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ABSTRACT
Traffic anomalies such as failures and attacks are increasing in fre-
quency and severity, and thus identifying them rapidly and accu-
rately is critical for large network operators. The detection typi-
cally treats the traffic as a collection of flows and looks for heavy
changes in traffic patterns (e.g., volume, number of connections).
However, as link speeds and the number of flows increase, keeping
per-flow state is not scalable. The recently proposed sketch-based
schemes [14] are among the very few that can detect heavy changes
and anomalies over massive data streams at network traffic speeds.
However, sketches do not preserve the key (e.g., source IP address)
of the flows. Hence, even if anomalies are detected, it is difficult
to infer the culprit flows, making it a big practical hurdle for online
deployment. Meanwhile, the number of keys is too large to record.

To address this challenge, we propose efficient reversible hash-
ing algorithms to infer the keys of culprit flows from sketches with-
out storing any explicit key information. No extra memory or mem-
ory accesses are needed for recording the streaming data. Mean-
while, the heavy change detection daemon runs in the background
with space complexity and computational time sublinear to the key
space size. This short paper describes the conceptual framework
of the reversible sketches, as well as some initial approaches for
implementation. See [23] for the optimized algorithms in details.
Evaluated with netflow traffic traces of a large edge router, we
demonstrate that the reverse hashing can quickly infer the keys of
culprit flows even for many changes with high accuracy.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

General Terms
Measurement, Algorithms
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1. INTRODUCTION
Real-time network flow monitoring at high packet rates is a chal-

lenging but crucial service for network administrators of large ISPs
or institutions. Such service is important for accounting, provision-
ing, traffic engineering, scalable queue management, and anomaly
and intrusion detection [5, 8, 14]. Take the intrusion detection
systems (IDSs) for instance, most existing IDSs reside on single
host or low-end routers, examining the application-level [22, 15]
or system-level [13, 25] logs, or the sniffed network packets [20,
21]. However, today’s fast propagation of viruses/worms (e.g., Sap-
phire worm) can infect most of the vulnerable machines in the In-
ternet within ten minutes [18] or even less than 30 seconds with
some highly virulent techniques [24]. Thus it is crucial to identify
such outbreaks in their early phases, which can only be possibly
achieved by detection at routers instead of at end hosts [26].

Given today’s traffic volume and link speeds, the detection method
has to be able to handle potentially several millions or more of con-
current network time series. Thus it is either too slow or too ex-
pensive to directly apply existing techniques on a per-flow basis [8,
14]. The essential requirements for online flow-level monitoring
on high-speed networks are two-fold: 1) small amount of mem-
ory usage (to be implemented in SRAM) and 2) small amount of
memory accesses per packet [5, 8]. In response to this demand,
the field of data streaming computationis emerging, which deals
with various computations that can be performed in a space- and
time-efficient fashion. Most of the existing work comes from the
database and theory communities, as reviewed in a comprehensive
survey [17]. Here we call for bringing techniques from these do-
mains to bear on networking. One particularly powerful technique
is the sketch [10], a probabilistic summary technique for analyzing
large network traffic streams without keeping per-flow states.

Most existing research on data streaming computation focus on
scalable heavy-hitter detection [8, 16, 2]. However, heavy-hitters
do not necessarily correspond to flows experiencing anomalies (e.g.,
significant changes), and thus it is not clear how their techniques
can be adapted for anomaly detection. Here, we focus on a more
generic and powerful primitive: heavy change detection, which
spans from simple absolute or relative changes, to variational changes
and linear transformation of these changes for various time-series
forecasting models [14]. Recently, a variant of the sketch data
structure, the k-ary sketch, was proposed as one of the first schemes
for real-time heavy change detection over massive data streams [14].
As shown in Section 2, the k-ary sketch uses a constant, small
amount of memory, and has constant per-record update and recon-
struction cost [14].

