Automating Analysis of Large-Scale Botnet Probing Events

Zhichun Li, Anup Goyal and Yan Chen
Northwestern University
2145 Sheridan Road
Evanston, IL, USA
{lizc,ago210,ychen}@cs.northwestern.edu

ABSTRACT

Botnets dominate today’s attack landscape. In this worknves-
tigate ways to analyze collections of malicious probindfizan
order to understand the significance of large-scale “bgiraies”.
In such events, an entire collection of remote hosts toggttubes
the address space monitored by a sensor in some sort of €oordi
nated fashion. Our goal is to develop methodologies by wiies
receiving such probes can infer—using purklgal observation—
information about the probing activity: What scanning tgies
does the probing employ? Is this an attack that specificaflyets
the site, or is the site only incidentally probed as part chraér,
indiscriminant attack?

Our analysis draws upon extensive honeynet data to expiere t
prevalence of different types of scanning, including prtips such
as trend, uniformity, coordination, and darknet avoidanicead-
dition, we design schemes to extrapolate the global prigsedf
scanning events(g, total population and target scope) as inferred
from the limited local view of a honeynet. Cross-validatingh
data fromDShieldshows that our inferences exhibit promising ac-
curacy.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Oper-
ations—network monitoring C.2.0 [Computer-Communication
Networks]: General—Security and protection

General Terms
Algorithms, Measurement, Security

Keywords

Botnet, Global property extrapolation, Honeynet, Scaatsgy in-
ference, Situational awareness, Statistical inference

1. INTRODUCTION

Vern Paxson
UC Berkeley & ICSI
1947 Center St., Suite 600
Berkeley, CA, USA

vern@cs.berkeley.edu

not “are we being attacked?” (since the answer to that is simo
always “yes, all the time”) but rather “what is tlségnificanceof
this activity?” Is the site being deliberately targeted?igthe site
simply receiving one small part of much broader probing\aiyt?

For example, suppose a site with a /16 network receives mali-
cious probes from a botnet. If the site can determine thabtiieet
probed only their /16, then they can conclude that the attatiay
well have a special interest in their enterprise. On therotlaad,
if the botnet probed a much larger rangeg, a /8, then very likely
the attacker is not specifically targeting the enterprise.

The answers to these questions greatly influence the resourc
the site will choose to employ in responding to the actividpvi-
ously, the site will often care more about the probing if titaeker
has specifically targeted the site, since such interest midsct a
worrisome level of determination on the part of the attacKer
deed, such targeted attacks have recently grown in prorménen
Yet given the incessant level of probing all Internet adsessre-
ceive [21], how can a site assess the risk a given event rgflect

In this work we seek to contribute to the types of analysis tha
sites can apply to gauge such risks. We orient much of ourodeth
ology with an assumption that most probing events refledviact
from the coordinatedbotnetsthat dominate today’s Internet attack
landscape. Our approach is limited to analyzing fairly éasgale
activity that involves multiple local addresses. As sualm, tech-
niques are suitable for use by sites that deplayknets(unused
subnets)honeynetgsubnets for which some addresses are popu-
lated by some form of honeypot responder), or in general aoy-m
itored networks with unexpected access, for which we caaatet
botnet probing events. The main contribution of this papéné de-
velopment of a set of techniques for analyzing botnet eyentst
of which do not require the use of responders. For simplieity
will refer to the collection of sensors as the site’s Sensors

In contrast to previous work on botnets, which has focused on
either host-level observations of single instances of adiactiv-
ity, studies of particular captured botnet binaries [1X]network-
level analysis of command-and-control (C&C) activity [24jur
techniques aim to characterize facets of large-scale bptobing

When a site receives probes from the Internet—whether basic events regardless of the nature of the botnet. Our analysis dot

attempts to connect to its services, or apparent attaclksteul
at those services, or simply peculiar spikes in seeminghigre
activity—often what the site’s security staff most wantktmw is

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

ASIACCS’'0March 10-12, 2009, Sydney, NSW, Australia

Copyright 2009 ACM 978-1-60558-394-5/09/03 ...$5.00.

require assumptions about the internal organization anthuoeni-
cation mechanisms employed by the botnets. We focus onchara
terization of botnet properties based on inferences fragir ffrob-

ing behavior. In addition, our approach has the significamefit

of requiring onlylocal information, rather than global information
as required by collaborative efforts such as DShield [27§ gve
more detailed comparisons in Section 6.

We frame the contributions of our work as follows. First, we
develop a set of statistical approaches to assess theutdsibof
large-scale probing events seen in Sensors, including<oigefor
trends, uniformity, coordination, and one specific form bit-list”
(Section 3). The type of hit-list we focus onligeness-aware scan-

Model 35%
checkin :
Honeynets/ Misconfiguration 9 30%
Honeyfarms Monotonic
Traffic trend checking 25%
20%
Misconfiguration ° Hit list Eotet "
JU=ric) Separation t checking it Glile] 15%
Classification uniform Property
Event Wi n . . i 10%
Extraction orm e Uniformity scan Extrapolation
actio Separation ; checking model 5%
& 0%
T Independency
RN i RO S N CR R OO ORI
\ om) Q > & © O & &
. W A R S
s ¥ & & ©
2 2

Botnet Detection Botnet Inference

Figure 1: System architecture.

ning, in which the attackers try to avoid darknets. For trend amie u
formity checking, the statistical literature provides &pathniques,
but assessing coordination and use of hit-lists requiresldping
new techniques. We confirmed the consistency of the statisti
techniques for inferring event properties with manual écjon or
visualization.

Applying such statistical testing on massive honeynefitraé-
veals some interesting and sophisticated botnet scan ioebauch
as coordinated scans. We then used our suite of tests to freame
scanning strategies employed during different probe sydrm
which we can further extrapolate the global properties fatipu-
lar strategies.

Second, we devise two algorithms to extrapolate the glotogd-p
erties of a scanning event based on a sensor’s limited ldeal. v
These algorithms are based on different underlying assongpt
and exhibit differing accuracies, but both enable us toritifie
global scanning scope of a probing event, as well as theratat
ber of bots including those unseen by the Sensors, and thageve
scanning speed per bot (Section 4). The global scanningesaop
ables the site’'s operators to assess whether their netsalspe-
cific target of botnet activity, or if instead the botnet'sasoing
targets a large network scope that simply happens to indliuele
site. The estimated total botnet size can help us track sriemidow
botnets are used, with implications for their C&C capataitit

The algorithms are rooted in the observation (confirmed hy ou
checking of scanning properties) that the most frequentrsog
patterns reflect uniform random scanning or uniform hit-$isan-
ning. Indeed, nearly all of the probing events we observed fo
low one of these two scan patteﬁwd;m Section 5, we evaluate our
techniques using 24-month trace (293 GB total) of Honeynadfi¢
collected at a large research institution. Of the eventssdfi@d as
likely botnet activity (.e., not misconfigurations or worms), most
reflected either uniform-random or uniform-hitlist scamgi An-
alyzing the data, we find that 66.5% of botnet events exhifiit u
form random scanning and 16.3% of botnet events reflectgtit-I
scanning, 85% of which were also uniform.

Also, we find most of these probes include attacks. As shown in
Figure 2, our honeynet measurements find that about 84% of sca
events carry malicious payloads targeting vulnerabdité differ-
ent protocols, such as SMB/RPC, MSSQL, VN&¢? We note
that such botnet scans are one key technique employed foetbot
recruitment [24]. Through event correlation study, we disal
some interesting behaviors of how botmasters control thas.

1Of course there is the usual “arms race” here between atscke
and defenders. If our techniques become widely used, thaokat
ers may modify their probing traffic to skew the defenderslgn
sis. But until the botmasters take steps to do so, theseitp@Em
have value. We adopt the view common in network security re-
search that there is significant utility in “raising the béot attack-

ers even if a technique is ultimately evadable.

2Not Vul.” consists of instances where the honeynet reatlitde

or no payload, or purely service-testing probes.

Figure 2: The distribution of the malicious payload
discovered in the scan events.

Unig Source Counts
500 1000 1500 2000 2500 3000

L ‘ " L_AJLMJ

| | 1 1 I 0 | !

0 200 400 600 800 1000 1200 1400
Time (Six Hour Interval)

Year 2006
distribution of source count for

0

Figure 3:
VNC(5900).

Temporal

To validate our estimates of the global properties, we campa
our results with those from DShield [27], the Internet'sgiest
global alert repository. We find that in 75% of cases, ouragxtr
olated scope is within a factor of 1.35 of the scan scope gbden
DsShield data. In all the cases it is within a factor of 1.5. Tésults
indicate that our approaches hold promise for sufficientieszy
to enable sites to make reliable inferences, with the cameatwe
were unable to find any instances of events in our currentsdata
that reflected a global scope much different from /8.

