.
http://bit.ly/lightstep, 2018. Accessed on 2020-01-20.

[14] EdwinVW. Pitstop: Garage management application.
https://github.com/EdwinVW/pitstop/, 2020. Accessed on 2020-01-20.

[15] Ulfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. Fay:
Extensible distributed tracing from kernels to clusters. Acm Transac-
tions on Computer Systems, 30(4):1–35, 2012.

[16] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis
Polychronakis. Confine: Automated system call policy generation for
container attack surface reduction. In Proceedings of the International
Conference on Research in Attacks, Intrusions, and Defenses (RAID),
2020.

[17] Google. Go tools: tools that support the go programming language.
https://github.com/golang/tools, 2019. Accessed on 2020-01-20.

[18] Google Cloud Platform. Online boutique: Cloud-native microservices
demo application. http://bit.ly/online-boutique, 2019. Accessed on
2020-01-20.

[19] Jinwei Hu, Yan Zhang, and Ruixuan Li. Towards automatic update of
access control policy. In Uncovering the Secrets of System Administra-
tion: Proceedings of the 24th Large Installation System Administration
Conference, LISA, 2010.

[20] Istio. Istio / bookinfo application. http://bit.ly/3dzSsBv, 2019. Ac-
cessed on 2020-01-20.

[21] Istio. Istio / Performance and Scalability. http://bit.ly/load657, 2019.
Accessed on 2020-01-20.

[22] Istio. Istio: Connect, secure, control, and observe services.
https://istio.io/, 2019. Accessed on 2020-01-20.

[23] Leila Karimi and James Joshi. An unsupervised learning based ap-
proach for mining attribute based access control policies. In 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 2018.

[24] Sven Lachmund. Auto-generating access control policies for applica-
tions by static analysis with user input recognition. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Secure Systems,
pages 8–14, 2010.

[25] Ulrich Lang. Openpmf scaas: Authorization as a service for cloud &
soa applications. In 2010 IEEE Second International Conference on
Cloud Computing Technology and Science. IEEE, 2010.

[26] Chan-Yi Lin, Ting-An Yeh, and Jerry Chou. DRAGON: A dynamic
scheduling and scaling controller for managing distributed deep learn-
ing jobs in kubernetes cluster. In Proceedings of the 9th International
Conference on Cloud Computing and Services Science, CLOSER, pages
569–577, 2019.

[27] David S Linthicum. Practical use of microservices in moving workloads
to the cloud. IEEE Cloud Computing, 3(5):6–9, 2016.

[28] Shang Pin Ma, Chen Yuan Fan, Yen Chuang, Wen Tin Lee, Shin Jie
Lee, and Nien Lin Hsueh. Using service dependency graph to analyze
and test microservices. In IEEE Computer Software & Applications
Conference, 2018.

[29] Abner Mendoza and Guofei Gu. Mobile application web api reconnais-
sance: Web-to-mobile inconsistencies & vulnerabilities. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 756–769. IEEE, 2018.

[30] Benedict Michael and Charanya Vinu. How we built a metering and
chargeback system to incentivize higher resource utilization of twitter
infrastructure. http://bit.ly/3aETlqs, 2017. Accessed on 2020-01-20.

[31] MicroSoft. The Roslyn .NET compiler. http://bit.ly/roslyn1, 2019.
Accessed on 2020-01-20.

[32] Shankara Pailoor, Xinyu Wang, Hovav Shacham, and Isil Dillig. Auto-
mated policy synthesis for system call sandboxing. Proceedings of the
ACM on Programming Languages, 4(OOPSLA):1–26, 2020.

[33] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang,
Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma,
and Ying Zhang. PGA: using graphs to express and automatically
reconcile network policies. In Steve Uhlig, Olaf Maennel, Brad Karp,
and Jitendra Padhye, editors, Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM 2015,
London, United Kingdom, August 17-21, 2015. ACM, 2015.

[34] Alaeddine Saadaoui and Stephen L. Scott. Web services policy genera-
tion based on SLA requirements. In 3rd IEEE International Conference
on Collaboration and Internet Computing, CIC, pages 146–154, 2017.

[35] Taghrid Samak and Ehab Al-Shaer. Synthetic security policy generation
via network traffic clustering. In Proceedings of the 3rd ACM Workshop
on Security and Artificial Intelligence, AISec 2010, Chicago, Illinois,
USA, October 8, 2010, pages 45–53, 2010.

[36] Sitewhere. Sitewhere: Open source internet of things platform.
https://sitewhere.io/, 2020. Accessed on 2020-01-20.

[37] SonarSource. Sonarjava | code quality and code security for java |
sonarsource. http://bit.ly/39yopVF, 2019. Accessed on 2020-01-20.