However, one major obstacle for building anomaly/intrusion de-
tection system on k-ary sketch is its irreversibility. As modeled in



Section 2.1, the streaming data can be viewed as a series of (key,
value) pairs where the key can be a source IP address, or the pair of
IP addresses, and the value can be the number of bytes or packets,
etc. While for any given key, sketch can indicate if it exhibits big
change, and if so give an accurate estimation of such change, such
process is irreversible. That is, a sketch cannot efficiently report
the set of all keys that have large change estimates in the sketch.
This means that to compare two streams, we have to know which
items (keys) to query to find the streams with big changes [14, 5].
This would require either exhaustively testing all possible keys,
or recording and testing all data stream keys and corresponding
sketches. Unfortunately, neither of these are scalable.

In this paper we focus on this problem and provide efficient algo-
rithms to reverse sketches, focusing primarily on k-ary sketches [14].
The observation is that only streaming data recording needs to done
continuously in real-time, while the change/anomaly detection can
run in the background with more memory (DRAM) and at a fre-
quency only in the order of seconds. Then the challenge is: how to
keep extremely fast data recording while still being able to detect
the heavy change keys with reasonable speed and high accuracy?
In this extended abstract, we set up the general framework for the
reversible k-ary sketch, and discuss some initial approaches for im-
plementation. The fully optimized algorithms and evaluations are
presented in [23], especially for multiple heavy change detection.
With no or negligible extra memory and extra memory accesses for
recording streaming data, the heavy change detection daemon runs
in the background with space complexity and computational time
sublinear to the key space size.

The rest of the paper is organized as follows. In Section 2, we
introduce the data stream model, formulate the heavy change de-
tection problem, and present the architecture of reversible k-ary
sketch system. The system has two parts: streaming data record-
ing (Section 3) and heavy change detection (Section 4). We show
some preliminary evaluation results based on a large edge router
traffic data in Section 5. For detecting the keys corresponding to
the top 100 changes, we achieve over 95% of true positive rate and
less than 2% of false positive rate in 0.42 seconds. The streaming
data are recorded with less than 200KB memory. Related work are
surveyed in Section 6, and finally the paper concludes in Section 7.

2. OVERVIEW

2.1 Data Stream Model and the k-ary Sketch
Among the multiple data stream models, one of the most general

is the Turnstile Model [19]. Let I = �1; �2; : : : ; be an input stream
that arrives sequentially, item by item. Each item �i = (ai; ui)
consists of a key ai 2 [n], where [n] = f0; 1; : : : ; n � 1g, and an
update ui 2 R. Each key a 2 [n] is associated with a time varying
signal U [a]. Whenever an item (ai; ui) arrives, the signal U [ai] is
incremented by ui.
K-ary sketch is a powerful data structure to efficiently keep ac-

curate estimates of the signals U [a]. A k-ary sketch consists of H
hash tables of size K . The hash functions for each table are cho-
sen independently at random from a class of hash functions from
[n] to [K]. From here on we will use the variable m = K in-
terchangeably with K. We store the data structure as a H � K
table of registers T [i][j] (i 2 [H]; j 2 [K]). Denote the hash
function for the ith table by hi. Operations on the sketch include
INSERT(a, u) and ESTIMATE(a). Given a data key and an update
value, INSERT(a,u) increments the count of bucket hi(a) by u for
each hash table hi. Let SUM =

P
j2[K] T [0][j] be the sum of all

updates to the sketch. The operation ESTIMATE(a) for a given key

a returns the following.

vesta = mediani2[H]fv
hi
a g (1)

where

vhia =
T [i][hi(a)]�

SUM
K

1 � 1=K

If the hash functions in the sketch are 4-universal, this estimate
gives an unbiased estimator of the signal U [a] with variance in-
versely proportional to (K � 1) [14]. See [14] for details on the
appropriate selection of H and K to obtain accurate estimates.

2.2 Change Detection Problem Formulation
K-ary sketches can be used in conjunction with various forcast-

ing models to perform sophisticated change detection as discussed
in [14]. We focus on the simple model of change detection in
which we break up the sequence of data items into two temporally
adjacent chunks. We are interested in keys whose signals differ
dramatically in size when taken over the first chunk versus the sec-
ond chunk. In particular, for a given percentage �, a key is a heavy
change keyif the difference in its signal exceeds � percent of the
total change over all keys. That is, for two inputs sets 1 and 2,
if the signal for a key x is is U1[x] over the first input and U2[x]
over the second, then the difference signal for x is defined to be
D[x] = jU1[x]�U2[x]j. The total difference isD =

P
x2[n]D[x].