2. SYSTEM FRAMEWORK

The architecture of our design is shown in Figure 1. The syste
has two subsystems: botnet detection and botnet inferéndbis
paper we focus on the latter (righthand half of Figure 1). &ll
the steps in our analysis system are automated, most of thigm f
so. We mainly use the Honeynet sensor to drive the rest ofithe d
cussion, although we can generally apply our analysis igaoks
(the botnet inference subsystem) to botnet probe evenesteet
by other types of sensors. The system classifies traffic se¢neo
sensors by different protocols or by session semantics. &fiael
a sessionas a set of connections between a pair of hosts with a
specific purpose, perhaps involving multiple applicatiootpcols.
The system extracts events based on the number of uniqueesour
arriving in a window of time ¢f. the spikes in Figure 3), classifying
the activity into misconfigurations, worms, and botnetlgtobing.

2.1 Honeynet and Data Collection

Our detection sensor consists of ten contiguous /24 subnets
within one of a large research institution’s /16 networkse @é-
ployed Honeyd responders [23] on five of the subnets and tgzkra
the other five completely “dark”. (We use this latter for hétt de-
tection.) The Honeyd configuration is similar to that usedPlayg
et alin [21]: we simulate the HTTP, NetBIOS, SMB, WINRPC,
MSSQL, MYSQL, SMTP, Telnet, DameWare protocols, with echo
servers for all other port numbers. We evaluate our anatgsis-
niques using 293 GB of trace data collected over two year8§20

and 2007).

2.2 Botnet Detection Subsystem

In this paper we mainly focus on botnet inference. For the-com
pleteness we briefly introduce how to detect botnet events fide
details is available in our technique report [18].

Traffic Classification: Attack traffic can have complex session
structure involving multiple application protocols. Foraenple,
an attacker can send an exploit to TCP port 139 which, if ssce
ful, results in opening a shell and issuing an HTTP downlaad-c
mand. Often the application protocol contacted first is tfeéqeol
being exploited (an exception is an initial connection tmemap-
per service), so we label sessions with the service assdcigith
the first destination port appearing in them. Doing so alsw pr
vides consistent labeling for connection attempts seeraiknts
or other types of sensors. We aggregate connections insiosss
using an approach similar to the first step algorithm by Kaneia
al [14].

For application protocols not commonly used, the backgdoun
radiation noise (including individual port scans) is tyglg low,
and thus we use port numbers to separate event traffic. Howeve
noise is usually strong for popular protocols, requiringtier dif-
ferentiation based on payload (when available). To do sompée-
mented payload summary scripts for 20 commonly seen prttpco
based on the Bro system’s network analysis capabilitief [22
Event Extraction: Figure 3 shows source arrival counts for VNC
(TCP port 5900) for the year 2006 on our sensor, where eagtt poi
represents the number of sources within a six-hour intehalge
spikes in such plots generally correspond to scanning framms
or apparent botnets, or misconfigurations. We classify syikes
asevents as follows. We define the noise strengthas the per-
interval count of unique sources seen in the absence ofevénp-
pose the time interval length iI& We calculateN as the median
of unique source counts df continuous time intervalbeforethe
event. We define signal strength= X — N as the peak unique
source count arrivak’ minus the noise strengtzN and define the
signal-to-noise ratio aSNR= & = X8 = X,

In our evaluation we usé = 6 hours andK = 120. The ag-
gregated time window x K is about 30 days. We only examine
events withSNR> 50. We automatically extract potential events as
follows: for any given time interval, we calculate the medd the
previous normak intervals and th&NR For those spikes exceed-

ing our SNRthreshold, we extend the time range to both sides until '

S < wN wherew is a tunable parameter controlling the amount of
the signal tail to include in the event. (We use= 5, though we
find ranging it over3. . .8 does not significantly alter the results.)
For multiple events within one time series, we extract thenev
iteratively, starting with the event with largeSNR

Hit List Not Hit List
Monotonic Trend Monotonic Trend
W/ mono
Partial Monotonic Trend Partial Monotonic Trend trend
Uniform & Uniform &
Independent Non- Independent Non- No mono
Uniform & Uniform Uniform & Uniform trend
Non-indepedent Non-indepedent

Figure 4: Model Checking Design Space.

fic. The detailed analysis of these misconfiguration is ochnéal
report [17,18].

In general, probing from worms (self-propagating procepsan
look very similar to that from botnets (processes under arnom
C&C), and indeed the line between the two can blur depending o
the nature of the commands that botmasters issue to thair Bot
our purposes, we identify and remove as worms those eveats th
exhibit an exponential growing trend (per the techniquestiged
in [31]) and deem the remainder as botnet probing events.

2.3 Botnet Inference Subsystem

Scan Pattern Checking: For botnet probing events, there are nu-
merous scanning strategies that attackers can potentisglylden-
tifying the particular approach can provide a basis to irfifiether
properties of the events and perhaps of the botnets theessalve
refer to these strategies asan patternsand undertake to develop
a set of scan-pattern checking techniques to understafetatit
dimensions of such strategies:

Monotonic trend checking
Hit list checking
Uniformity checking
Dependency checking

For details, see Section 3.

Global Property Extrapolation: Once we identify a probing
event's scan pattern, we then use the scan pattern to ekttapo
a global view of the event. We focus on two of the most common
scan patterns: uniform random scanning, and uniform itsitan-
ning. We confirm their common use both from botnet source code
analysis (Section A) and experimental observations (8e&). We
then extrapolate the global scan scope and the global nuafber
bots based on these two scan patterns, using techniquesmye

in Section 4.

3. PROPERTY CHECKING OF BOTNET
SCAN PATTERNS

One problem we have to consider is that some events have com- The whole design space of the botnet probing strategiesrys ve

plex session structures involving multiple protocols. ekftraffic
classification by protocol information, a single event canskpa-
rated to multiple events. Therefore, after event clasdifina we

large. It is hard to consider all of them in our botnet infaren
framework. Through botnet source code analysis and reason-
ing what a rationale botnet master will do (the details is ip- A

need to merge them. We detect such cases by checking the conpendix A), We find the uniform random scanning, hit-list stiaug,

nection correlation. If two connections are in one sesdtoey will
be both from host4 to hostB and the protocols of the two con-
nections are fixed. For example, suppose the first connetion

HTTP and the second one is WINRPC. If we find such events to

be highly correlatedi,e., for most connections in the HTTP event,
each HTTP connection is followed by a WINRPC connection from

monotonic scanning and coordinated permutation scanmatha
strategies more likely used by the botmasters, given thegiarple
and effective.

In this section we develop a set of analysis algorithms for de
tecting these scan strategies. Each is designed to checigle si
dimension of characteristics in the scan pattern. Then webae

the WINRPC event for the same source and destination pair, we the characteristics of an event to construct the scan patterse.

merge them as one event.
Event Classification and Separation:We separate misconfigura-
tions from worms or botnets based on the observation thatebot

We first classify the scan traffic pattern into monotonic tipdy
monotonic and non-monotonic trends. For non-monotonicdye
we assess the possible use of a hit-list or random-unifoemrsog

scans and worms should contact a significant range of the-IP ad (even distribution of scans across the portion of the sesgace).

dresses, whereas misconfigurations exhibit a few hot-spgéts.
We found that most misconfiguration events are due to P2P traf

Finally, for random-uniform pattern we test whether thedss
can be modeled as independent.

Hit-list Uniform random

20
1

10 15
68

#scan per IP
4

#scan per IP

$
2

500 1000 1500 2000 2500

Destination IPs in the sensor

0 500 1000 1500 2000 2500 O
Destination IPs in the sensor

Figure 5: Hit-list and uniform scanning distribution on the sen-
Sor.

3.1 Monotonic Trend Checking

Question: Do senders follow a monotonic trend in their scan-
ning?

Monotonically scanning the destination IP addresseg, (se-
quentially one after another) is a common scan strategy Iywide
used by network scanning tools. In our evaluation, we did &nd
few events which use the monotonic trend scanning. Furtberm
for random events, the monotonic trend checking can helgdtas fi
out the noises caused by the non-bot scanners.

For each sender, we test for monotonicity in targeting bylyapp
ing the Mann-Kendall trend test [15], a non-parametric lkipsis
testing approach. In our study, we set the significance tev@5%,
since a higher significance level will introduce more falssifives
and we need to check thousands of sources. In our evaluate®n,
manually check the statistical power and find it high enougte-
tect weak trends. The intuition behind this test is that & tata
have a monotonic trend, the aggregated sign value(1l; =— 0;
<— —1.) of all the consecutive value pairs would be out of the
range the randomness can achieve. In our technical re@jrtvie
describe the detailed approach and our enhancement toigfireadr
Mann-Kendall trend test.

