Dynamic, Scalable, and Efficient Content
Replication Techniques

Yan Chen

1 Introduction

Exponential growth in processor performance, storage capacity, and network band-
width is changing our view of computing. Our focus has shifted away from cen-
tralized, hand-choreographed systems to global-scale, distributed, self-organizing
complexes — composed of thousands or millions of elements. Unfortunately, large
pervasive systems are likely to have frequent component failures and be easily par-
titioned by slow or failed network links. Thus, use of local resources is extremely
important — both for performance and availability. Further, pervasive streaming ap-
plications must tune their communication structure to avoid excess resource usage.
To achieve both local access and efficient communication, we require flexibility in
the placement of data replicas and multicast nodes.

One approach for achieving this flexibility while retaining strong properties of
the data is to partition the system into two tiers of replicas [18] — a small, durable
primary tier and a large, soft-state, second-tier. The primary tier could represent a
Web server (for Web content delivery), the Byzantine inner ring of a storage sys-
tem [6, 29], or a streaming media provider. The important aspect of the primary tier
is that it must hold the most up-to-date copy of data and be responsible for serial-
izing and committing updates. We will treat the primary tier as a black box, called
simply “the data source”. The second-tier becomes soft-state and will be the focus of
this chapter. Examples of second-tiers include content-delivery networks (CDNSs),
file system caches, or web proxy caches.

Because second-tier replicas (or just “replicas”) are soft-state, we can dynam-
ically grow and shrink their numbers to meet constraints of the system. We may,
for instance, wish to achieve a Quality of Service (QoS) guarantee that bounds the
maximum network latency between each client and replicas of the data that it is
accessing. Since replicas consume resources, we will seek to generate as few repli-

Department of EECS, Northwestern University, Evanston IL, USA, e-mail: ychen@
northwestern.edu.

data
source
replica

cache

— always update
, adaptive
coherence "\

D root
server
|:| server

> client
{4 Tapestry mesh

network plane

Fig. 1 Architecture of a SCAN system

cas as possible to meet this constraint. As a consequence, popular data items may
warrant hundreds or thousands of replicas, while unpopular items may require no
replicas.

One difficult aspect of unconstrained replication is ensuring that content does not
become stale. Slightly relaxed consistency, such as in the Web [20], OceanStore [29],
or Coda [26], allows delay between the commitment of updates at the data source
and the propagation of updates to replicas. None-the-less, update propagation must
still occur in a timely manner. The potentially large number of replicas rules out
direct, point-to-point delivery of updates to replicas. In fact, the extremely fluid na-
ture of the second tier suggests a need to self-organize replicas into a multicast tree;
we call such a tree a dissemination tree (d-tree). Since interior nodes must forward
updates to child nodes, we will seek to control the load placed on such nodes by
restricting the fanout of the tree.

The challenge of second-tier replication is to provide good QoS to clients while
retaining efficient and balanced resource consumption of the underlying infrastruc-
ture. To tackle this challenge, we propose a self-organizing soft-state replication sys-
tem called SCAN: the Scalable Content Access Network. Fig. 1 illustrates a SCAN
system. There are two classes of physical nodes shown in the network-plane of
this diagram: SCAN servers (squares) and clients (circles). We assume that SCAN
servers are placed in Internet Data Centers (IDC) of major ISPs with good connec-
tivity to the backbone. Each SCAN server may contain replicas for a variety of data
items. One novel aspect of the SCAN system is that it assumes SCAN servers par-
ticipate in a distributed routing and location (DOLR) system, called Tapestry [22].
Tapestry permits clients to locate nearby replicas without global communication.

There are three types of data illustrated in Fig. 1: Data sources and replicas are
the primary topic of this chapter and reside on SCAN servers. Caches are the images

Dynamic, Scalable, and Efficient Content Replication Techniques 3

of data that reside on clients and are beyond our scope' Our goal is to translate
client requests for data into replica management activities. We make the following
contributions:

e We provide algorithms that dynamically place a minimal number of replicas
while meeting client QoS and server capacity constraints.

e We self-organize these replicas into d-tree with small delay and bandwidth con-
sumption for update dissemination.

The important intuition here is that the presence of the DOLR system enables si-
multaneous placement of replicas and construction of a dissemination tree without
contacting the data source. As a result, each node in a d-tree must maintain state
only for its parent and direct children.

The rest of this chapter is organized as follows. We first examine the related
work in Section 2, then formulate the replica placement problem in Section 3. Next,
we present our algorithms in Section 4, evaluation methodology in Section 5 and
evaluation results in Section 6.

2 Previous Work

In this section, we first survey existing content distribution systems, namely Web
caching (Section 2.1), uncooperative pull-based CDNs (Section 2.2), and coopera-
tive push-based CDNs (Section 2.3). We compare these systems with SCAN, and
summarize this in Table 1. Then we discuss the previous work on three building
blocks of CDN: object location services (Section 2.4), and multicast techniques for
update dissemination (Section 2.5). Finally, we summarize the limitations of previ-
ous work in Section 2.6.

2.1 Web Caching

Caching can be client-initiated or server-initiated. Most caching schemes in wide-
area, distributed systems are client-initiated, such as used by current Web browsers
and Web proxies [32]. The problems with both of these solutions are myopic. A
client cache does nothing to reduce traffic to a neighboring computer, and a web
proxy does not help neighboring proxies. Thus the effectiveness of caching is ul-
timately limited to the low level of sharing of remote documents among clients of
the same site [4]. A possible solution, server-initiated caching, allows servers to
determine when and where to distribute objects [3, 4, 21]. Essentially, Content De-
livery Networks (CDNs, including our approach) are server-initiated caching with
dedicated edge servers. Previous server-initiated caching systems rely on unrealis-
tic assumptions. Bestavros et al. model the Internet as a hierarchy and any internal

! Caches may be kept coherent in a variety of ways (for instance [44]).

4 Yan Chen

Properties Web Web caching|Uncooperative |Cooperative |SCAN
caching (server initi-|pull-based push-based
(client ated) CDNs CDNs
initiated)
Cache/replica shar-||[No, uncoop-|Yes, coopera-|No, uncoopera-|Yes, cooper-|Yes, coopera-
ing for efficient||erative tive tive ative tive
replication
Scalability for|[No redirec-|OK, use Bloom|Bad, central-|Bad, cen-|Good, de-
request redirection |jtion filter {15] to ex-|ized CDN naine|tralized centralized
change replica|server CDN name|(DHT location
locations server services
Granularity of repli-||Per URL Per URL Per URL Per Website |Per cluster
cation
Distributed load bal-||No No Yes No Yes
ancing
Replica coherence ||[No No No No Yes
Network monitoring||No No Yes, but unscal-|{No Yes, scalable
for fault-tolerance able monitoring monitoring

Table 1 Comparison of various Internet content delivery systems

node is available as a service proxy [3, 4]. This assumption is not valid because
internal nodes are routers, unlikely to be available as service proxies. Geographical
push-caching autonomously replicate HTML pages based on the global knowledge
of the network topology and clients’ access patterns [21]. More recently, adaptive
web caching [34] and summary cache [15] are proposed to enable the sharing of
caches among Web proxies. Caches exchange content state periodically with other
caches, eliminating the delay and unnecessary use of resources of explicit cache
probing. However, each proxy server needs to send index update of cached contents
to all other proxy servers, and needs to store the content indices of all other proxy
servers. Thus even with compact content index summary like the Bloom filter [15],
the state maintenance and exchange overhead is still overwhelming and unscalable
with the number of documents and number of cache servers. For instance, the tar-
get number of proxy servers is only in the order of 100 [15]. Furthermore, without
dedicated infrastructure like CDN, caching proxies can not adapt to network con-
gestion/failures or provide distributed load balancing.

