Towards a Secure Controller Platform for OpenFlow
Applications

Xitao Wen Yan Chen Chengchen Hu
Northwestern University Northwestern University Xi'an Jiaotong University
Evanston, IL Evanston, IL Xi'an, China

Xxw@u.northwestern.edu

Chao Shi
Northwestern University
Evanston, IL

chaoshi1989@gmail.com

ABSTRACT

The OpenFlow (OF) paradigm embraces third-party development
efforts, and therefore suffers from potential trust issue on OF appli-
cations (apps). The abuse of such trust could lead to various types
of attacks impacting the entire network. In this paper, we propose
PermOF, a fine-grained permission system, as the first line of de-
fense, in order to apply minimum privilege on apps. We summarize
a set of 18 permissions to be enforced at the API entry of the con-
troller. To accommodate the isolation requirements, we propose
a customized isolation mechanism, which achieves comprehensive
resource isolation and access control.

Categories and Subject Descriptors
C.2.6 [Network Operations]: Network Management

General Terms
Software-Defined Networking, Security

Keywords

OpenFlow; Security; Policy Enforcement

1. BACKGROUND

Standardized OF creates a great surface for control layer attacks
as a result of the open interface and the involvement of multiple
parties. OF controllers, such as NOX[3] and Floodlight[1], inter-
face between the OF apps and the OS. The OF apps, which run
upon OF controller and implement a majority of the functionali-
ties of the control plane, are typically developed by third parties
other than the controller vendor. When joining with the controller,
the apps automatically inherit the privileges on manipulating the
network behavior. Our survey suggest that all state-of-the-art OF

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotSDN’13, August 16, 2013, Hong Kong, China.

ACM 978-1-4503-2178-5/13/08.

ychen@northwestern.edu

huc@ieee.org

Yi Wang
Tsinghua University
Beijing, China
wy@ieee.org

platforms expose the full privilege of OF indiscriminately to every
app without protection.

In contrast of the severity of the threats, the defense techniques
have been only sparsely explored. Apparently, traditional perimeter
protection is ineffective, because the controller is typically locat-
ed within the perimeter. Network virtualization techniques such
as FlowVisor[5] help to prevent the potential cross-slice attack-
s, but do not deliver protection against the attacks within a net-
work slice. Recent OF-specific proposals, including FortNOX[4]
and FRESCO[6], care primarily about the rule conflicts that vio-
late existing security policies, which only covers a small subset of
potential attack space.

The threat of third-party apps stems from the fundamental chal-
lenge to verify the trustworthiness of a program module[2]. Be-
cause apps directly interact with critical resources such as flow ta-
ble and device configuration, people expect in apps the same lev-
el of trust as in the controller. However, although the controller
platforms are well tested and verified, the quality and goodwill of
a third-party component is generally difficult to guarantee on an
open platform. We envision two threat models. First, a benign-but-
buggy app could become the victim of various of network-based or
host-based exploits, which enables the control-plane attacks rang-
ing from information leakage to arbitrary code execution. Second,
a malicious app could possibly pass the censorship (if there is any)
and be deployed directly into a OF controller. As long as the at-
tackers control an app through any of the above ways, they will
have effectively full control of the OF network, leading to a series
of control-plane attacks that are both lucrative and stealthy.

2. DESIGN

In this paper, we tackle the problem via a combination of per-
mission system and runtime isolation to enforce least privilege on
the level of OF app. We argue that enforcing security policies
provides a deterministic and low-cost remedy for the app over-
privilege problem, and meanwhile facilitate the other approaches
by narrowing the scope of suspects. We propose PermOF, a fine-
grained permission system containing a set of OF-specific permis-
sions and the isolation mechanism to enforce the permissions. The
main design concern is two-fold: 1) what is the most effective set
of permissions? 2) what isolation mechanism should be deployed
to enforce the permission control?

Permission Set Design. One critical design of a permission sys-
tem is the permission set, i.e, the set of access control tokens that
can be either granted or denied for an app. We design the per-
mission set according to our understanding of four aspects: 1) the

Category Permission
Read read_topology
read_all_flow
read_statistics
read_pkt_in_payload
Notification pkt_in_event

flow_removed_event
error_event
topology_event
Write flow_mod_route
flow_mod_drop
flow_mod_modify_hdr
modify_all_flows
send_pkt_out
set_device_config
set_flow_priority
network_access
file_system_access
process_runtime_access

System

Table 1: Permission Set Summary

threat models, 2) the control messages in OpenFlow protocol, 3)
the general API set of the controller implementations, and 4) the
functional requirements of the apps.