A key x is then defined to be a heavy change key if and only if
D[x] � � �D.

In our approach, to detect the set of heavy keys we create two k-
ary sketches, one for each time interval, by updating them for each
incoming packet. We then subtract the two sketches. Say S1 and
S2 are the sketches recorded for the two consecutive time intervals.
For detecting significant change in these two time periods, we ob-
tain the difference sketch Sd = jS2 � S1j. The linearity property
of sketches allows us to add or subtract sketches to find the sum or
difference of different sketches. Any key whose estimate value in
Sd that exceeds the threshold � � SUM = � � D is denoted as a
suspectheavy key in sketch Sd and offered as a proposed element
of the set of heavy change keys.

Instead of focusing directly on finding the set of keys that have
heavy change, we instead can attempt to find the set of keys denoted
as suspects by a sketch. [14, 23] discuss how to choose appropriate
values for K and H so that the set of suspects is a sufficiently
good approximation to the set of actual heavy change keys. For
simplicity we focus on the simpler problem of finding the set of
keys that hash to heavy buckets in all H hash tables. That is, we
can think of our input as a sketch T in which certain buckets in each
hash table are marked as heavy. Let t be the maximum number of
distinct heavy buckets in any given hash table, we get the following
Reverse Sketch Problem:

Input: An integer t > 0, a sketch T with hash functions fhigH�1
i=0

from [n] to [m], and for each hash table i a set of at most t
heavybuckets Ri � [m];

Output: All x 2 [n] such that hi(x) 2 Ri for each i 2 [H].

Solving the reverse sketch problem is a good way to approximate
the set of heavy change keys. Consider the case in which there is
exactly one heavy bucket in each hash table. The expected number
of false positives (number of keys that hash to all heavy buckets
by chance) for H hash tables is E[x] = n( 1

m
)H where m is the

size of the bucket space and n is the size of the key space. For
H = 5, n = 232 and m = 212 we get E[x] = 3:7 � 10�9 , which
is exceedingly small. Thus solving the reverse sketch problem is



an effective way to converge to the set of heavy change keys. To
reduce false negatives, in [23] we consider the more general version
of this problem in which we are interested in finding the set of keys
that map to heavy buckets in at least H � r of the H hash tables.
For simplicity in this paper we focus on the algorithms for the case
of r = 0.

2.3 Architecture
The conceptual framework of our change detection system has

two parts as in Fig. 1: streaming data recording and heavy change
detection. Next, we will introduce each part in this system.

IP mangling
Modular
hashing

Reversible 
k-ary sketchkey

value value storedStreaming
data 
recording

Heavy 
change 
detection

Reversible 
k-ary sketch

change
threshold

Reverse
hashing

heavy 
change 
keys

Reverse 
IP mangling

Figure 1: Conceptual architecture of the reversible k-ary
sketch based heavy change detection system.

3. RECORDING OF DATA STREAMS
The first phase of change detection involves receiving hkey, updatei

pairs one after another from an incoming data stream, and record-
ing them in a summary data structure. As discussed in Section 1,
each update should require very few memory accesses and the en-
tire summary structure should be small enough to fit into fast mem-
ory. These requirements are fulfilled by the k-ary sketch. However,
to allow reversibility, we modify the update procedure of the k-ary
sketch with modular hashing(see Section 3.1). To maintain the
accuracy of the sketch with this type of hashing, we also need to
perform IP-mangling(see Section 3.2).

3.1 Modular Hashing
32 bits

IP address 
divided into
q=4 words

8 bits

10010100 10101011 10010101 10100011

h1() h2() h3() h4()

010 110 001 101

Four separate hash
functions applied to 
each word

010 110 001 101

Four hash 
functions 
combined to form 
final hash value

Figure 2: Modular hashing uses q hash functions to hash each
word of the key, which are then combined for the final hash.