2.2 Un-cooperative Pull-based CDNs

Recently, CDNs have been commercialized to provide Web hosting, Internet content
and streaming media delivery. Basically, the contents are pulled to the edge servers
upon clients’ requests. Various mechanisms, such as DNS-based redirection, URL
rewriting, HTTP redirection, etc.[1], have been proposed to direct client requests for
objects to one of the CDN servers (a. k. a. CDN nodes or edge servers). Most of the

Dynamic, Scalable, and Efficient Content Replication Techniques 5

5.GET request
D ———

) >
% . 8. Response

| aClient

6.GET request if cache miss
o

7. Response

Local CDN server Web content server

e

ddress L
P o CDN name server

& L
Local CDN server <

Client

Fig. 2 Un-cooperative pull-based CDN architecture

commercial CDN providers, such as Akamai [14], LimeLight Networks [31], and
Mirror Image [35], use DNS-based redirection due to its transparency [28]. Fig. 2
shows the CDN architecture using DNS-based redirection. Given the rapid growth
of CDN service providers, such as Akamai (which already has more than 25,000
servers in about 900 networks spanning across 69 countries [14]), we assume that
for each popular clients cluster, there is a CDN server as well as a local DNS server.
The client cluster is the group of clients that are topologically close. The clients can
be grouped by their BGP prefix [27] or by their local DNS servers. The latter is
simple and adopted in practice, but it is not very accurate [33].

Fig. 2 gives the sequence of operations for a client to retrieve a URL. The host-
name resolution request is sent to the CDN name server via local DNS server. Due
to the nature of centralized location service, the CDN name server cannot afford to
keep records for the locations of each URL replica. Thus it can only redirect the re-
quest based on network proximity, bandwidth availability and server load. The CDN
server that gets the redirected request may not have the replica. In that case, it will
pull a replica from the Web content server, then reply to the client.

Due to the uncooperative nature, current CDNs often places more replicas
than necessary and consumes lots of resources for storage and update. Simula-
tions reveals that with reasonable latency guarantees, cooperative push-based CDN
(defined in Section 2.3) only uses a small fractional number of replicas (6-8%)
and less than 10% of the update dissemination bandwidth than the uncooperative
schemes [10, 11].

As a research effort, Rabinovich and Aggarwal propose RaDaR, a global Web
hosting service with dynamic content replication and migration [41]. However, it
requires the DNS to give the complete path from the client to the server, which in
practice is often unavailable.

6 Yan Chen

2.3 Cooperative Push-based CDNs

5.GET T i replica yet

r

. - g

Web co tént server

ected
P

4. Redir
address

server

1, GET request

eplica S

. peardy v

Fig. 3 Cooperative push-based CDN architecture

Several recent works proposed to pro-actively push content from the origin Web
server to the CDN edge servers or proxies according to users’ access patterns and
global network topology, and have the replicas cooperatively satisfy clients’ re-
quests [30, 25, 40, 48].

The key advantage of this cooperative push-based replication scheme over the
conventional one does not come from the fact that we use push instead of pull (which
only saves compulsory miss), but comes from the cooperative sharing of the repli-
cas deployed. This cooperative sharing significantly reduces the number of replicas
deployed, and consequently reduces the replication and update cost [10, 11].

We can adopt a similar CDN architecture as shown in Fig. 3 to support such a
cooperative push-based content distribution. First, the Web content server incremen-
tally pushes contents based on their hyperlink structures and/or some access history
collected by CDN name server [10, 11]. The content server runs a “push” daemon,
and advertises the replication to the CDN name server, which maintains the map-
ping between content, identified by the host name in its (rewritten) URL, and their
replica locations. The mapping can be coarse (e.g., at the level of Web sites if repli-
cation is done in units of Web sites), or fine-grained (e.g., at the level of URLs if
replication is done in units of URLs).

With such replica location tracking, the CDN name server can redirect a client’s
request to its closest replica. Note that the DNS-based redirection allows address
resolution on a per-host level. We combine it with content modification (e.g., URL
rewriting) to achieve per-object redirection [1]. References to different objects are
rewritten into different host names. To reduce the size of the domain name spaces,
objects can be clustered as studied by Chen ef al. [10, 11], and each cluster shares

Dynamic, Scalable, and Efficient Content Replication Techniques 7

the same host name. Since the content provider can rewrite embedded URLs a priori
before pushing out the objects, it does not affect the users’ perceived latency and the
one-time overhead is acceptable. In both models, the CDN edge servers are allowed
to execute their cache replacement algorithms. That is, the mapping in cooperative
push-based replication is soft-state. If the client cannot find the content in the redi-
rected CDN edge server, either the client will ask the CDN name server for another
replica, or the edge server pulls the content from the Web server and replies to the
client.

Li et al. approach the proxy placement problem with the assumption that the
underlying network topologies are trees, and model it as a dynamic programming
problem[30]. While an interesting first step, this approach has an important limita-
tion in that the Internet topology is not a tree. More recent studies [40, 25], based
on evaluating real traces and topologies, have independently reported that a greedy
placement algorithm can provide content delivery networks with performance that is
close to optimal. To simplify the assumption about detailed knowledge of global net-
work topology and clients’ distribution, topology-informed Internet replica place-
ment was proposed to place replicas on the routers with big fanout [42]. They show
that the router-level topology based replica placement can achieve average client la-
tencies within a factor of 1.1 - 1.2 of the greedy algorithm, but only if the placement
method is carefully designed.

2.4 Object Location Systems

Networked applications are extending their reach to a variety of devices and services
over the Internet. Applications expanding to leverage these network resources find
that locating objects on the wide-area is an important problem. Further, the read-
mostly model of shared access, widely popularized by the World-Wide-Web, has led
to extensive object replication, compounding the problem of object location. Work
on location services has been done in a variety of contexts [13, 19, 23, 50]. These
approaches can be roughly categorized into the following three groups: Centralized
Directory Services (CDS), Replicated Directory Services (RDS), and Distributed
Directory Services (DDS).

Extensive work on these directory services have been proposed as we will discuss
in more detail in this subsection. However, to the best of our knowledge, there is no
attempt to benchmark and contrast their performance.

2.4.1 Centralized and Replicated Directory Services

A centralized directory service (CDS) resides on a single server and provides lo-
cation information for every object on the network (See Fig. 4). Because it resides
on a single server, it is extremely vulnerable to DoS attacks. A variant of this is the
replicated directory service (RDS) which provides multiple directory servers. An

8 Yan Chen

(225G
‘m LD Ly

Replica—1 o
@) Girecon .

©)

@ Replica—2 . 1
eplica—

: Replica-2 212
Client

Fig. 4 A Centralized Directory Ser- Fig. 5 A Distributed Directory (Tapestry): Nodes con-
vice (CDS): Clients contact a single nected via links (solid arrows). Nodes route to nodes one
directory to discover the location of digit at a time: e.g. 1010 — 2218 — 9098 — 7598 —
a close replica. Clients subsequently 4598. Objects are associated with one particular “root”
contact the replica directly. A Repli- node (e.g. 4598). Servers publish replicas by sending mes-
cated Directory Service (RDS) pro- sages toward root, leaving back-pointers (dotted arrows).
vides multiple directories. Clients route directly to replicas by sending messages to-
ward root until encountering pointer (e.g. 0325 — B4F8
— 4432).