We label an entire event as havingr@notonic trendf more
than 80% of senders exhibit a trend, and for further analgesis
move those that do not reflect a trend as likely representpg-s
rate activity (and thus likely removing a source of potdmigise).
We instead label the event aen-monotonidf more than 80% of
senders do not exhibit a trend. We label the remaindgraasal
monotonic

3.2 Hit-List Checking

Question: Do the bots use a target hit-list for scanning?

By hit-list scanning, we refer to an event for which the at&c
appears to have previously acquired a specific list of targelit-
list is often employed by sophisticated botmasters to aehiiegh
scan efficiency. It is important for the network adminisbratto
know whether they are in the hit-list. When that is the casestm
likely they will be re-scanned by the attacker again andragéie
detect the use of a hit-list based on the observation thét stens
should heavily favor the use of “live” addresses (thosertdsppond)
to “dark” (non-responsive) addresses.

To this end, we operate half of our sensor region in a liveitash
and half dark. If we observe an event in the Honeynet portion,
not in the darknet portion, this provides strong evidencd the
scan used a hit list. However, one consideration is everlufpan”
(sources that actually are background noise rather tharopéne
botnet). We do not require@mpleteabsence of darknet scanning,
instead test for the prevalence of honeynet scans over elaskans
significantly exceeding what we would expect.

Figure 5 compares an example hit-list event (WINRPC-07D625
versus a random-uniform event (VNC-060729). To distingulis-
tween two such cases, we define the ratio of the number of sende
which target the darknet{,) over those of the honeynein(,) as
0= %’ﬂ Then we test whethe crosses a given threshold. In our

evaluation, we find the results are not sensitive to the kuielswe

choose.

Note that for the events that require application-levellysia
to separate the activity from the background traffic (e.dfexent
types of HTTP probing), sources in the event will necespdrd
restricted to the honeynet because application-levebdisgquires
responses that the darknet cannot provide. In this case nvstitla
perform an approximate test, by testing the volume of traffien
concurrently in the darknet using the same port number. Psm
may miss some hit-list events, however, because we tenceresv
timate the amount of activity the botnet exhibits in the datk

Even other factors could potentially cause an imbalanosdsst
the darknet and the Honeynet. However, most of these do not re
sult in a significantly smalf, except the one in which an attacker
chooses a small scan range that happens to include only the Ho
eynet addresses. However, even if this occurs we would &lso (
it does not reflect previous scannirige., is not a hit-list) expect
it to occur equally often the other way aroung., including only
darknet addresses but not Honeynet addresses, which hitvear
observed over two years.

In the 203 events we analyzed, we find 33 (16.3%) hit-list &szen

3.3 Uniformity Checking

Question: Does an event uniformly scan the target range?

A natural technical for bots is to employ uniform random scan
ning across the target range. Testing whether the scanyamnéy/e
distributed in the honeynet sensor can be described asribdist
tion checking problem. We employ a simp{é test, which is well-
suited for the discrete nature of address blocks. yFotest, when
choosing the number of bins for the test, a key requiremett is
ensure that the expected vallgfor any bin should exceed 5 [26].
Accordingly, given that our events have at least severadred
scans in them, we divide the 2,560 addresses in our Honeytoet i
40 bins with 64 addresses per bin. We then usexthéest with
a significance level of 0.5%, which is found to work well in our
subsequent evaluation in Section 5.3.

3.4 Dependency Checking

Question: Do the sources scan independently or are they-coor
dinated?

Sophisticated scanning strategies can introduce caoefabe-
tween the sources in order to control the work that each irigs
more efficiently. For example, In Appendix A.2, we describe a
more efficient coordinated scheme ABPS (Advanced Botnet Per
mutation Scanning) based on permutation scanning will dadu
negative correlations in the targeting among the sourdesy (try
to “get out of each other’s way”).

Since traditional approach only an work in linear dependeurc
two-variable cases, we develop a new hypothesis testingagip.

To test for such coordination, we use the following hypoitésst.
The null hypothesis is that the senders act in a uniform,pede
dent fashion (where we first test for uniformity as discusseave);
while the alternative hypothesis is that the senders doctahan
independent fashion. If an event comprisescans targeting des-
tinations in a uniform random manner, we can in principleakite
the distribution of the number of destinations that receixactly

k scans,Z,. We then reject the null hypothesis if the observed
value is too unlikely given this distribution (we again us8.8%
significance level).

THEOREM 1. If n scans targetl addresses in a uniform inde-
pendent manner, the number of addresgegk = 0) which do not
receive any scan follows the probability distribution ftion:

P(z) = <i> x Stirling2(n, d — z0) x (d — 20)!/d"

Table 1: Global properties estimated from local observatios.

The Stirling2(n,y) denotes the Stirling number of the second
kind [29], which is the number of ways to partition elements
to y non-empty sets. The proof is in Appendix B.

However, ifn. > d, then the sensor range will be sparsely popu-
lated, and this distribution does not give us much statispower.
Instead, we need to use a larger valué oT he more detailed anal-
ysis is in our technique report version [18].

We validate our tests using Monte Carlo simulations with and
without introduced correlations. We also confirm that thet ter-
rectly detects the correlations introduced by our ABPS sehe-i-
nally, when applying our test to our two years’ worth of date,do
not in fact find any cases exhibiting likely coordinated sgag.

4. EXTRAPOLATING GLOBAL PROPER-
TIES

We now turn to the problem of estimating a probing event's
global scope (target size, participating scanners) basidon lo-
cal information. This task is challenging because the sizheolo-
cal sensor may be very small compared to the whole range sdann
by a botnet, giving only a very limited view of the scanningei/
For our estimation, we considered eight global properasshown
in Table 1.

For both uniform-random and uniform-hit-list scanningg tmi-
formity property enables us to consider the local view asnaoan
sample of the global view. Thus, the operating system (O%), a
tonomous system (AS), and IP prefix distributions obserméddal
measurements provide an estimate of the correspondinglgia
tributions (bottom three rows). However, we need to considat
if bots exhibit heterogeneity in their scanning rates, ttienprob-
ability of observing a bot decreases for slower-scannirgsoif he
scanning rate heterogeneity mentioned above introducéssad
wards the faster bots in the population for these distrimali prop-
erties. By extrapolating the total number of bots, howewer,can
roughly estimate the prevalence of this effect. It turnstbat in
all of our analyzed events, we find that more than 70% of the bot
appear at the local senddsy comparing the number of bots seen
at the local sensors with the extrapolated global bot pdjonaas
shown in Table 6. Thus, the bias is relatively small.

The “coverage hit ratio” gives the percentage of target IP ad
dresses scanned by the botnet. As this metric is difficultste e
mate for hit-list probing, we mainly consider uniform scarg for
which certain destinations are not reached due to statistaria-
tions. For uniform scanning, we can directly estimate thetrin
based on the coverage seen in our local sensor.

In the remainder of this section we focus on how to estimage th
four remaining properties, each of which requires indiedtapo-
lation.

4.1 Assumptions and Requirements
To proceed with indirect extrapolation, we must make two key

3The high percentage of bots appearing at the local sensesari
due to the fact that probing events continue long enough osx
majority of the bots.

Property name uniform | uniform | estimation Approach [Properfy name Affected | Require TPID
scanning| hit list method by botnet | or port #

Global target scope Yes Yes indirect dynamics| continuity
Total # of bots Yes Yes indirect Both # of bots No No

Total # of scans Yes Yes indirect Global target scope No Yes

Average scan speed per baft Yes Yes indirect Approach | | Total# of scans NoO Yes
Coverage hit ratio Yes No direct Average scan speed per bptyes Yes

Sender OS distribution Yes Yes direct Global target scope Yes No

Sender AS distribution Yes Yes direct Approach Il [Total # of scans Yes NO

Sender IP prefix disiribution Yes Yes direct Average scan speed per bptyes No

Table 2: Additional assumptions and requirements.

assumptions:

1 The attacker is oblivious to our sensors and thus sends
probes to them without discriminatiofthis assumption is
fundamental to general honeynet-based traffic study,Kef. t
probe-response attack developed in [9] and
counter-defenses [10]). A general discussion of the proble
is beyond the scope of this paper. However, since we assume
our technique is mainly used by a single enterprise or a set
of collaborating enterprises, we need not release sensing
information to the public, which counters the basic attack
in [9]. With this assumption, we can treat the local view as
providing unbiased samples of the global view.

2 Each sender has the same global scan sc@pé should be
true if all the senders are controlled by the same botmaster
and each sender scans uniformly using the same set of
instructions.

We argue that these two fundamental assumption likely atoply
any local-to-global extrapolation scheme. In addition, eheck
for one general requirement before applying extrapolatiamely
consistency with the presumption thaach sender evenly dis-
tributes its scans across the global scan scophis requirement
is valid for the dark regions shown in Figure 4 (Section 3 &)pv
i.e., both uniform random scanning and random permutation scan-
ning, regardless of whether employing a hit-list. Therefqrior to
applying the extrapolation approaches, we test for cogrsist with
uniformity (via methodology discussed in Section 3), whigany
of the botnet scan events pass (80.3%).