Modular hashingis illustrated in Figure 2. Instead of hashing
the entire key in [n] directly to a bucket in [m], we partition the
key into q words, each word of size 1

q
log n bits. Each word is then

hashed separately with different hash functions which map from

space [n
1

q ] to [m
1

q ]. For example, in Figure 2, a 32-bit IP address
is partitioned into q = 4 words, each of 8 bits. Four independent
hash functions are then chosen which map from space [28] to [23].
The results of each of the hash functions are then concatenated to
form the final hash. In our example, the final hash value would
consist of 12 bits, deriving each of its 3 bits from the separate hash
functions hi;1; hi;2; hi;3; hi;4. If it requires constant time to hash
a value, modular hashing increases our update time from O(H) to
O(q �H). In Section 4, we discuss how this modular hashing allows
us to efficiently perform change detection.

However, an important issue with modular hashing is the quality
of the hashing scheme. The probabilistic estimate guarantees for k-
ary sketch assume 4-universal hash functions, which can map the
input keys uniformly over the buckets. Modular hashing does not
have this property. Consider network traffic streams, which exhibit
strong spatial localities in the IP addresses, i.e., many simultaneous
flows only vary in the last few bits of their source/destination IP ad-
dresses, and share the same prefixes. With the basic modular hash-
ing, the collision probability of such addresses is significantly in-
creased. For example, consider a set of IP addresses 129:105:56:�
that share the first 3 octets. Our modular hashing always maps the
first 3 octets to the same hash values. Thus, assuming our small
hash functions are completely random, all distinct IP addresses
with these octets will be uniformly mapped to 23 buckets, resulting
in a lot of collisions. This observation is further confirmed when
we apply our modular hashing scheme with the network traces used
for evaluation, the distribution of the number of keys per bucket was
highly skewed, with most of the IP addresses going to a few buck-
ets as shown in Figure 3. This significantly disrupts the estimation
accuracy of our reversible k-ary sketch. To overcome this problem,
we introduce the technique of IP mangling.

3.2 IP Mangling
In IP manglingwe attempt to artificially randomize the input

data in an attempt to destroy any correlation or spatial locality in
the input data. The objective is to obtain a completely random set
of keys, and this process should be still reversible.
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The general framework for the technique is to use a bijective
(one-to-one) function from key space [n] to [n]. For an input data
set consisting of a set of distinct keys fxig, we map each xi to
f(xi). We then use our algorithm to compute the set of proposed
heavy change keys C = fy1; y2; : : : ; ycg on the input set ff(xi)g.
We then use f�1 to output ff�1(y1); f

�1(y2); : : : ; f
�1(yc)g, the

set of proposed heavy change keys under the original set of input
keys. Essentially we transform the input set to a mangled set and
perform all our operations on this set. The output is then trans-
formed back to the original input keys.

Consider a function of the form f(x) � a � x mod n. Such
a function is invertible if and only if a and n are relatively prime.
We refer to this as the OLE (odd linear equation) transformation.
We are interested in values of n equal to 232 in the case of an IP
address. Thus for any odd a 2 [n] such a function on the domain
[n] yields a bijection. Our implementation is to choose uniformly
at random an odd value for a from 1 to n � 1. The mangled key
can easily be reversed by computing a�1 [1] and applying the same
function to the mangled key, using a�1 instead of a. This scheme
is good at randomly mapping keys independently as long as their
suffixes differ. Ideally, n would be a prime and we could choose



any a from 0 to n � 1 and thus have a universal hashing scheme.
The weakness of our method can be seen in that for any two keys
that share the last k bits, the mangled versions will also share the
same last k bits. Thus distinct keys that have common suffixes will
be more likely to collide than keys with distinct suffixes. However,
in the particular case of IP addresses, this is not a problem. Due
to the hierarchical nature of IP addresses, it is perfectly reasonable
to assume that there is no correlation between the traffic of two
IP addresses if they differ in their most significant bits. We thus
believe that this mapping will sufficiently alter the original set of
keys such that the locality (in terms of hamming distance [12] or
absolute difference) of streaming keys will be destroyed.