We summarize the resulting permission set in Table 1. Among
the permission categories, read permissions manage the availabil-
ity of sensitive OF information to an app; notification permissions
manage whether an app should be notified of certain events in real-
time; write permissions manage the ability to modify certain states
of the controller or the switches; and finally, system permissions
manage the app’s access to the local resources provided by the OS,
including network, storage, etc.

Isolation Mechanism. The permission set in Table 1, especially
the system permissions, implies several requirements on the isola-
tion mechanism. First, the isolation mechanism should maintain
controller’s conceptually superior role to apps. Then, the isolation
of control flow and data should be established between controller
and apps. Finally, controller should be able to mediate all the apps’
activity with the outside world.

In order to provide such isolation, we propose an isolation frame-
work as depicted in Figure 1. In our proposed system, controller
and apps are isolated in thread containers. On one hand, apps are
isolated from controller kernel in a sense that apps cannot call any
kernel procedures or directly refer to kernel memory. We achieve
it by carefully craft the kernel code, so that apps are not able to ob-
tain object reference from the kernel memory. On the other hand,
we introduce an access control layer between the apps and the OS.
This shim layer is configured and controlled by the controller k-
ernel, so that undesirable interaction between the apps and the OS
will be cut off. This is achieved by modifying the dynamic library
of the programming language or the OS.

Apps strictly follow a reactive programming paradigm. Apps
are triggered by callback events and then react with a series of con-
troller API calls. We expose controller API through the library at-
tached to the thread container. We extend the thread class to include
the controller API functions. Upon receiving an API call from the
app, the thread class encapsulates the function call and passes it to
kernel via the inter-thread communication facility. Since the API
calls are attached with the caller’s identity, the controller kernel can
easily perform permission control based on the pre-configured pol-
icy.

3. FUTURE DIRECTIONS

Performance Trade-off. It is desirable for a security enforce-
ment system to provide flexible and user-friendly policy language

{ D Untrusted Code D PermOF Library Code D Controller Code)

(" Unprivileged

Controller Kernel
Threads
User Kernel
APP Modules
L | APl
Event
v A P
b RRH Notifications
Library APl | Kernel
Controller Service
_ A \ Service Calls »\ Deputy
System Calls
(__Access Control) Shim Layer
v 1) Operating System

Figure 1: PermOF Isolation Framework

for permission composition. However, real world scenarios like
data-center network have strict requirements on runtime latency
and throughput of OF controllers, which greatly limits the com-
plexity of a policy enforcement system. It is still an open question
how to provide the "right" level of abstraction for a permission de-
scription language that strikes good trade-off between performance
and usability.

Approaches Other Than Permission Control. Multiple levels
of defense could also be effective to combat the threats from third-
party apps and address the unique challenges in OF environment.
First and foremost, the controller may enforce security check be-
fore installation. A PKl-based authentication should be enforced
to ensure the app’s authenticity and integrity. In addition, the con-
troller vendor can enforce more advanced censorship with program
analysis techniques or manual testing, similar to what is deployed
on i0OS AppStore. Finally, anomaly-based behavior monitoring can
also facilitate both online malicious behavior detection and offline
forensic analysis. There is a large body of research on behavior-
based malware analysis that may be adapted to the OF environ-
ment.

4. CONCLUSION

With the involvement of third-party apps, OF controller is sub-
ject to the privilege abuse problem, which enables a series of control-
plane attacks that could compromise the entire network. To elim-
inate such threat, we explore the space of potential solutions and
then focus on minimizing the privilege of OF apps. We propose
PermOF a fine-grained permission system that incorporates a cus-
tomized permission set and a thread-based isolation mechanism.

5. REFERENCES

[1] Floodlight openflow controller. http://bit.ly/UIL73z.

[2] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford.
A nice way to test openflow applications. In USENIX
NSDI'12.

[3] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. Nox: towards an operating
system for networks. ACM SIGCOMM CCR, 38(3):105-110,
2008.

[4] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu. A security enforcement kernel for openflow networks.
In HotSDN’12.

[5] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar. Flowvisor: A network
virtualization layer. OpenFlow Switch Consortium, Tech. Rep,
2009.

[6] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and
M. Tyson. Fresco: Modular composable security services for
software-defined networks. In NDSS’13.