There are some additional requirements specific to certain e
trapolation approaches, as listed in Table 2. Botnet dyosmi
such as churn or growth, can influence certain extrapolation
proaches. Accordingly these approaches work better fat-dived
events. Approach I, as discussed in section 4.3, requinesnce
ity of the IP fragment identifier (IPID) or ephemeral port, iatn
holds for botnets dominated by Windows or MacOS machines (in
our datasets we found all the events are dominated by Windows
machines). We use passive OS fingerprinting to check whetaer
can assume that this property holds.

4.2 Estimating Global Population

Table 3 shows the notation we use in our problem formulation
and analysis, marking estimates with “hat’s. For examplepre-
sents the estimated local over global ratie,, ratio of local sensor
size comparing to the global target scope of the botnet eaent
G represents the estimated global target scope.

If pis small, many senders may not arrive at the sensor at all.
In this case, we cannot measure the total bot populatiorcttire
Instead, we extrapolate the total number of bots as folldwih
the uniform scan assump%ilon discussed above, we have:

1

=22 €
ma

M

based on the following reasoning. We can split the addreggeraf
the sensor into two parts. Since the senders observed inpeaich
are independent samples from the total populafiéonEquation 1
follows from independence. For example, suppose thereotaé t

T Event duration observed in the Tocal sensor

d Size of the local sensor

G Size of global target scope

p Local over global ratial/G

M Total # of senders in the global view

m Total # of senders in the local view ih

my | # of senders in the first half of the local viewin

ms | # of senders in the second half of the local vievin
mi2 | # of overlapped senders of; andmgy in T

R Average scanning speed per bot

Rei | Global scanning speed of bbt

T; Time between first and last scan arrival time from bgt
n; Number of local scans observed from bat 7°

At; | Inter-arrival time between thgandj + 1 scans

Q Local total # of scans ifi"

Table 3: Table of notations.

M = 400 bots. In the first half sensor, we see, = 100 bots,
which is1/4 of the total bot population. Consider the second half
as another independent sensor, so the bots it observes fhatimea
random sample from the total population. Then we havi/4
chance to see if there is a bot already seen in the first hathelf
second half observes, = 100 bots too, the shared bots will be
close tomi2 = 100/4 = 25. Since in Equation 1 we can directly
measureni, ms, andmi2, we can therefore solve fav/, the total
number of bots in the population. This is a simple variatidn o
a general approach used to estimate animal populationsrkasw
Mark and RecaptureSince themi,m2> andmi2 are measured at
exactly the same time winddwthe estimated total populatia’

is the number of bots of the botnet in the time window.

4.3 Exploiting IPID/Port Continuity

We now turn to estimating the global scan scope. We investi-
gated two basic strategies: first, inferring the number ahscsent
by sources in between observations of their probes at theyie
(Approach 1); second, estimating the average bot global scanning
speed using the minimal inter-arrival time we observe fochea
source Approach II, covered in the next section).

Approach | is based on measuring changes between a source’s

probes in the IPID or ephemeral port number. We predicate use
of this test on first applying passive OS fingerprinting tonitilly
whether the sender exhibits continuous IPID and/or ephaimert
selection. This property turns out (see below) to hold fodera
Windows and Mac systems, as well as Linux systems for epte@mer
ports.

IPID continuity. Windows and MacOS systems set the 16-bit
IPID field in the IP header from a single, global packet coynte
which is incremented by 1 per packet. During scanning, ifrttae
chine is mainly idle, and if the 16-bit counter does not owevfl
we can use the difference in IPID between two observed probes

to measure how many additional (unseen by us) scans thersende

sent in an interval. (The algorithm becomes a bit more corple
because of the need to identify and correct IPID overflowpyes
discussed below. We also need to take into account the eretian
of the counter as present in the IP header.)

A potential problem that arises with this approach is retrais-
sion of TCP SYN's, which may increment the IPID counter even
though they do not reflect new scans. Thus, when estimatotzag|
scan speed we divide by the average TCP SYN retransmisgi®n ra
we observe for the sender.

Ephemeral port number continuity. All of the botnets for
which we could inspect source code let the operating system a
locate the ephemeral source port associated with scannifgy.
Again, these are usually allocated by sequentially increging a
single, global counter. As with IPID, we then use observgasga

“Mark and Recapture requires the “close” system assumpitioe s
the two visits do not happen in the same time, which is differe
here.

Operating System Clients
Windows 159,152 (85.2%)
Windows 2000/XP | 155,869 (97.9%)
Windows 2003/ Vista 231 (<.1%)
Windows NT4 1708 (1.07%)
Windows 98 1237 (0.7%)
Windows 95 68 (<.01%)
Windows other 39 (<.01%)
BSD 258 (0.2%)
Linux 126 (<.1%)
Novell 20 (<.01%)
[Unidentified [27,047 (14.4%)]
[Total [186,725 |

Table 4: Aggregate operating system distribution, from pasive
OS fingerprinting of probing events.

this header field to estimate the number of additional scandid/
not see. (In this case, the logic for dealing with overflovdpging
is slightly more complex, since different operating sysseraonfine
the range used for ephemeral ports to different ranges. Krwosv
the range from the fingerprinted OS, we use it directly; othee,
we estimate it using the range observed localgy, the maximum
port number observed minus the minimum port number obseyved

IPID and ephemeral port number continuity validation. In
a controlled experimental environment, we installed fivesions
of Windows, one of MacOS X, and two versions of Linux, each in
a different virtual machine. We then ran Nmap on each to gener
ate scans, confirming that all but Linux (2.4/2.6) exhibihtiou-
ity of IPID (with Win98 and NT4 incrementing it little-endia but
Win2000, WinXP, Win2003, and MacOS X using network order)
and that all 8 systems allocated the ephemeral ports segllent

As shown in Table 4, for all the probing events in the two-year
Honeynet dataset, OS fingerprinting (via thef tool) indicates
that the large majority of bots run Windows 2000/XP/20031¥li
(85%), enabling us to apply both IPID and ephemeral port rermb
based estimation. From this analysis, we also know thatriy@op-
tion of Windows 95/98/NT4 is very low (0.8%), and only for #®
cases do we need switch the byte order. (These percentagels ma
install-based statistics [5] indicating that Win98 and Nebinprise
less than 1.5% of systems overall.)

NAT effects on IPID and ephemeral port continuity. Since
NATs can potentially alter IPID and ephemeral ports, we tieste
popular home routers in this regard—Linksys, Netgear andrik;
which comprise more than 70% of the home router market [1]. We
use Nmap to send the scans from hosts behind these NATs and
examine whether their IPID or ephemeral ports changed. For a
three, IPID remains unchanged, and for a single scannendehi
the NAT, the ephemeral port also remains unchanged. Foiptault
scanners behind the NAT, the ephemeral port numbers of tte fir
sender remain unchanged, though for the D-Link router théspo
of additional scanners become arbitrary.

Even though IPID remains unchanged, the intermingling df mu
tiple IPID sequences for a single apparent source addresens
simple extrapolation of scanning speed impractical. Tephes ex-
ist for detecting the presence of multiple sources behindA& N
(also based on IPID), but these require observing a largéopasf
the traffic coming out of the NAT [8], which is impractical irup
case. However, given that we usually have a large numbersef di
tinct sources, we can restrict our analysis to those caseégxhibit
strong linearity for either IPID or ephemeral port numberkjch
avoids conflating patterns in these arising from multiplerses
aliased to the same public IP address. In our evaluation, nae fi
that on an average 463 senders maintain linearity in IPIDaand
ephemeral port numbers for an event; thus, they can be used fo
extrapolation purpose.

Global scan speed estimationAs the IPID and ephemeral port
number approaches work similarly, here we discuss only tine f

mer. We proceed by identifying the top sources originatimgi
least four sets of scanning. We test whether (after overfexov-
ery) the IPIDs increases linearly with respect to time, dovs.
First, for two consecutive scans, if the IPID of the secorshigller
than the first, we adjust it by 64K. We then try to fit the coreelct
IPID; and its corresponding arrival timg, along with previous
points, to a line. If they fit with correlation coefficient> 0.99, it
reflects consistency with a near-constant scan speed, eiséider
is a single host rather than multiple hosts behind a NAT. Wthen
happens, we estimate the global speed from the slope.

It is possible that multiple overflows might occur, in whickse
the simple overflow recovery approach will fail. However,tims
case the chance that we can still fit the IPIDs to a line is verglls
so in general we will discard such cases. This will createas bi
when estimating very large global scopes, because theymnwile
often exhibit multiple overflows.