RDS provides higher availability, but suffers consistency overhead. Here we do not
consider the partitioned directory service because it often requires extra meta direc-
tory server for maintaining the partitioning information, such as the root server of
DNS.

2.4.2 Distributed Directory Services: the Tapestry Infrastructure

Networking researchers have begun to explore decentralized peer-to-peer location
services with distributed hash table (DHT), such as CAN [43], Chord [47], Pas-
try [45] and Tapestry [50]. Such services offer a distributed infrastructure for lo-
cating objects quickly with guaranteed success. Rather than depending on a single
server to locate an object, a query in this model is passed around the network until it
reaches a node that knows the location of the requested object. The lack of a single
target in decentralized location services means they provide very high availability
even under attack; the effects of successfully attacking and disabling a set of nodes
is limited to a small set of objects.

In addition, Tapestry exploits locality in routing messages to mobile endpoints
such as object replicas; this behavior is in contrast to other structured peer-to-peer
overlay networks [43, 47, 45]. Thus we leverage on Tapestry to build SCAN.

Tapestry is an IP overlay network that uses a distributed, fault-tolerant architec-
ture to track the location of objects in the network. It has two components: a routing
mesh and a distributed location services.

Dynamic, Scalable, and Efficient Content Replication Techniques 9

Tapestry Routing Mesh Fig. 5 shows a portion of Tapestry. Each node joins
Tapestry in a distributed fashion through nearby surrogate servers and set up neigh-
boring links for connection to other Tapestry nodes. The neighboring links are
shown as solid arrows. Such neighboring links provide a route from every node to
every other node; the routing process resolves the destination address one digit at a
time. (e.g., ¥**8 = **98 —> *598 —> 4598, where *’s represent wildcards). This
routing scheme is based on the hashed-suffix routing structure originally presented
by Plaxton, Rajaraman, and Richa [39].

Tapestry Distributed Location Service Tapestry assigns a globally unique
name (GUID) to every object. It then deterministically maps each GUID to a unique
root node. Storage servers publish objects by sending messages toward the roots,
depositing location pointers at each hop. Fig. 5 shows two replicas and the Tapestry
root for an object. These mappings are simply pointers to the server s where ob-
ject o is being stored, and not a copy of the object itself. Thus for nearby objects,
client search messages quickly intersect the path taken by publish messages, result-
ing in quick search results that exploit locality. It is shown that the average distance
travelled in locating an object is proportional to the distance from that object [39].

2.5 Multicast for Disseminating Updates

For update dissemination, IP multicast has fundamental problems as the archi-
tectural foundation for Internet distribution. For instance, it works only across
space, not across time, while most content distribution on the Internet works across
both [16]. Further, there is no widely available inter-domain IP multicast.

As an alternative, many application-level multicast (in short, ALM) systems
have been proposed [16, 12, 17, 38, 7, 51]. Among them, some [12, 7, 38] tar-
get small group, multi-source applications, such as video-conferencing, while oth-
ers [16, 17, 51] focus on large-scale, single-source applications, such as streaming
media multicast. Bayeux [51] is also built on top of Tapestry. It uses the Tapestry
location service to find the multicast root(s), and then uses Tapestry routing to
route both the control (e.g., “join”) and data messages. In contrast, we only use
the Tapestry location mechanism to find the nearby replica.

Most ALM systems have scalability problems, since they utilize a central node
to maintain states for all existing children [12, 17, 38, 7], or to handle all “join”
requests [51]. Replicating the root is the common solution [17, 51], but this suf-
fers from consistency problems and communication overhead. On the other hand,
Scribe [46] and the update multicast system of SCAN (namely dissemination tree)
leverage peer-to-peer routing and location services, and do not have the scalabil-
ity problem. Scribe is a large-scale event notification system, using overlay DHT
for both subscription and dissemination. The dissemination tree is more efficient
because we use overlay DHT only for subscription, and use IP for dissemination
directly.

10 Yan Chen

2.6 Summary

In summary, we find that previous work on CDNs and its related techniques have
the following limitations.

1. Client-initiated web caching is myopic, while the server-initiated web caching
has unscalable content state exchange overhead. Neither can adapt to network
congestion/failures or provide distributed load balancing.

2. CDNs rely on centralized location services, thus they have to either apply ineffi-
cient and pull-based replication (uncooperative CDN), or replicate at the granu-
larity of per Website and sacrifice the performance to clients (cooperative CDN).

3. There is no performance or DoS attack resilience benchmark for existing location
services. This makes it difficult to compare the alternative proposals.

4. No coherence to replicas/caches: IP multicast doesn’t exist in the Internet, while
the existing application-level multicast has scalability problem.

In SCAN, the first two limitations are addressed with distributed location ser-
vices, Tapestry, and we propose a network DoS resilience benchmark to contrast
its performance with other alternatives [8]. For limitation 4, we dynamically place
replicas and self-organize them into a scalable application-level multicast tree to
disseminate updates as presented next.

3 Dynamic Replica Placement Problem Formulation

As shown in Fig. 1, replica placement is a key component of SCAN. According
to users’ requests, it dynamically places a minimal number of replicas while meet-
ing client QoS and server capacity constraints. The location services discussed in
last section are notified about the new replicas via Tapestry PUBLISHOBJECT
API [50].

There is a large design space for modelling Web replica placement as an opti-
mization problem and we describe it as follows. Consider a popular Web site or a
CDN hosting server, which aims to improve its performance by pushing its content
to some hosting server nodes. The problem is to dynamically decide where content
is to be replicated so that some objective function is optimized under a dynamic traf-
fic pattern and set of clients’ QoS and/or resource constraints. The objective func-
tion can either minimize clients’ QoS metrics, such as latency, loss rate, throughput,
etc., or minimize the replication cost of CDN service providers, e.g., network band-
width consumption, or an overall cost function if each link is associated with a cost.
For Web content delivery, the major resource consumption in replication cost is the
network access bandwidth at each Internet Data Center (IDC) to the backbone net-
work. Thus when given a Web object, the cost is linearly proportional to the number
of replicas.

As Qiu et al. tried to minimize the total response latency of all the clients’ re-
quests with the number of replicas as constraint [40], we tackle the replica place-

Dynamic, Scalable, and Efficient Content Replication Techniques 11

ment problem from another angle: minimize the number of replicas when meeting
clients’ latency constraints and servers’ capacity constraints. Here we assume that
clients give reasonable latency constraints as it can be negotiated through a service-
level agreement (SLA) between clients and CDN vendors. Thus we formulate the
Web content placement problem as follows.

Given a network G with C clients and S server nodes, each client ¢; has its latency
constraint d;, and each server s; has its load/bandwidth/storage capacity constraint
lj. The problem is to find a smallest set of servers S such that the distance between
any client ¢; and its “parent” server s¢, € ' is bounded by d;. More formally, find the
minimum K, such that there is a set §’ C S with |§'| =K andV ¢ € C, 3 s, € § such
that distance(c, s.) < d.. Meanwhile, these clients C and servers S’ self-organize
into an application-level multicast tree with C as leaves and V s; € ¥, its fan-out
degree (i.e., number of direct children) satisfies f(s;) < I;.