We find that in practice our intuition holds true and the mangling
effectively resolves the highly skewed distribution caused by the
modular hash functions. Using the source IP address of each flow
as the key, we compare the hashing distribution of the following
three hashing methods with the real network flow traces: 1) mod-
ular hashing with no IP mangling, 2) modular hashing with OLE
transformation for IP mangling, and 3) direct hashing with a com-
pletely random hash function. Figure 3 shows the distribution of the
number of keys per bucket for each hashing scheme. We observe
that the key distribution of modular hashing with OLE transforma-
tion is almost the same as that of direct hashing. The distribution
for modular hashing without IP mangling is highly skewed. Thus
IP mangling is very effective in randomizing the input keys and
removing hierarchical correlations among the keys. We note that
for non-hierarchical keys, such as source/destintion pairs of IP ad-
dresses, an alternate (and slightly less efficient) scheme needs to be
used. Such a scheme is described in [23].

Note that no extra memory or memory access is needed for mod-
ular hashing or IP mangling. Modular hashing of each word with
small number of bits can be performed efficiently without pre-storing
the mappings and then executing the table lookup. We can simply
ignore any bits higher than log n for the modular operation of the
OLE transformation.

4. REVERSE HASHING

4.1 Single Heavy Bucket
Once we have updated the sketch for each item in the data stream

we want to obtain the set of suspect heavy change keys from the
sketch, i.e., the set of keys that hash to heavy buckets in each of
the H hash tables. There are two possible approaches to solve this
problem. The first is to iterate through all possible keys in the space
[n] and output the keys that hash to some heavy buckets for all the
hash tables. This brute force approach obviously is not scalable.

The second basic approach is to perform bucket intersections.
Suppose for each hash table i there is exactly one heavy bucket.
Denote the set of keys that hash to the heavy bucket in table i as
Ai. We can determine the set of suspect keys by computing the
set
T
i2[H]Ai. This approach in general is also not scalable. Each

set Ai is expected to be of size n
m

. To perform detection, we need
to obtain this set of keys for any given bucket in the sketch. This
requires to store the mapping for the whole key space. In addition,
it is inefficient to take intersections of such large sets, For example,
for 32-bit IP address keys and m = 212 , the sets Ai are each of
expected size 220 .

However, with modular hashing we can store and intersect these
sets more efficiently. To implicity represent the sets Ai, for each
bucket we store in memory q reverse lookup tables that map the
bucket to its modular bucket potentialsets Ai;1; Ai;2; : : : ; Ai;q .
That is, if the index of the bucket corresponding toAi is y1:y2:y3:y4

for q = 4, then a modular key xw 2 [n
1

q ] is in Ai;w if hi;w(xw) =
yw . These modular potential sets give a compact representation of
each set of bucket potentials because a key x is in Ai if and only if
the wth word of x is in Ai;w for each w from 1 to q. In addition,
we can compute

T
i2[H]Ai by computing

T
i2[H]Ai;w for each w

from 1 to q. That is, a key x is in
T
i2[H]Ai if and only if the wth

word xw of x is in
T
i2[H]Ai;w for each w from 1 to q.

For example, suppose a heavy bucket has the modular poten-
tials sets A(i;1); A(i;2); A(i;3); A(i;4) for q = 4. In the case of
H = 5 the intersection involves four separate intersection oper-
ations: Xj = A(1;j)

T
A(2;j)

T
A(3;j)

T
A(4;j)

T
A(5;j) for j =

1; 2; 3; 4, corresponding to four partitions of the IP address. The re-
sultant intersections from the four partitions can then be combined
to form the final set of suspect keys, i.e., any x1:x2:x3:x4 such that

each xj 2 Xj . Since each set being intersected has size ( n
m
)
1

q we
can determine these q different sets of H set intersections in time

O(q �H � ( n
m
)
1

q ). Without modular hashing, the intersection takes
O(H � n

m
). For the parameter values given above, our method yields

q �H( n
m
)
1

q = 4 � 5 � 32 = 640 versus H � n
m

= 5 � 220 = 5242880.
Finally, we note that while increasing q decreases the the run

time of reverse hashing, there is a limit. The size of the space the

modular hash functions map to, m
1

q , must be greater than 1. There
is thus a tradeoff between the size of m, which effectively deter-
mines the size of the sketch, and the size of q, which determines
the efficiency of reverse hashing. In [23] we discuss in detail this
tradeoff and give reasons for choosing q = �(log log n).