20 30 40
T T

Estimate Global Speed (probes/sec)
10
T

0
i

I 1 T T
5 10 15 20 25 30
Rank

o

Figure 6: Top 30 estimate speeds of Event VNC-060729.

port used for TCP probes. Thus, the schemes may lose power in
the future. However, crafting raw IP packets and simulaérigCP
stack is a somewhat time consuming process, especiallyg giest

bots (85+%) we observed run Windows, and in modern Windows

Sources that happen to engage in activity in addition to-scan Systems the raw socket interface has been disabled. Eaifyjirio

ning can lead to overestimation of their global scan speedes
they will consume IPID or possibly ephemeral port numbersemo
quickly than those that might be simply due to the scanning. T
offset this bias, when we have both IPID and ephemeral ptrt es
mates, we use the lesser of the two. Furthermore, in our atiaty

for the cases where we can get both estimates, we check teis€on
tency between them, and found that IPID estimates usuallyuyme
larger results, but more than 95% of the time within a factano

of the ephemeral port estimate. (Clearly, IPID can sometiat:
vance more quickly if the scanner receives a SYN-ACK in resgo

our datasets we did not find any case for which the techniqiges d
not appear to apply.

4.4 Extrapolating from Interarrival Times

For Approach Il , we estimate global scanning speed (and hence
global scope, via estimatingfrom an estimate oRz using Equa-
tion 3) in a quite different fashion, as follows. Clearly, ender’s
global scan speeglprovides an upper bound on the local speed we
might observe for the sender. Furthermore, if we happen seve
two consecutive scans from that sender, then they shouikarr

to a probe, and thus returns an ACK to complete the 3-way hand- aboutAt = 1/s apart. Accordingly, the minimum observesi

shake.)
Global scan scope extrapolation.With the ability to estimate
the global scan speed, we finally estimate the global scamesco

gives us alower bound an but with two important considerations:
(i) the lower bound might be too conservative, if the global scop
is large, and we never observe two consecutive scangjiamdise

Since we know the local scope, the problem is equivalent to es perturbing network timing will introduce potentially cddsrable

timate the local over global ratip. Suppose in a probing event

inaccuracies in the assumption that the obser¥dd matches the

there aren senders seen by the sensor, for which we can estimate interarrival spacing present at the source.

the global scan speedsg; of a subset of sizen’. For senden

(z € [m']), we knowT; (duration during which we observe the
sender in the Honeynet) and (number of observed scans). We
use the linear regression with correlation coefficient 0.99 (as
we discussed before) to estimate tRe; which is also quite ac-
curate. The main estimation error comes from variation @ th
observedn; from its expectation. Defing; = RcZin for each
sender. Sendefs global scan speed B¢;. Globally duringT}, it
sends outR¢g; - T; scans.n; is the number of scans we see if we
sample fromR¢; - T; total scans with probability. Therefore p;

is an estimator op. If we aggregate over all the’ senders, we get

’
> n,
S Rai - T

As show in Appendix C, we formally prove thatis an unbiased
estimator ofp, and it is more accurate thah, which only reflects
a single sender. We then can ysé estimate the global scope a
probe targeted.

Average Scan Speed Per Bo#fter extrapolatingo and M, we
estimate the average scan speed per bot using:

R BTt ®)

Here @ is the number of scans received by the sensor in fime
which should reflect a portiop of the total scans. We estimate the

p= @)

total scans byR- T - M, whereR is the average scan speed per bot.

This formulation assumes that each bot participates in tiieee
duration of the event, which is more likely to hold for shéivied
events.

Limitations. Note that both of the above techniques can fail if
attackers either craft raw IP packets or explicitly bind gueirce

We proceed by considering alt senders we observe, other than
those that sent only a single scan. We rank these by the ¢stima
global scan rate they imply via = 1/At, where At is the min-
imum observed interarrival time for the sender. Naturafhst
senders should tend to reflect larger estimated speedshwiec
verified by comparing\¢ of each sender with how many scans we
observed from it. We find that generally the correlation isacl
though with considerable deviations.

Using the fast senders’ speeds to form an estimate ohvke-
agescanning speed may of course overestimate the average speed
On the other hand, our technique aims at estimating a lowando
Thus, it is crucial to find a balanced point among the possibte
mates. We do so by presenting the different sorted estinfiates
which the analyst chooses the “knee” of the resulting curee the
point with smallest rank: for which an increase i yields little
change ins. Figure 6 shows an example, plotting the top 30 maxi-
mum estimated speeds of Event VNC-060729. From the figure we
would likely selectk = 6 as the knee, giving an estimated speed
8.26.

5. EVALUATION

We evaluate our techniques using the honeynet traffic deestri

in Section 2.1. The total data spans 24 months and 293 GB of
packet traces. Since the extrapolation algorithms we weséragar

in the number of scans in the events, we find that our systeastak
less than one minute to analyze the scan properties andrperfo
the extrapolation analysis for a given event. We 888 50 and

a tail parametew = 5 for event extraction (ranging from 3 to

8 yields identical results). We extract 203 botnet scan tsvand

504 misconfiguration events. There were a few moderate worm
outbreaks observed during the period, such as the Allaptenj#).

Targeted #ofkinds of | Events
Service vul./probes
NetBIOS/SMB/RPC| 7 81
VNC 1 39
Symantec 1 34
MS SQL 1 14
HTTP 2 13
Telnet 1 12
MySQL 1 6
Others 4 4
total 18 203

Table 5: The summary of the events

The misconfiguration events are mainly caused by P2P trdfiic.
this paper, we focus on the botnet scan events.

We first present characteristics of the botnet scanningteven
Then we present the botnet event correlation study. Nextige d
cuss results for the four botnet scan pattern checking tquba
and their validation. We finish with the presentation of glbbex-
trapolation results and their validation using DShield ald-wide
scan repository.

5.1 Basic Characteristics of the Botnet Events

In Table 5, we break down 203 events according to their tatyet
services. We find that most of the events target popular sesvi
that have large install-base. We also find that 30 (14.8%)te\are
purely port reconnaissance without any payloads. Anothezet
events check whether the HTTP service is open by requesting t
homepage. The remaining (83.7%) events target certairexain
bilities. Therefore, these botnet scans likely reflectrafieed ex-
ploitations.

Figure 7 shows the CDF of event duration. A botnet event can

F oF
— -~
2ol 2|
E K]
o9l o ©l
50 50
B 2+
8o 8o
Enl Enl
a o a o
=i =18
5 10 20 50 100 500 © 1 2 5 10 20 50 100
of ASes per event the average destinations per source contacted
Figure 9: # Source ASes. Figure 10: Avg. # Destinations
/ Source.

SMB_COM_LOGOFF_ANDX-TCP445E07-10-14-06)

COM_LOGOFF_ANDX-TCP445E07-10-15-00)
SMBCOMLOGOFFANDXTCP445E07i

< h
COMiLOGOFFiANDX—TCP445EO7710712712
SMB,COM,LOGOFF,ANDx-TCPMSEw-l 7y
‘ ”

SMB_COM_LOGOFF_ANDX-TCP445E07-10-13-12]

N\

Figure 11: A subset of the cluster of 36 events which all targe
a same vulnerablity in SMB. The number on an edge labels the
percentage of bots sharing.

5.2 Event Correlation
We study the temporal and source (bot IP address) corralatio

last from a few minutes to a few days. There are 36 events that of different events. In this context, if we find two eventstthave

last very close to half an hour, leading to the spike in theufégd .

As we will discuss in Section 5.2, it is a cluster of events aihi
scan the same vulnerability every half hour over and oveinadear
days on end. Most likely these botnet events are driven bygiesi
botmaster. From Figure 8, we also find that the number of ssurc
involved in a botnet event is quite heterogeneous. In Fi§urge
show the CDF of unique number of ASes per event. Most of the

bots (62.7%) come from more than 100 ASes. Only 3% of events

reflect fewer than 20 ASes. This implies that cleaning thedist
from some part of the world (some of ASes) will not improve the
situation. Also blocking them based on AS number is very loae

to large number of ASes involved. We also find that the number o
destinations a bot scans differs significantly for différevents, as
show in Figure 10.

We further study the OS, AS and IP distribution of the events.
Table 4 in Section 4 shows the aggregated OS distributionséte
that Microsoft Windows is the most popular OS, with more than
83% of bots using Windows 2000/XP. (We see similar resultsiwh
analyzing individual events.) For AS and IP address distitm,
we find that the aggregated results (203 events togethedl@se
to those seen in previous work [25]. However, we find very darg
variation across individual events; thus, address blatklierived
from one event might not be effective when defending agaitinsir
events.

oF oF
i b=

2o 20

Fof 5o

© ©

ol 8|

a° 50

2| 2+

go go

E E

Eo Eol

a o 8 o
ol o|
©1e-01 1e+00 1e+01 1e+02 1e+03 ©100 200 500 2000 5000

event duration (hours) # of sources per event
Figure 7: Event Duration. Figure 8: # of Sources.

more than 20% source addresses in common, we consider them as
correlated. We calculate the percentage of sharing as tkamm

of the shared addresses over total addresses of two eveatebW
serve two types of interesting behavior:

Behavior 1:The botmasters ask the same botnet to scan the same
vulnerability repeatedly. In our two years of data, we findesal
event clusters that exhibit this behavior. For examplereths a
cluster of 36 events that occur every day, always scannimgdme
SMB vulnerability. These events form a nearly completeusiq
i.e., each event shares 20% of the same source addresses in com-
mon with most of the other events. In Figure 11, we show a subse
of this commonality graph. These events on average shang abo
35% of the same sources. Each event occurs on a different\day.
speculate this activity reflects the botmaster commandiagame
botnet to re-scan the same address range repeatedly.