4 Replica Placement Algorithms

The presence of an underlying DOLR with routing locality can be exploited to per-
form simultaneous replica placement and tree construction. Every SCAN server is a
member of the DOLR. Hence, new replicas are published into the DOLR. Further,
each client directs its requests to its proxy SCAN server; this proxy server interacts
with other SCAN servers to deliver content to the client.

Although we use the DOLR to locate replicas during tree building, we otherwise
communicate through IP. In particular, we use IP between nodes in a d-tree for
parents and children to keep track of one another. Further, when a client makes a
request that results in placement of a new replica, the client’s proxy keeps a cached
pointer to this new replica. This permits direct routing of requests from the proxy
to the replica. Cached pointers are soft state since we can always use the DOLR to
locate replicas.

4.1 Goals for Replica Placement

Replica placement attempts to satisfy both client latency and server load constraints.
Client latency refers to the round-trip time required for a client to read information
from the SCAN system. We keep this within a pre-specified limit. Server load refers
to the communication volume handled by a given server. We assume that the load is
directly related to the number of clients it handles and the number of d-tree children
it serves. We keep the load below a specified maximum. Our goal is to meet these
constraints while minimizing the number of deployed replicas, keeping the d-tree
balanced, and generating as little traffic during update as possible. Our success will
be explored in Section 6.

12 Yan Chen

4.2 Dynamic Placement

Our dynamic placement algorithm proceeds in two phases: replica search and
replica placement. The replica search phase attempts to find an existing replica that
meets the client latency constraint without being overloaded. If this is successful, we
place a link in the client and cache it at the client’s proxy server. If not, we proceed
to the replica placement phase to place a new replica.

Replica search uses the DOLR to contact a replica “close” to the client proxys;
call this the entry replica. The locality property of the DOLR ensures that the entry
replica is a reasonable candidate to communicate with the client. Further, since the
d-tree is connected, the entry replica can contact all other replicas. We can thus
imagine three search variants: Singular (consider only the entry replica), Localized
(consider the parent, children, and siblings of the entry replica), and Exhaustive
(consider all replicas). For a given variant, we check each of the included replicas
and select one that meets our constraints; if none meet the constraint, we proceed to
place a new replica.

procedure DynamicReplicaPlacement_Naive(c, 0)
1 ¢ sends JOIN request to o through DOLR, reaches entry server s. Request collects 1Py,
distoveriay(c,s) and rey for each server s” on the path.
2 if reg > O then
if distoyeriay(c, s) < d. then s becomes parent of c, exit.
else
3 s pings c to get dist;p(c,).
4 if dist;p(c, s) < d. then s becomes parent of c, exit.

end
end

5 Ats, choose s’ on path with r¢y > 0 and smallest distoveriay(t,c) < de
if 3 such s' then
6 for each server s’ on the path, s collects dist;p(c,s’) and chooses s" with rcy > 0 and
smallest dist;p(t,c) < d,.
end
7 s puts a replica on s’ and becomes its parent, s’ becomes parent of c.
8 s publishes replica in DOLR, exit.

Algorithm 1: Naive Dynamic Replica Placement. Notation: Object o. Client ¢ with latency
constraint d,.. Entry Server s. Every server s’ has remaining capacity rcy (additional children it
can handle). The overlay distance (dist,yeriay(X,y)) and IP distance (dist;p(X,y)) are the round trip
time (RTT) on overlay network and IP network, separately.

We restrict replica placement to servers visited by the DOLR routing protocol
when sending a message from the client’s proxy to the entry replica. We can locate
these servers without knowledge of global IP topology. The locality properties of the
DOLR suggest that these are good places for replicas. We consider two placement
strategies: Eager places the replica as close to the client as possible and Lazy places
the replica as far from the client as possible. If all servers that meet the latency

Dynamic, Scalable, and Efficient Content Replication Techniques 13

procedure DynamicReplicaPlacement_Smart(c, o)
1 ¢ sends JOIN request to o through DOLR, reaches entry server s
2 From s, request forwarded to children (sc), parent (p), and siblings (ss)
3 Each family member 7 with rc; > 0 sends rc¢, to ¢. ¢ measures dist;p(t,c) through TCP
three-way handshaking.
4 if 3 tand distp(t,c) < d. then
5 cchooses t as parent with biggest r¢, and dist;p(t,c) < d., exit.
else
c sends PLACEMENT request to o through DOLR, reaches entry server s
Request collects IPy, dist,yeriay(c, s') and rcy for each server s” on the path.

=)

7 At s, choose s’ on path with rcg > 0 and largest distoveriay(t,c) < de
if 7 such s' then

8 for each server ' on the path, s collects dist;p(c,s") and chooses s" with rcy > 0

and largest dist;p(t,c) < d..

end

9 s puts a replica on 5" and becomes its parent, s’ becomes parent of c.

10 s' publishes replica in DOLR, exit.
end

Algorithm 2: Smart Dynamic Replica Placement. Notation: Object o. Client ¢ with latency
constraint d.. Entry Server s. Every server s’ has remaining capacity rcy (additional children it
can handle). The overlay distance (dist,yeriqy(X,y)) and IP distance (dist;p(X,y)) are the round trip
time (RTT) on overlay network and IP network, separately.

constraint are overloaded, we replace an old replica; if the entry server is overloaded,
we disconnect the oldest link among its d-trees.

4.2.1 Dynamic Techniques

We can now combine some of the above options for search and placement to gen-
erate dynamic replica management algorithms. Two options that we would like to
highlight are as follows.

e Naive Placement: A simple combination utilizes Singular search and Eager
placement. This heuristic generates minimal search and placement traffic.

o Smart Placement: A more sophisticated algorithm is shown in Algorithm 4. This
algorithm utilizes Localized search and Lazy placement.

Note that we try to use the overlay latency to estimate the IP latency in order to
save “ping” messages. Here the client can start a daemon program provided by its
CDN service provider when launching the browser so that it can actively participate
in the protocols. The locality property of Tapestry naturally leads to the locality
of d-tree, i.e., the parent and children tend to be close to each other in terms of the
number of IP hops between them. This provides good delay and multicast bandwidth
consumption when disseminating updates, as measured in Section 6. The tradeoff
between the naive and smart approaches is that the latter consumes more “join”
traffic to construct a tree with fewer replicas, covering more clients, with less delay
and multicast bandwidth consumption. We evaluate this tradeoff in Section 6.

14 Yan Chen

4.2.2 Static Comparisons

The replica placement methods given above are unlikely to be optimal in terms of
the number of replicas deployed, since clients are added sequentially and with lim-
ited knowledge of the network topology. In the static approach, the root server has
complete knowledge of the network and places replicas after getting all the requests
from the clients. In this scheme, updates are disseminated through IP multicast.
Static placement is not very realistic, but may provide better performance since it
exploits knowledge of the client distribution and global network topology.

The problem formulated in Section 3 can be converted to a special case of the
capacitated facility location problem [24] defined as follows. Given a set of locations
i at which facilities may be built, building a facility at location i incurs a cost of f;.
Each client j must be assigned to one facility, incurring a cost of d;c;; where d;
denotes the demand of the node j, and ¢;; denotes the distance between i and j. Each
facility can serve at most [; clients. The objective is to find the number of facilities
and their locations yielding the minimum total cost.