4.2 Multiple Heavy Buckets
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Figure 4: For two heavy changes, various possibilities exist for
taking the intersection of each bucket’s potential keys

We now consider how to generalize the method of reverse hash-
ing described above to the case where there are multiple heavy
buckets, say at most t, in each table. For t � 2 the problem is more
difficult since it is not clear how to take the bucket intersections
described for t = 1. For example, for t = 2 there are tH = 2H

possible ways to take the H-wise intersections discussed above as
shown in Figure 4. One heuristic solution is to union all of the
bucket potential sets in each hash table and intersect these H union
sets. But it is easy to see that such a set can contain keys that do
not hash to heavy buckets in each of the H hash tables. We thus ex-
pect to get a large number of false positives from this method. We
could verify each output key of this method by estimating its value
through k-ary sketch. But in our evaluation section we show that
the number of false positives generated by this method grows ex-
ponentially in the number of heavy buckets t. Thus this verification
procedure is applicable only for small values of t.

Our more efficient scheme is as follows. For each w from 1 to
q we compute a set Iw which consists of the set of all xw 2 [n

1

q ]
such that for each hash table i, there is some heavy bucket A such
that xw is contained in the modular potential set Ai;w for A. In



addition, we attach to each element in Iw an H-dimensional bucket
vector which denotes which heavy bucket in each hash table the
corresponding modular word occurs in. Since a given modular key
can potentially occur in up to t heavy buckets for a given hash table,
each modular key for a word w can have multiple vectors. The
set Iw may thus have multiple occurrences of a given key, once
for each of its vectors. We then create a graph whose vertices are
the elements of the q sets Iw . Edges are drawn between vertices
x 2 Iw�1 and y 2 Iw if the bucket vectors for elements x and y
are the same. It then follows that any length q path through this
graph corresponds to a key that hashes to heavy buckets in all H
hash tables.

For example, in Figure 5, suppose t = 5 and each heavy bucket
in each hash table is indexed from 1 to 5. From the figure we have

that for key a 2 [n
1

q ] the modular hash functions are such that
h0;1(a) = 2, h1;1(a) = 1, h2;1(a) = 4, h3;1(a) = 1, and h4;1 =

3. We also have, by coincidence, that f; g 2 [n
1

q ] hash to exactly
the same values for each of the H hash functions hi;3. Thus there
are two length q paths through the graph, a:d:f:i and a:d:g:i. These
are thus the two suspect heavy change keys for the sketch.

b , vb =

c , vc =

a , va =

2
1
4
1
3

3
5
1
1
4

2
2
2
1
3

e , ve =

d , ve =

2
1
4
1
3

2
2
2
1
3

g , vg =

h , vh =

f , vf =

2
1
4
1
3

2
1
4
1
3

2
2
2
1
3

i , vi =

2
1
4
1
3

I1 I3 I4I2

Figure 5: The sets Iw form a graph whose length q paths corre-
spond to the heavy change keys.

4.3 Work in Progress
In [23], we give the details of our reverse hashing algorithms for

multiple heavy changes, as well as various optimizations for reduc-
ing false positives and false negatives and for improving efficiency.
We highlight those techniques as the following.

� We generalize the algorithm so that it detects keys that occur
in heavy buckets for at least H � r of the H hash tables.
We can then adjust the parameter r to balance the trade-off
between false positives and false negatives.

� We introduce bucket index matrixalgorithm to significantly
reduce the size of the produced graph. This allows us to de-
tect larger numbers of heavy changes efficiently.