Behavior 2: The botmasters appear to ask most of the bots in a
botnet to focus on one vulnerability, while choosing a smsalb-
set of the bots to test another vulnerability. Apart fromsthédig
clusters, we find there are some cases in which two eventsengs v
high correlation (more than 80% of source address comntgiali
and occur very close in time, usually the same day. We find that
often the first event is much larger in terms of the number @ bo
than the second; the second is just a small subset of theroats f
the first. This behavior illustrates that the difficulty ofderprint-
ing botnet activity, given that botmasters may select aetutfdbots
to assign to different tasks.

5.3 Property-Checking Results

Figure 12 shows the breakdown of the events along different
scanning dimensions. Six of the 203 events exhibit partiahoa
tonic trends; 16.3% reflect hit-lists; 80.3% follow the rant
uniform pattern, passing both uniformity and independerses.

Through manual inspection of the partial monotonic events,
find that nearly half of the bots scan randomly and anothdrdial

Hit List 16.3% (33) Not Hit List 83.7% (170)

Monotonic Trend 0% Monotonic Trend 0% W/ mono
trend
Partial Monotonic Trend 0% Partial Monotonic Trend 3.0% (6) 3.0%
Uniform & Uniform &

Independent Non- Independent Non- No mono
13.8% (28) Uniform 66.5% (135) Uniform trend
Uniform & 2.5% (5) Uniform & 14.2% (29) | 97.0%

Non-independent Non-independent
0% 0%

Figure 12: Scan Pattern checking results.

bots scan sequentially. All of these bots start to scan abstitne
same time. Perhaps they reflect two groups of bots contrbitede
same botmaster, and the botmaster asking these two grouge to
different scan strategies; but in general, this behavipuizzling.
After that, we test the use of liveness-aware scanning (wie
term “hit-lists”). As mentioned above, we uge(the ratio of the
number of senders in the darknet over to those of the live yroete
as the metric to classify the events. Out of the 106 evenssified
by port number, 34 reflect hit-list scanning when usihg 0.5. In
fact, all have empirical values fér < 0.01, and all of events with
6 > 0.5 haved > 0.85. The 97 other events use popular ports also
seen in background radiation, and thus we have to class#iyth
based on application-level behavior. For these, we coateely
assume that all the senders in the darknet using the sameyport
ber is possible members of the event, which tends to overasti
0. For these 97 events, we did not find any with siahd most of
them have) larger than one. We found in all the cases, the results
are insensitive to the threshold @fIn addition, none of the events
only target the darknet.

date | desc ex. DShield | scope] ex.
2006 scope | scope ratio | scope
(O8) | (/8) (1) ()
08-25 1 MSSQL 1.48 1 148 | 4.6
11-26 | Symantec| 0.59 0.75 0.79 |01
11-27 | Symantec| 0.76 | 1 0.76 [04
11-28| Symantec| 0.92 | 1 0.92 40
07-23 1 VNC 0.63 0.9 0.7 0.9
07-291 VNC 0.63 0.87 0.72 10.9
10-31T VNC 0.80 0.80 1 0.6
08-241 NetBIOS | 0.86 1 0.86 | 35
08-25| NetBIOS | 1.13 | 1 113 25
08-29| NetBIOS [0.89 |1 0.89 [05
09-02] SMB 0.67 0.50 1.34 105
07-26 | SMB 0.82 1 0.82 143

Table 6: Global scope extrapolation results and validatiorn(ex.
denotes extrapolated; DShield denotes the validation re#s us-
ing DShield data.).

34 of the 197 random events fail the test for uniformity. We vi
sually confirm that all of the remaining 163 events passimgtést
indeed appear uniform. Three of those that failed appedoumi
visually, but have very large numbers of scans, for whictstiags-
tical testing becomes stringent in the presence of a minauain
of noise. In the remaining failed cases, we can see “hotgubt
dresses that clearly attract more activity than others; wenot
know why.

Finally, we test the 163 uniform cases for coordination, fivat-
ing any instances at a 0.5% significance level. In additiansimu-
late the advanced botnet permutation scan (ABPS), and findeth
pendency test can accurately detect it even With~ 20% packet
loss. Thus, none of the scanning we observe appears to rafigct
significant degree of coordination.

5.4 Extrapolation Evaluation and Validation

We validate two forms of global extrapolation—global scan
scope and total number of bots—using data from DShield [@7],

very large repository of scanning and attack reports.

Finding: 75% of our estimates of global scanning scope us-
ing only local data lie within a factor of 1.35 of estimatesrfr
DsShield’s global data, and all within a factor of 1.5.

Finding: 64% of bot population estimates are within 8% of rel
ative errors from DShield’s global data, and all within 27%rel-
ative errors

For 163 uniform events, 135 reflect independent uniform scan
ning and 28 reflect hit-list scanning. For each type we esgéma
either the total scanning ranges or the total size of thedis,Ire-
spectively. It is difficult to verify hit-list extrapolatits because of
the difficulty of assessing how the hit-list will align witlosrces
that report to DShield. However, we can validate extrapoet
from the first class of events since we find they usually taadaitge
address range. Due to limited data access to DShield, wedmdye
been able to verify 12 cases as of today, as shown in Table 6.

5.4.1 Global Scope Extrapolation and Validation.

Global scope extrapolation results:In Table 6, we show the ex-
trapolated scan scope we estimate from the local honeyngrae

ing with the estimation we make with the DShield data. Column
ex. scope (Ishows the honeynet extrapolated scan scope by Ap-
proach I. ColumrDShield scopshows the DShield based estima-
tion. Columnscope ratiogives the ratio of the honeynet extrapo-
lated scan scope by Approach | over the DShield scope. Column
ex. scope (llshows the extrapolated scan scope by Approach Il.
From the results, we see that our findings are consistentthdthe
derived from DShield. Next, we introduce how the DShieldde

tion works, and then we will analyze the accuracy of our rssul
Validation Methodology: We find that most DShield sensors ap-
pear to have synchronized clockise(, we often find significant
temporal overlap between our honeynet events and corrdsgpn
DShield reports). For a given extraplation, we take two St
validation. First, since the extrapolation results we get @l of

/8 size or quite close, we try to find all the /8 networks (excep
those with private IP prefixes) with sufficient source oveneith

the honeynet events. Secondly, for these /8 networks, vee thé
scan scopes and compare them with our results.

Step 1. Let X denote the /8 IP prefix of our sensor. We first
calculate the number of shared sendat&X) between our event
data and scan logs foX from DShield. We consider additional
/8 prefixesy; if their numbers of senders shared with the honeynet
N(Y;) are larger thanV(X)/3, reflecting an assumption that if a
botnet uniformly scans multiple /8 prefixes, each shouldpet
a few sources in common. Fof and eachy;, we select the full
width at half maximum (FWHM) of the unique source arrival pro
cess as a (conservative) way to delineate the global intefiae
event. We then calculate the time range overlap witlior each
Y:; if the overlap ofY; exceeds 50% oK'’s interval, we consider
that the botnet scanned andY; at the same time.

Step 2. After finding the scanned /8 networks, we estimate the
scan scope within each. Alternatively, we compute the @ftien-
sors in each network reporting the scans. There are severial |
tations of DShield data. First, it does not contain compkaten
information (only a subset of scans within a prefix are regyt
Second, different sensors might use different reportimgstholds
and might not see all activitye(g, due to firewall filtering). Thus
all these limitations makes calibration of data a challeggob.

To assess the limitations, we check a one-week intervainarou
our events to find which DShield sens@eerreport a given type
of activity. We treat all the reporting sensors in one /24wmek
as a single unique sensor. We count the number of sensors from
different /24 networks, denoted ¥:otq;. Similarly, we count
the number of unique sensors from different /24 networks rt&a
ported scans from shared senders of the given event, de6bted
We reduce the noise from the DShield data by removing sensors

Approach |

Approach Il

cumulative probability
02 04 06 08

cumulative probability

06 08

02 04

I
1z 13 14 T 2 3 4 5 6 7 8
scope factor scope factor

Figure 13: The CDFs of the scope factors of the 12 events we
validate.