To map the facility location problem to ours, we set f; always 1, and set ¢;; 0
if location i can cover client j or oo otherwise. The best approximation algorithm
known today uses the primal-dual schema and Lagrangian relaxation to achieve a
guaranteed factor of 4 [24]. However, this algorithm is too complicated for practical
use. Instead, we designed a greedy algorithm that has a logarithmic approximation
ratio.

Besides the previous notations, we define the following variables: set of covered
clients by s: Cs, C; C C and V ¢ € Cy, distip(c, s) < d.; set of possible server parents
for client c: S¢, S. C SandV s € S, dist;p(c, s) < d..

procedure ReplicaPlacement_Greedy_DistLoadBalancing(C, S)
input . Set of clients to be covered: C, total set of servers: S
output : Set of servers chosen for replica placement: S’
while C is not empty do
Choose s € S which has the largest value of min(cardinality |Cs
rcs)
S'=8U{s}
S=5-{s}
if |G| < rcs then C=C - C;
else
Sort each element ¢ € C; in increasing order of |S,|
Choose the first rc, clients in Cy as Cycposen

, remaining capacity

C =C - Cichosen
end
recompute S, for V¢ € C
end
return S'.

Algorithm 3: Static Replica Placement with Load Balancing

We consider two types of static replica placement:

Dynamic, Scalable, and Efficient Content Replication Techniques 15

e [P Static: The root has global IP topology knowledge.
e Overlay Static: For each client c, the root only knows the servers on the Tapestry
path from c to the root which can cover that client (in IP distance).

The first of these is a “guaranteed-not-to-exceed” optimal placement. We expect
that it will consume the least total number of replicas and lowest multicast traffic.
The second algorithm explores the best that we could expect to achieve gathering
all topology information from the DOLR system.

4.3 Soft State Tree Management

Soft-state infrastructures have the potential to be extremely robust, precisely be-
cause they can be easily reconfigured to adapt to circumstances. For SCAN we
target two types of adaptation: fault recovery and performance tuning.

To achieve fault resilience, the data source sends periodic heartbeat messages
through the d-tree. Members know the frequency of these heartbeats and can react
when they have not seen one for a sufficiently long time. In such a situation, the
replica initiates a rejoin process — similar to the replica search phase above — to
find a new parent. Further, each member periodically sends a refresh message to
its parent. If the parent does not get the refresh message within a certain threshold,
it invalidates the child’s entry. With such soft-state group management, any SCAN
server may crash without significantly affecting overall CDN performance.

Performance tuning consists of pruning and re-balancing the d-tree. Replicas at
the leaves are pruned when they have seen insufficient client traffic. To balance the
d-tree, each member periodically rejoins the tree to find a new parent.

5 Evaluation Methodology

We implement an event-driven simulator for SCAN because ns2 [5] can only scale
up to one thousand nodes. This includes a packet-level network simulator (with a
static version of the Tapestry DOLR) and a replica management framework. The
soft-state replica layer is driven from simulated clients running workloads. Our
methodology includes evaluation metrics, network setup and workloads.

5.1 Metrics

Our goal is to evaluate the replica schemes of Section 4.2. These strategies are dy-
namic naive placement (od_naive), dynamic smart placement (od_smart), overlay
static placement (overlay_s), and static placement on IP network (IP_s). We com-
pare the efficacy of these four schemes via three classes of metrics:

16 Yan Chen

e Quality of Replica Placement: Includes number of deployed replicas and degree
of load distribution, measured by the ratio of the standard deviation vs. the mean
of the number of client children for each replica server.

e Multicast Performance: We measure the relative delay penalty (RDP) and the
bandwidth consumption which is computed by summing the number of bytes
multiplied by the transmission time over every link in the network. For example,
the bandwidth consumption for 1K bytes transmitted in two links (one has 10
ms, the other 20 ms latency) is 1KB x (10+20)ms = 0.03(KB.sec).

e Tree Construction Traffic: We count both the number of application-level mes-
sages sent and the bandwidth consumption for deploying replicas and construct-
ing d-tree.

In addition, we quantify the effectiveness of capacity constraints by computing the
maximal load with or without constraints. The maximal load is defined as the max-
imal number of client cache children on any SCAN server. Sensitivity analysis are
carried out for various client/server ratios and server densities.

5.2 Network Setup

We use the GT-ITM transit-stub model to generate five 5000-node topologies [49].
The results are averaged over the experiments on the five topologies. A packet-level,
priority-queue based event manager is implemented to simulate the network latency.
The simulator models the propagation delay of physical links, but does not model
bandwidth limitations, queuing delays, or packet losses.

We utilize two strategies for placing SCAN servers. One selects all SCAN servers
at random (labelled random SCAN). The other preferentially chooses transit and
gateway nodes (labelled backbone SCAN). This latter approach mimics the strategy
of placing SCAN servers strategically in the network.

To compare with a DNS-redirection-based Web content delivery network (CDN),
we simulate typical behavior of such a system. We assume that every client request
is redirected to the closest CDN server, which will cache a copy of the requested
information for the client. This means that popular objects may be cached in every
CDN server. We assume that content servers are allowed to send updates to replicas
via IP multicast.

5.3 Workloads

To evaluate the replication schemes, we use both a synthetic workload and access
logs collected from real Web servers. These workloads are a first step toward ex-
ploring more general uses of SCAN.

Our synthetic workload is a simplified approximation of flash crowds. Flash
crowds are unpredictable, event-driven traffic surges that swamp servers and dis-

Dynamic, Scalable, and Efficient Content Replication Techniques 17

Web site |Period # Requests # Clients|# Client groups |# Objects
total - simulated total - simulated|simulated
MSNBC]|10-11 am, 8/2/99|1604944 - 1377620{139890 (16369 - 4000 (4186
NASA |All day, 7/1/95 64398 - 64398 5177 1842 - 1842 3258

Table 2 Statistics of Web site access logs used for simulation

rupt site services. For our simulation, all the clients (not servers) make requests to a
given hot object in random order.

Our trace-driven simulation includes a large and popular commercial news site,
MSNBC [36], as well as traces from NASA Kennedy Space Center [37]. Table 5.3
shows the detailed trace information. We use the access logs in the following way.
We group the Web clients based on BGP prefixes [27] using the BGP tables from
a BBNPIanet (Genuity) router [2]. For the NASA traces, since most entries in the
traces contain host names, we group the clients based on their domains, which we
define as the last two parts of the host names (e.g., al.bl.com and a2.b1.com belong
to the same domain). Given the maximal topology we can simulate is 5000 (limited
by machine memory), we simulate all the clients groups for NASA and 4000 top
client groups (cover 86.1% of requests) for MSNBC. Since the clients are unlikely
to be on transit nodes nor on server nodes, we map them randomly to the rest of
nodes in the topology.

6 Evaluation Results

In this section, we evaluate the performance of the SCAN dynamic replica manage-
ment algorithms. What we will show is that:

e For realistic workloads, SCAN places close to an optimal number of replicas,
while providing good load balance, low delay, and reasonable update bandwidth
consumption relative to static replica placement on IP multicast.

e SCAN outperforms the existing DNS-redirection based CDNs on both replica-
tion and update bandwidth consumption.

e The performance of SCAN is relatively insensitive to the SCAN server deploy-
ment, client/server ratio, and server density.

e The capacity constraint is quite effective at balancing load.

We will first present results on synthetic workload, and then the results of real
Web traces.