[38] SonarSource. Sonarjs | code quality and code security for javascript |
sonarsource. http://bit.ly/3dzQMYC, 2019. Accessed on 2020-01-20.

[39] SonarSource. Sonarpython | code quality and code security for python
| sonarsource. http://bit.ly/3dA563q, 2019. Accessed on 2020-01-20.

[40] Byung Chul Tak, Chunqiang Tang, Chun Zhang, Sriram Govindan,
and Rong N. Chang. vpath: Precise discovery of request processing
paths from blackbox observations of thread and network activities. In
Conference on Usenix Technical Conference, 2010.

[41] Byungchul Tak, Hyekyung Kim, Sahil Suneja, Canturk Isci, and Prab-
hakar Kudva. Security analysis of container images using cloud ana-
lytics framework. In International Conference on Web Services, pages
116–133. Springer, 2018.

[42] The Linux Foundation. Production-Grade Container Orchestration -
Kubernetes. https://kubernetes.io/, 2019. Accessed on 2020-01-20.

[43] The Linux Foundation. Prometheus - monitoring system & time series
database. https://prometheus.io/, 2019. Accessed on 2020-01-20.

[44] Bingchuan Tian, Xinyi Zhang, Ennan Zhai, Hongqiang Harry Liu,
Qiaobo Ye, Chunsheng Wang, Xin Wu, Zhiming Ji, Yihong Sang, Ming
Zhang, et al. Safely and automatically updating in-network acl con-
figurations with intent language. In Proceedings of the ACM Special
Interest Group on Data Communication, pages 214–226. 2019.

[45] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A symbolic
string solver for vulnerability detection in web applications. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1232–1243, 2014.

[46] David Wagner and R Dean. Intrusion detection via static analysis. In
Proceedings 2001 IEEE Symposium on Security and Privacy. S&P
2001, pages 156–168. IEEE, 2000.

[47] Qi Wang, Jingyu Zhou, Yuting Chen, Yizhou Zhang, and Jianjun Zhao.
Extracting urls from javascript via program analysis. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering,
pages 627–630, 2013.

[48] Weaveworks. Microservices demo: Sock shop. https://microservices-
demo.github.io/, 2017. Accessed on 2020-01-20.

[49] Whitequark. Parser - a production-ready ruby parser.
http://bit.ly/37yLOYf, 2019. Accessed on 2020-01-20.

[50] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen,
Haochen Huang, Tianyin Xu, Yuanyuan Zhou, Cindy Moore, Xinxin
Jin, and Tianwei Sheng. Towards continuous access control validation
and forensics. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 113–129, 2019.

[51] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie.
Automated extraction of security policies from natural-language soft-
ware documents. In Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, page 12.
ACM, 2012.

[52] Chen Xu, Zhang Ming, Zhuoqing Morley Mao, and Paramvir Bahl.
Automating network application dependency discovery: Experiences,
limitations, and new solutions. In Usenix Symposium on Operating
Systems Design & Implementation, 2008.

[53] Wenjuan Xu, Xinwen Zhang, and Gail-Joon Ahn. Towards system
integrity protection with graph-based policy analysis. In Ehud Gudes
and Jaideep Vaidya, editors, Data and Applications Security XXIII, 23rd
Annual IFIP WG 11.3 Working Conference, Montreal, Canada, July
12-15, 2009. Proceedings, volume 5645 of Lecture Notes in Computer
Science, pages 65–80. Springer, 2009.

[54] Jianwei Yin, Xinkui Zhao, Tang Yan, Zhi Chen, Zuoning Chen, and
Zhaohui Wu. Cloudscout: A non-intrusive approach to service depen-
dency discovery. IEEE Transactions on Parallel & Distributed Systems,
28(5):1271–1284, 2017.

[55] Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang. Toward
automatically generating privacy policy for android apps. IEEE Trans.
Information Forensics and Security, 12(4):865–880, 2017.

[56] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A z3-based
string solver for web application analysis. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, 2013.

[57] Guobing Zou, Yang Xiang, Pengwei Wang, Shengye Pang, Honghao
Gao, Sen Niu, and Yanglan Gan. Extracting business execution pro-
cesses of api services for mashup creation. In International Conference
on Collaborative Computing: Networking, Applications and Workshar-
ing, 2018.

	Introduction
	Background and Motivation
	Microservice Architecture
	Motivation

	Overview
	Threat Model, Scope, and Assumptions
	Challenges
	AutoArmor Overview

	Static Analysis-Based Request Extraction
	The Input of Static Analysis
	Request Extraction

	Graph-Based Policy Management
	Motivation
	Data Structure
	Policy Generation
	Policy Update

	Evaluation
	Evaluation Environment
	Request Extraction Evaluation
	Policy Management Evaluation

	Discussion
	Related Work
	Conclusion