10 11

that only report a single address within a /24 sensor. We tisen
C.stlCiotqr to estimate the fraction of a /8 networks scanned by the
botnet, which gives us a conservative estimate of the evéotal
range. We add up such fractions if there are multiple relfeukt-
works discovered in the first step, indicating the result€atumn
DShield scopef Table 6.

Accuracy Analysis: We define thescope factoras

DShield scope Honeynet scopj

scope factor= -
P ax (Honeynet scope DShield scope

The scope factor indicates the absolute relative error @ty
scale. The DShield data shows that our local estimates biaglo
scope exhibit a promising level of accuracy. As shown in FegiB,
we can clearly know that, for Approach I, the scope factorgssfo
events are less than 1.35, and all of them are less than 1.5. Ap
proach 1l (columnex. scope [} works less well (58% of events
are within a factor of three and 92% within a factor of six)t bu
may still exhibit enough power to enable sites to differatatiscans
that specifically target them versus broader sweeps. Inwor t
year dataset, we did not find any scan events specificallgtiagy
the research institution where the sensor resides; thisvfitsthe
institute’s threat model, which is mainly framed in termsrodis-
criminant attacks.

5.4.2 Total Population Estimate and Validation

date desc ex. #bots #bots

2006 #bots | DShield | ratio

08-25 7 MSSQL 3100 | 3139 0.99

11-26 | Symantec| 228 215 1.06

11-27 | Symantec| 276 373 0.73

11-28 | Symantec| 305 331 0.92

07-23 1 VNC 2752 | 2712 1.01

07-29 [VNC 3628 | 3696 0.98

10-31] VNC 526 622 0.84
Table 7: extrapolated bot population results and validatio
g i g St

2 5 10 20 50 200 500 6 8 10 12 14 16

of extraplated scans (M)
Figure 14: Extrapolated # of Figure 15: Extrapolated the
scans. average scan speed.

extrapolated average speed (probes/sec)

Figure 14, we show the extrapolated total number of scarisgus

a log-scaled X axis. We can see the number of scans sent by the
events could differ significantly given the duration and tluenber

of bots in each event differ. In Figure 15, we show the extizigol
average scan speed of the bots.

6. RELATED WORK

The work that most heavily influences us is the vision paper
of Yegneswaran and colleagues on “Internet situationalreawa
ness” [30]. Their work outlines the general problem of amaly
honeynet traffic to assess its significance for the site obwgpit.
The authors present the potential promise of such analysigyu
techniques that rely considerably on visualization. Is thork, we
aim to go substantially further, developing a “toolkit” fanalyz-
ing particular features of large-scale honeynet eventd, davis-
ing techniques and a general framework to automaticallyearis

We assume that our honeynet event data and the correspondingautomatically derive conclusions based on honeynet data.

DShield scan data give us two independent samples of theopet p
ulation, which is another chance to use the Mark and Reoaptur
principle. We count the sources observed by DShield serafors
IP prefix X on the same port number in the same time window as
the sources of DShield sensors. We term the number of soimrces
common between our honeynet and DShield astta@ed sources
Based on the similar idea of Equation 1, we know the fractibn o
the shared sources to the sources of DShield should be exjtin t
ratio between bots observed in the honeynet and total popala
Since DShield sensors will see other scanners (constitutirise)

as well, we will likely underestimate the first fraction, andn-
sequently overestimate the bot population. Per the reshtign
below, we find the estimates very close to those we estimeidiyo

by splitting the sensor into two halves.

Table 7. shows the extrapolation and DShield validation re-
sults. Columnex. #botsshows our bot population extrapolation
constructed by splitting the sensor into two halves. Coludthat
DShield shows the results using DShield’s global data. Column
#bots ratiogives the ratio between the two of these. Note, we
only validate the seven port number based events (MSSQLaSym
tec and VNC). The NetBIOS/SMB events require payload anal-
ysis, which cannot validate through DShield since it does no
provide any payloads. We find our approach is quite accurate
given 64% of cases are within 8% of relative errdfofr —
DShield)|/DShield).

5.4.3 Other Extrapolation Results

Based on Approach |, we can also infer the total number ofscan
and extrapolated average scan speed of the bots in each éwent

DShield is the Internet’s largest global alert reposit@y][The
advantages of our approach comparing with DShield are &sfol
(7) In our experience, DShield data is quite noisy, and themens
density quite non-uniform. These lead to cases where iffisult
to develop sound inferences from the datd) DShield is subject
to pollution and avoidance [9]. Depending solely on DShielght
not be reliable for operational securityid) When the target scope
is small, it is hard to find other sensors in DShield which stthe
same behavior; thus DShield will fail to work in such cases.

While the state of the art in terms of building honeynet syste
has advanced considerably, the analysis of large-scaleéseuap-
tured by such systems remains in its early stages. The Heheyn
project has developed a set of tools for host-level honegpaty-
sis [2]. At the network level, Honeysnap [3] analyzes theteots
of individual connections, particularly for investigagitRC traffic
used for botnet command-and-control. These approachesi-all
ther focus on single instances of activity, or on study ofipalar
botnets over timeg.g, [24]). In contrast, in this paper, we aim in-
stead to understand the significance of single, large-ssalets as
seen by honeynets. Such activity by definition entails asislin-
tegrated across a large number of instances of the actitityalso
(unlike [24]) localized in time.

Furthermore, the literature includes a number of forensic
case studies analyzing specific large-scale events, piartic
worms [16, 20]. Such case studies have often benefited drpni
ori knowledge of the underlying mechanisms generating thédraf
of interest. For our purposes, however, our goal is to iffferhech-
anisms themselves from a starting point of more limited Khow
edge.

Finally, Gu et alpropose a series botnet detection techniques
based on behavior correlation [12, 13]. In contrast, we $ocn
inferring botnet properties in the wake of detection, rathan de-
tection itself.

7. CONCLUSIONS

In this paper we present several algorithms that can autemat
cally analyze and determine the features of large-scaletgbat
give insight into their underlying nature observed at a lyoe¢ In
particular, we develop techniques for recognizing boticansing
strategies and inferring a distributed scan’s global prige An
evaluation of our tools using extensive honeynet and D8luata
demonstrates the promise our approach holds for contrigut
a site’s “situational awareness”—including the cruciaésion of
whether a large probing event detected by the site simplgats]
broader, indiscriminate activity, or instead reflects aacker who
has explicitly targeted the site.

8. ACKNOWLEDGMENT

We would like to thank Vinod Yegneswaran and Ruoming Pang
for helping collect the data and implementing the Bro paglsam-
mary scripts, the operations staff of the Lawrence Berkéley
tional Laboratory for facilitating the LBNL honeypot setuand
anonymous reviewers for their valuable comments. This waak
supported by DOE CAREER award DE-FG02-05ER25692//A001,
DOD (Air Force of Scientific Research) Young Investigatoraka/
FA9550-07-1-0074, and NSF grants NSF-0433702 and CNS-
0627320. Any opinions, findings, and conclusions or recomme
dations expressed in this material are those of the authmrsla
not necessarily reflect the views of the funding sources.

9. REFERENCES

[1] AP Market Sharing.

http://news.com conl M crosoft s+W - Fi +
ups+and+downs/ 2100- 1039_3- 994518.
HoneyBow Sensor.

http://honeybow. mwcol | ect. org.

Honeysnapht t p: / / ww. honeynet . or g/ t ool s/
honeysnap/ i ndex. ht m .
Net-Worm.Win32.Allaple.a.

http://ww. viruslist.con en/viruses/
encycl opedi a?vi rusi d=145521.

OS Platform Statistics by W3school.

http://ww. w3dschool s. cont br owser s/
browsers_stats. asp.

BACHER, P., HoLz, T., KOTTER, M., AND WICHERSKI,
G. Know your Enemy: Tracking Botnets.

http://ww. honeynet . or g/ paper s/ bots.
BARFORD, P.,ET AL. An inside look at botnets. In Series:
Advances in Information Security. Springer, 2006.
BELLOVIN, S.,ET AL. A technique for counting NATted
hosts. InProc. of USENIX/ACM IMW2002).
BETHENCOURT J.,ET AL. Mapping internet sensors with
probe response attacks.Pmoc. of the USENIX Security
(2005).

Cal, J.,ET AL. Honeynets and honeygames: A game
theoretic approach to defending network monitors. Tech.
Rep. TR1577, University of Wiscconsin, 2006.

CHIANG, K., AND LLOYD, L. A case study of the rustock
rootkit and spam bot. IRroc. of USENIX HotBot§2007).
GU, G., PORRAS, P., YEGNESWARAN, V., FONG, M., AND
LEE, W. Bothunter: Detecting malware infection through
ids-driven dialog correlation. IRroc. of USENIX Security
(2007).

(2]
(3]
[4]

(5]

[6]

[7]
(8]
9]

[10]

[11]

[12]

[13] Gu, G., ZHANG, J.,AND LEE, W. Botsniffer: Detecting
botnet command and control channels in network traffic. In
Proc. of NDS2008).