18 Yan Chen

T 120 q

=
4 @ random SCAN .% 16 @ random SCAN
2100 A Fos o 14 B hackhone SCAN [
2 B backbone SCAN| § 512 4
» 60 - T3S 4 l I
~ 5 -
L T ¢
! B0 E gD.B b
- v 206
5 407 % S04+
@ - -
2 204 s 702
S 2 0 -
zZ 0 5 .
14 od_naive od_smart overlay_ s IP_s

od_naive od_smart overlay_s IP_s

Fig. 6 Number of replicas deployed (left) and load distribution on selected servers (right) (500
SCAN servers)

B Use overlay multicast [

@ Use IP multicast

overlay_naive, random SCAN ——
overlay_smart, random SCAN
overlay_naive, backbone SCAN

od_naive, od_smart, IP_s, od_naive, od_smart IP_s,
,_overlay_smart, backbone SCAN - random random random backbone backbone backbone
0 1 2 3 4 5 6 7

RDP

Cumulative percentage of source to member pairs

Fig. 7 Cumulative distribution of RDP (500 Fig. 8 Bandwidth consumption of 1MB update
SCAN servers) multicast (500 SCAN servers)

6.1 Results for the Synthetic Workload

We start by examining the synthetic, flash crowd workload. 500 nodes are chosen to
be SCAN servers with either “random” or “backbone” approach. Remaining nodes
are clients and access some hot object in a random order. We randomly choose one
non-transit SCAN server to be the data source and set as SOKB the size of the hot
object. Further, we assume the latency constraint is 50ms and the load capacity is
200 clients/server.

6.1.1 Comparison Between Strategies

Fig. 6 shows the number of replicas placed and the load distribution on these servers.
Od_smart approach uses only about 30% to 60% of the servers used by od_naive, is
even better than overlay_s, and is very close to the optimal case: IP_s. Also note that
od_smart has better load distribution than od_naive and overiay_s, close to IP_s for
both random and backbone SCAN.

Dynamic, Scalable, and Efficient Content Replication Techniques 19

g i N o

60 Brandom SCAN 1

50 4{ i mbackbone SCAN |
4n

m
[
o

o =
Bandwidth cost for d-tree

Number of messages for d-tree
construction (K)
w
o

od_naive od_smart overlay s IP_s od_naive od_smart overlays IP_s

Fig. 9 Number of application-level messages (left) and total bandwidth consumed (right) for d-tree
construction (500 SCAN servers)

Relative Delay Penalty (RDP) is the ratio of the overlay delay between the
root and any member in d-tree vs. the unicast delay between them [12]. In Fig.
7, od_smart has better RDP than od_naive, and 85% of od_smart RDPs between any
member server and the root pairs are within 4. Fig. 8 contrasts the bandwidth con-
sumption of various replica placement techniques with the optimal IP static place-
ment. The results are very encouraging: the bandwidth consumption of od_smart is
quite close to /P_s and is much less than that of od_naive.

The performance above is achieved at the cost of d-tree construction (Fig. 9).
However, for both random and backbone SCAN, od_smart approach produces less
than three times of the messages of od_naive and less than six times of that for
optimal case: IP_s. Meanwhile, od_naive uses almost the same amount of bandwidth
as IP_s while od_smart uses about three to five times that of /P _s.

In short, the smart dynamic algorithm has performance that is close to the ideal
case (static placement with IP multicast). It places close to an optimal number of
replicas, provides better load distribution, and less delay and multicast bandwidth
consumption than the naive approach — at the price of three to five times as much
tree construction traffic. Since d-tree construction is a much less frequent than data
access and update this is a good tradeoff.

Due to the limited number and/or distribution of servers, there may exist some
clients who cannot be covered when facing the QoS and capacity requirements. In
this case, our algorithm can provide hints as where to place more servers. Note
that experiments show that the naive scheme has many more uncovered clients than
the smart one, due to the nature of its unbalanced load. Thus, we remove it from
consideration for the rest of synthetic workload study.

6.1.2 Comparison with a CDN

As an additional comparison, we contrast the overlay smart approach with a DNS-
redirection-based CDN. Compared with a traditional CDN, the overlay smart ap-

20 Yan Chen
3000 4

v @ 3300 4

£ 2500 » —e—od_smart,wilB | 5 agap $ | —e—od_sman, wiLB

3 g

%S 2000 / —@— od_smart, wio LB| ‘g 2500 // —8— od_smart, wio LB

g /) oo | B 20m P

£ 1800 —f— overlay_s, w! LH g 1500 / —r— OVENay_35, Wi Lo

=

£ / —— overlay_s,wio LB| £ / —w— overlay_s, wio LB

1000 T 1000

=] ./ —*—|P_s,w/LB 2 | /J —#—IP_s,wiLB

% 500 x S0

£ £ g M —#—IP_s, wio LB

P :
0 100 1000 4500

100 1000 4500 clents clents clients
clierts clierts clients

Fig. 10 Maximal load measured with and without load balancing constraints (LB) for various
numbers of clients (left: 500 random servers, right: 500 backbone servers)

proach uses a fraction of the number of replicas (6-8%) and less than 10% of band-
width for disseminating updates.

6.1.3 Effectiveness of Distributed Load Balancing

We study how the capacity constraint helps load balancing with three client pop-
ulations: 100, 1000 and 4500. The former two are randomly selected from 4500
clients. Fig. 10 shows that lack of capacity constraints (labelled w/o LB) leads to hot
spot or congestion: some servers will take on about 2-13 times their maximum load.
Performance with load balancing is labelled as w/ LB for contrast.

6.1.4 Performance Sensitivity to Client/Server Ratio

We further evaluate SCAN with the three client populations Fig. 11 shows the num-
ber of replicas deployed. When the number of clients is small, w/ LB and w/o LB do
not differ much because no server exceeds the constraint. The number of replicas
required for od_smart is consistently less than that of overlay_s and within the bound
of 1.5 for IP_s. As before, we also simulate other metrics, such as load distribution,
delay and bandwidth penalty for update multicast under various client/server ratios.
The trends are similar, that is, od_smart is always better than overlay_s, and very
close to IP_s.

6.1.5 Performance Sensitivity to Server Density

Next, we increase the density of SCAN servers. We randomly choose 2500 out of the
5000 nodes to be SCAN servers and measure the resulting performance. Obviously,
this configuration can support better QoS for clients and require less capacity for
servers. Hence, we set the latency constraint to be 30 ms and capacity constraint 50
clients/server. The number of clients vary from 100 to 2500.

Dynamic, Scalable, and Efficient Content Replication Techniques 21

70 q 50 4
45
60 A —e— od_srma, wi I —e— od_smar, w/
LB 40 7 LB
50 —m— od_smart, wio 35 / » —@— od_sma, wio
LB LB
40 ’\ —— averlay_s, wiLHl 0 /X —#— overlay_s, wiLB|

e

25
—— averlay_s, wio 20 4 / —s— overlay_s, wino
L7 A LB e M LB
—%—IP_s,wi LB —#—|P_s,wiLB
10 4 o
1 —&—P_s,wio LB 5 1 —a—|P_s, wio LB
0

100 clients 1000 4500 100 clients 1000 4500
clierts clierts clerts clients

)
=]

(%]
(=]

Number of replicas
Humber of replicas

o

o

Fig. 11 Number of replicas deployed with and without load balancing constraints (LB) for various
numbers of clients (left: 500 random servers, right: 500 backbone servers)

o
i}
=1

~

=)
=]

= .