KANNAN, J., UNG, J., RXSON, V., AND KOKSAL, C.

Semi-automated discovery of application session stractur

In Proc. of ACM IMC(2006).

KENDALL, M. G. Rank Correlation Method<Griffin., 1976.

KUMAR, A., PAXSON, V., AND WEAVER, N. Exploiting

underlying structure for detailed reconstruction of arinet

scale event. IfProc. of ACM IMC(2005).

Li, Z., GOYAL, A., CHEN, Y., AND KuzMANOVIC, A. P2p

doctor: Measurement and diagnosis of misconfigured

peer-to-peer traffic. Tech. Rep. NWU-EECS-07-06,

Northwestern University, 2007.

L1, Z., GOYAL, A., CHEN, Y., AND PAXSON, V. Towards

situational awareness of large-scale botnet events using

honeynets. Tech. Rep. NWU-EECS-08-08, Northwestern

University, 2008.

MANNA, P., CHEN, S.,AND RANKA, S. Exact modeling of

propagation for permutation-scanning wormsIHEE

INFOCOM (2008).

MOORE, D., PAXSON, V., SAVAGE, S., SHANNON, C.,

STANFORD, S.,AND WEAVER, N. Inside the slammer

worm. IEEE Security and Privac{2003).

[21] PaNG, R., YEGNESWARAN, V., BARFORD, P., RAXSON,

V., AND PETERSON L. Characteristics of Internet
background radiation. IRroc. of ACM IMC(2004).

[22] Paxson, V. Bro: A system for detecting network intruders
in real-time.Computer Networks 3(1999).

[23] Provos, N. A virtual honeypot framework. IRroc. of
USENIX Security2004).

[24] RAJAB, M., ZARFOSS J., MONROSE F.,AND TERZIS, A.
A multifaceted approach to understanding the botnet
phenomenon. IProc. of ACM IMC(2006).

[25] RAMACHANDRAN, A., AND FEAMSTER, N. Understanding
the network-level behavior of spammers.Rroceedings of
ACM SIGCOMM '06(September 2006).

[26] RICE, J. A.Mathematical Statistics and Data Analysis
Duxbury Press, 1994.

[27] SANS INSTITUTE. Dshield.org: Distributed intrusion
detection systenmht t p: / / www. dshi el d. org/ .

[28] STANIFORD, S., RXSON, V., AND WEAVER, N. How to
Own the Internet in your spare time. Rroc. of USENIX
Security(2002).

[29] WEISSTEIN, W. E. Stirling Number of the Second Kind.
http://mat hwor | d. wol fram com
StirlingNunberoft heSecondKi nd. ht i .

[30] YEGNESWARAN, V., BARFORD, P.,AND PAXSON, V.

Using honeynets for internet situational awarenesén In
Proc. of ACM Hotnets I\(2005).

[31] Zou, C., Gao, L., GONG, W., AND TOWSLEY, D.
Monitoring and early warning for internet worms. vof. of
ACM CCS(2003).

APPENDIX
A. MODELING HOW BOTS SCAN

A.1 Bot Source Code Study

By analyzing the source code of five popular families of bofs,
study different dimensions of scan strategies employedabydis.
The popularity of these five bot families is confirmed in [6,@ur
findings confirm those in [7], but we more focus on scan pattern
study.

[14]

[15]
[16]

[17]

(18]

[19]

[20]

Botnet name| Agobot | Phatbot | Spybot | SDBot rxBot
Global Yes Yes Yes Yes Yes
Local Yes Yes Yes Yes Yes
Hit-list Possible | Possible| Possible| Possible| Possible
Independent

& Uniform Yes Yes No Yes Yes
Sequential No No Yes Yes Yes

of lines 16855 21629 7371 3093 19021
Modularity Medium | High Low Low High

Table 8: Botnet source code study.

Table 8 shows the scan strategies and complexity of the bot fa
ilies. Some of them are modularly well designed. Currertgse
bot families mainly use simple scanning strategies. Eappats
both Global scanning (a specified address block) &wdal scan-
ning (relative to each bot's address). By hit-list scanniwg re-
fer to an event for which the attacker appears to have prsiyou
acquired a specific list of targets. Such scans may heawilyr fa
the use of “live” addresses (those that respond) to “darkdn¢n
responsive) addresses. The five bot families we analyzedotlo n
directly automate hit-list scanning, but an attacker gassibly
achieve this via two steps, first scanning to gather a listivaf |
addresses/blocks, and then specifying these at the comiimaend
In addition, most bot families support (uniformlRandomandSe-
guentialscanning of the designated addresses or blocks.

Our dataset analysis accords with the above capabilitiesst m
scanners we observe use either simple sequential scanRigl{
dress increments by one between scans) or independentranifo
random scanning. We do observe more sophisticated mootoni
trends (address incrementing by, but very infrequently. We also
observe botnets using hit-list scanning quite frequently.

A.2 Modeling Botnet Global Scanning

Then based on bots’ capabilities, the botmaster dividesehk-
cates of the permuted IP scope to all the bots. This can azhiev
much better coverage and redundancy. We simulate and évalua
this strategy in our evaluation.

B. PROOF OF THEOREM 1

PROOF There are totallyl™ ways to distribute the, scans into
d addresses. Among them if there ake ways which havez
addresses receiving zero scae.zo empty slots). Then, we know
P(z0) = Xo/d™. We will show that for a giveryg the X is

<Zd> « Stifling2(n, d — z0) x (d — z0)!
0

In d addresses, there al((gi) configurations to select whicky
addresses got zero scan. Each configuration daaddresses
which got zero scan and — z, addresses got non-zero scans.
Stirling2(n, m) denotes the number of ways of partitioning a set
of n element inton nonempty sets [29]. Consider after partition-
ing then scans intal — zo sets, we havéd — zo)! ways to map
the sets to the addresses. Therefore, for each configuratidrave
Stirling2(n, d — z0) X (d — z0)! ways to distribute the scans into

d — zo addresses. Hence we proved

Xo = <j> « Stiring2(n, d — 20) x (d — 20)!
0
0
C. PROOF OF THEOREM 2 AND 3

Proof of Theorem 2:

There is a large design space for botmasters when developing THeoREM 2. j is an unbiased estimator for.

scan strategies, but we expect that the following featuesasually
desired:

Cover the target scope fully.

Distribute the load based on bots’ capabilities.

Low communication overhead for coordination.

Scan detection evasionBotmasters may want bots to avoid

aggressive scanning of a small address range, to avoid easy

detection and blocking by IDS/IPS systems.

e Redundancy.Since the bots in a botnet can readily be lost
due to detection or simply the host computer going offline,
the botmaster will prefer instructing multiple bots to scan
the same addresses.

A similar analysis is proposed in [19] for worms. Given these
sired features, a simple and effective approach is to adkeatcto
independently scan the specified range in a random unifosim fa
ion. Doing so can achieve the scan detection evasion, lowraem
nication overhead, and load distribution, while also pdawy good
coverage and redundancy. This approach is also simple teattyr
implement. Most of the events we found in our datasets ageclo
to uniform scanning.

Advanced Scanning Strategies.
In fact, by introducing some simple coordination betweetsbo

one can do better than random uniform for both coverage and re

dundancy. An advanced scanning strategy, called “worm pean
mutation”, was proposed in the context of worm propagat28].[
But the above strategy is optimized for worms and does not con
sider the usage of C & C channels of botnets. Potentiallyh @it
& C channels botnets can achieve even better coordinatismgu

the botnet C & C, we propose a better scan strategy called Ad-
vanced Botnet Permutation scan (ABPS). Each bot permuées th Therefore V AR(p) < VAR(p
whole scanning scope in the same way with a key from botmaster

PrROOF
Lty BT) B E)
Y™ Rei-Ti Y7 Rai-Ti Y Rei- T

As we mentionedn; is the number of scans we see if we sample
from R, - T total scans with probability, which follows a bino-
mial distribution. Hence we havB(n;) = p- Rg; - T;. Therefore,

E(p) = E(

. Z?L/ p-Ragi - T Z?L/ Rai - T
E(p) = . =p- - =
> Rai - Ty > Rgi-Ti
O
Proof of Theorem 3:

THEOREM 3. VAR(p) = 27’1,“% < VAR(p;), i.e., the

accuracy ofp estimator when aggregating over alt’ senders is

higher than that of each and every single sender.
PROOF

S - S VAR(n:)
S Rei T (0 Ran - T)?
Similar as before since; foIIows a binomial distribution, we have

VAR(j) = VAR(

VAR(ni) =p- () Rg; - T;. Therefore,
(ZL RGz : z) ZL Rai
On the other hand,
A VAR(n:) p-(1—p)
VAR VAR = =
(P) (RGz . Tz) (RGZ . Ti)2 Rai - T;
pi) O