3 300 —e—od_smart,wi | £ s00 ®

E LB 2 —&— 0d_smart, w/ LB

8 250 —@—od_smart, wio| S 500

: LB ° / /x —8—od_smart, wfo LB

S 200 ——overlay_s,wi | 8 400

= / LB 2 / —— overlay_s, wi LB

2 ——overlay_s,wio| = 300

“n: 150 LB VS, £ —— overlay_s, wio LB
—#—IP_s, wiLB K]

& 100 / =X == g j —%—IP_s,wiLB

£ / %

g 50 —a—IP_s, wio LB g 100 IP_s, wio LB

_21/ . !& .
o

T T ' 100 clients 500 clients 2500 clients
100 clients 500 clients 2500 cilents

Fig. 12 Number of replicas deployed (left) and maximal load (right) on 2500 random SCAN
servers with and without the load balancing constraint (LB)

With very dense SCAN servers, our od_smart still uses less replicas than over-
lay_s, although they are quite close. IP_s only needs about half of the replicas, as in
Fig. 12. In addition, we notice that the load balancing is still effective. That is, over-
loaded machines or congestion cannot be avoided simply by adding more servers
while neglecting careful design.

In summary, od_smart performs well with various SCAN server deployments,
various client/server ratios, and various server densities. The capacity constraint
based distributed load balancing is effective.

6.2 Results for Web Traces Workload

Next, we explore the behavior of SCAN for Web traces with documents of widely
varying popularity. Fig. 13.a characterizes the request distribution for the two traces
used (note that the x-axis is logarithmic.). This figure reveals that the request number
for different URLSs is quite unevenly distributed for both traces.

For each URL in the traces, we compute the number of replicas generated with
od_naive, od_smart, and IP_s. Then we normalize the replica numbers of od _naive
and od_smart by dividing them with the replica number of /P_s. We plot the CDF

Percentage of requests covered

22 Yan Chen

100

od_naive, NASA traces
od_smart, NASA traces
10 L od_naive, MSNBC traces -+
od_smart, MSNBC traces —>x—

1 10
Number of replicas deployed normalized by that of IP_s

7/1/95 NASA traces
_8/2/99 MSNBC traces -

1 10 100 100!
Number of top URLs picked

“Cumulative percentage of all objects

Fig. 13 Simulation with NASA and MSNBC traces on 100 backbone SCAN servers. (a) Percent-
age of requests covered by different number of top URLs (left); (b) the CDF of replica number
deployed with od_naive and od_smart normalized by the number of replicas using /P_s (right)

of such ratios for both NASA and MSNBC in Fig. 13.b. The lower percentage
part of the CDF curves are overlapped and close to 1. The reasons are most of
the URLs have very few requests, and we only simulate a limited period, thus the
number of replicas deployed by the three methods are very small and similar. How-
ever, od _smart and od _naive differ significantly for popular objects, exhibited in the
higher percentage part. Od_smart is very close to IP_s, for all objects, the ratio is
less than 2.7 for NASA and 4.1 for MSNBC, while the ratio for od_naive can go as
high as 5.0 and 15.0, respectively.

In addition, we contrast the bandwidth consumption for disseminating updates.
Given an update of unit size, for each URL, we compute the bandwidth consumed by
using (1) overlay multicast on an od _naive tree, (2) overlay multicast on an od _smart
tree, and (3) IP multicast on an IP_s tree. Again, we have metric (1) and (2) normal-
ized by (3), and plot the CDF of the ratios. The curves are quite similar to Fig. 13.b.

In conclusion, although od _smart and od -naive perform similarly for infrequent
or cold objects, od_smart outperforms dramatically over od_naive for hot objects
which dominate overall requests.

6.3 Discussion

How does the distortion of topology through Tapestry affect replica placement? No-
tice that the overlay distance through Tapestry, on average, is about 2-3 times more
than the IP distance. Our simulations in Section 6, shed some light on the resulting
penalty: Overlay_s applies exactly the same algorithm as /P_s for replica placement,
but uses the static Tapestry-level topology instead of IP-level topology. Simulation
results show that overlay_s places 1.5 - 2 times more replicas than /P;. For similar
reasons, od_smart outperforms overlay_s. The reason is that od_smart uses “ping”
messages to get the real IP distance between clients and servers. This observation
also explains why od_smart gets similar performance to IP_s. One could imagine

Dynamic, Scalable, and Efficient Content Replication Techniques 23

scaling overlay latency by an expected “stretch” factor to estimate real IP distance
— thereby reducing ping probe traffic.

7 Conclusions

The importance of adaptive replica placement and update dissemination is grow-
ing as distribution systems become pervasive and global. In this chapter, we present
SCAN, a scalable, soft-state replica management framework built on top of a dis-
tributed object location and routing framework (DOLR) with locality. SCAN gener-
ates replicas on demand and self-organizes them into an application-level multicast
tree, while respecting client QoS and server capacity constraints. An event-driven
simulation of SCAN shows that SCAN places close to an optimal number of repli-
cas, while providing good load distribution, low delay, and small multicast band-
width consumption compared with static replica placement on IP multicast. Further,
SCAN outperforms existing DNS-redirection based CDNs in terms of replication
and update cost. SCAN shows great promise as an essential component of global-
scale peer-to-peer infrastructures.

8 Acknowledgments

Some of the materials presented in this chapter appeared in a preliminary form
at Pervasive’02 (the first International Conference on Pervasive Computing) [9].
I would like to thank other co-authors who contributed to the previous form of this
work: Prof. Randy H. Katz and Prof. John D. Kubiatowicz from UC Berkeley and
Prof. Lili Qiu from UT Austin.

References

1. BARBIR, A., CAIN, B., DOUGLIS, F., GREEN, M., HOFMANN, M., NAIR, R., POTTER, D.,
AND SPATSCHECK, O. Known CN request-routing mechanisms. http://www.ietf.org/internet-
drafts/draft-ietf-cdi-known-request-routing-00.txt.

2. BBNPLANET. telnet://ner-routes.bbnplanet.net.

3. BESTAVROS, A. Demand-based document dissemination to reduce traffic and balance load in
distributed information systems. In Proc. of the IEEE Symposium on Parallel and Distributed
Processing (1995).

4. BESTAVROS, A., AND CUNHA, C. Server-initiated document dissemination for the WWW.
In I[EEE Data Engineering Bulletin (Sep. 1996).

5. BRESLAU, L., ESTRIN, D., FALL, K., FLOYD, S., HEIDEMANN, J., HELMY, A., HUANG,
P., MCCANNE, S., VARADHAN, K., XU, Y., AND YU, H. Advances in network simulation.
IEEE Computer 33, 5 (May 2000), 59-67.

6. CASTRO, M., AND LISKOV, B. Proactive recovery in a byzantine-fault-tolerant system. In
Proc. of USENIX Symp. on OSDI (2000).

24

13.

14.

15.

16.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Yan Chen

. CHAWATHE, Y., MCCANNE, S., AND BREWER, E. RMX: Reliable multicast for heteroge-
neous networks. In Proceedings of IEEE INFOCOM (2000).

. CHEN, Y., BARGTEIL, A., BINDEL, D., KATZ, R. H., AND KUBIATOWICZ, J. Quantifying
network denial of service: A location service case study. In Proceeding of Third International
Conference on Information and Communications Security (ICICS) (2001).

. CHEN, Y., KATZ, R. H., AND KUBIATOWICZ, J. D. SCAN: a dynamic scalable and efficient
content distribution network. In Proc. of the First International Conference on Pervasive
Computing (Aug. 2002).

. CHEN, Y., QIu, L., CHEN, W., NGUYEN, L., AND KATZ, R. H. Clustering Web content for
efficient replication. In Proc. of the 10th IEEE International Conference on Network Protocols
(ICNP) (2002).

. CHEN, Y., Qiu, L., CHEN, W., NGUYEN, L., AND KATZ, R. H. Efficient and adaptive
Web replication using content clustering. IEEE Journal on Selected Areas in Communications
(J-SAC), Special Issue on Internet and WWW Measurement, Mapping, and Modeling 21, 6
(2003), 979-994.

. CHU, Y., RAO, S., AND ZHANG, H. A case for end system multicast. In Proceedings of

ACM SIGMETRICS (June 2000).

CZERWINSKI, S., ZHAO, B., HODES, T., JOSEPH, A., AND KATZ, R. An architecture for a

secure service discovery service. In Proc. of ACM/IEEE MobiCom Conf. (1999).

DILLEY, J., MAGGS, B., PARIKH, J., PROKOP, H., SITARAMAN, R., AND WEIHL, B. Glob-

ally distributed content delivery. IEEE Internet Computing (September/October 2002), 50-58.

FAN, L., CA0, P., ALMEIDA, J., AND BRODER, A. Summary cache: A scalable wide-area

Web cache sharing protocol. In Proc. of ACM SIGCOMM Conf. (1998).

FRANCIS, P. Yoid: Your own Internet distribution. Technical report, ACIRI,

http://www.aciri.org/yoid, April, 2000.

. GIFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND J. W. O’TOOLE, J. Overcast:
Reliable multicasting with an overlay network. In Proc. of USENIX Symp. on OSDI (2000).

. GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. The dangers of replication and a

solution. In Proc. of ACM SIGMOD Conf. (June 1996), vol. 25, 2, pp. 173-182.

GUTTMAN, E., PERKINS, C., VEIZADES, J., AND DAY, M. Service Location Protocol,

Version 2. IETF Internet Draft, November 1998. RFC 2165.

GWERTZMAN, J., AND SELTZER, M. World-Wide Web Cache Consistency. In Proceedings

of the 1996 USENIX Technical Conference (1996).

GWERTZMAN, J., AND SELTZER, M. An analysis of geographical push-caching. In Proceed-

ings of International Conference on Distributed Computing Systems (1997).

HILDRUM, K., KUBIATOWICZ, J., RAO, S., AND ZHAO, B. Distributed data location in a

dynamic network. In Proc. of ACM SPAA (2002).

Howes, T. A. The Lightweight Directory Access Protocol: X.500 Lite. Tech. Rep. 95-8,

Center for Information Technology Integration, U. Mich., July 1995.

JAIN, K., AND VARIRANI, V. Approximation algorithms for metric facility location and k-

median problems using the primal-dual schema and lagrangian relaxation. In Proc. of IEEE

FOCS (1999).

JAMIN, S., JIN, C., KURC, A., RAZ, D., AND SHAVITT, Y. Constrained mirror placement

on the Internet. In Proceedings of IEEE Infocom (2001).

KISTLER, J., AND SATYANARAYANAN, M. Disconnected operation in the Coda file system.

ACM Transactions on Computer Systems 10, 1 (Feb. 1992), 3-25.

KRISHNAMURTHY, B., AND WANG, J. On network-aware clustering of Web clients. In Proc.

of SIGCOMM (2000).

KRISHNAMURTHY, B., WILLS, C., AND ZHANG, Y. On the use and performance of content

distribution networks. In Proceedings of SIGCOMM Internet Measurement Workshop (2001).

KUBIATOWICZ, J., ET AL. Oceanstore: An architecture for global-scale persistent storage. In

Proceeedings of 9th ASPLOS (2000).

L1, B., GOLIN, M. J., ITALIANO, G. F., DENG, X., AND SOHRABY, K. On the optimal

placement of Web proxies in the Internet. In Proceedings of IEEE INFOCOM (1999).

Dynamic, Scalable, and Efficient Content Replication Techniques 25

31.
32.

33.

34.

35.
36.
37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

LIMELIGHT NETWORKS INC. http://www.limelightnetworks.com/.
LUOTONEN, A., AND ALTIS, K. World-Wide Web proxies. In Proc. of the First International
Conference on the WWW (1994).

MAO, Z. M., CRANOR, C., DOUGLIS, F., RABINOVICH, M., SPATSCHECK, O., AND
WANG, J. A precise and efficient evaluation of the proximity between Web clients and their
local DNS servers. In Proc. of USENIX Technical Conf. (2002).

MICHEL, S., NGUYEN, K., ROSENSTEIN, A., ZHANG, L., FLOYD, S., AND JACOBSON, V.
Adaptive Web caching: Towards a new caching architecture. In Proceedings of 3rd Interna-
tional WWW Caching Workshop (June, 1998).

MIRROR IMAGE INTERNET INC. http://www.mirror-image.com.

MSNBC. http://www.msnbc.com.

NASA kennedy space center server traces. http://ita.ee.lbl.gov/html/
contrib/NASA-HTTP.html.

PENDARAKIS, D., SHI, S., VERMA, D., AND WALDVOGEL, M. ALMI: An application level
multicast infrastructure. In Proceedings of 3rd USENIX Symposium on Internet Technologies
(2001).

PLAXTON, C. G., RAJARAMAN, R., AND RICHA, A. W. Accessing nearby copies of repli-
cated objects in a distributed environment. In Proc. of the SCP SPAA (1997).

QIu, L., PADMANABHAN, V. N., AND VOELKER, G. M. On the placement of Web server
replica. In Proceedings of IEEE INFOCOM (2001).

RABINOVICH, M., AND AGGARWAL, A. RaDaR: A scalable architecture for a global Web
hosting service. In Proceedings of WWW (1999).

RADOSLAVOV, P., GOVINDAN, R., AND ESTRIN, D. Topology-informed Internet replica
placement. In Proceedings of the International Workshop on Web Caching and Content Dis-
tribution (2001).

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM (2001).

RODRIGUEZ, P., AND SIBAL, S. SPREAD: Scalable platform for reliable and efficient auto-
mated distribution. In Proceedings of WWW (2000).

ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In Proc. of ACM Middleware (2001).

ROWSTRON, A., KERMARREC, A.-M., CASTRO, M., AND DRUSCHEL, P. SCRIBE: The
design of a large-scale event notification infrastructure. In Proceedings of International Work-
shop on Networked Group Communication (NGC) (2001).

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup service for Internet applications. In Proceedings of
ACM SIGCOMM (2001).

VENKATARAMANI, A., YALAGANDULA, P., KOKKU, R., SHARIF, S., AND DAHLIN, M.
The potential costs and benefits of long term prefetching for content distribution. In Proc. of
Web Content Caching and Distribution Workshop 2001 (2001).

ZEGURA, E., CALVERT, K., AND BHATTACHARIJEE, S. How to model an Internetwork. In
Proceedings of IEEE INFOCOM (1996).

ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH, A. D., AND KUBIATOW-
ICZ, J. Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications (2003).

ZHUANG, S. Q., ZHAO, B. Y., JOSEPH, A. D., KATZ, R. H., AND KUBIATOWICZ, J. D.
Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemination. In Pro-
ceedings of ACM NOSSDAV (2001).