� To further increase the number of heavy changes we can ef-
ficiently detect, we propose the iterative approachto reverse
hashing. This scheme can also help reduce false positives.

� To reduce false positives we use a second verifier sketch that
uses 4-universal hash functions. We give analytical bounds
on the false positives for this scheme.

� We introduce a new IP-mangling scheme with better statisti-
cal properties that permits reverse hashing with non-hierarchical
keys such as source/destination IP address pairs.

5. PRELIMINARY EVALUATION
In this section we show some preliminary evaluation results of

our schemes, and refer the readers to [23] for more comprehensive

testing and results. Our evaluation is based on one-day netflowtraf-
fic traces collected from a large edge router in Northwestern Uni-
versity. The traces are divided into five-minute intervals with the
traffic size for each interval averaging about 7.5GB. In addition to
the reversible k-ary sketch, we implemented a naive algorithm to
record the per-source-IP volumes, and find the top IPs with heavy
changes as the ground truth. Then we use the volume change of
the top x-th (x = 20; 40; etc:) IP as threshold to infer the top
x IPs with heavy volume changes over that threshold through re-
versible k-ary sketch. Our metrics include speed, real positiveand
false positive percentages. The real positive percentage refers to
the number of true positives reported by the detection algorithm di-
vided by the number of real heavy change keys. The false positive
percentage is the number of false positives output by the algorithm
divided by the number of keys output by the algorithm.
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Figure 6: Heavy change detection accuracy: true positive (top)
and false positive (bottom). The top-x axis show the corre-
sponding change threshold � defined in Section 2.2.

For single heavy change, we always have 100% real positive and
zero false positive. For multiple heavy changes, we also achieve
very high accuracy with the algorithms outlined in Sections 4.2
and 4.3. Figure 6 shows some sample results from [23], and com-
pare them with those of the simple case r = 0. Here H = 6 and
k = 212, thus only 192KB memory are used for recording the re-
versible k-ary sketches. The results are very accurate for r = 2:
over 95% true positive rates for up to 140 heavy changes and neg-
ligible false positive rates; while the true positive rate drops sig-
nificantly with r = 0 because it is very sensitive to the collision.
In general, higher values of r (with r < H=2) results in higher
true positive percentage with a slight degradation in false positive
percentage. We tried several different traces from different time in-
tervals and obtained similar results. Note that for any given key,
k-ary sketch can only estimate its value with bounded errors. In
our experiments, we found that all the heavy changes missed are
due to boundary effects caused by estimation error, and all the ma-
jor changes are detected.

Next, we compare our bucket-vector algorithm with the naive



way of intersecting the unions of buckets in each hash table as de-
scribed earlier in Section 4.2. Figure 7 shows the number of false
positives for the naive method for which the number of false pos-
itives rises exponentially even for a small number of true heavy
changes. As described in more detail in [23], the reverse hash-
ing process is very fast, taking only 0.42 seconds for up to 100
heavy changes with an un-optimized implementation on a Pentium-
IV 2.4GHz PC.
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Figure 7: The number of false positives by intersecting the
unions of buckets

6. RELATED WORK
For high-speed network monitoring, most existing high-speed

network monitoring systems estimate the flow-level traffic through
packet sampling [6, 7], but this has two shortcomings. First, sam-
pling is still not scalable, especially after aggregation; there are up
to 264 flows even defined only by source and destination IP ad-
dresses. Second, long-lived traffic flows, increasingly prevalent for
peer-to-peer applications, will be split up if the time between sam-
pled packets exceeds the flow timeout [6].

Applications of sketches in the data streaming community have
been researched quite extensively in the past. This has also been
motivated by the emerging popularity of applications for network
traffic accounting, anomaly detection and very large databases with
massive data streams. Usually the work has focused on extracting
certain data aggregation functions with the use of sketches, like
quantiles and heavy hitters [4, 3, 11, 2], distinct items [9] etc.

Recently, Cormode and Muthukrishnan proposed deltoids ap-
proach for heavy change detection [5]. Though developed inde-
pendently of k-ary sketch, deltoid essentially expands k-ary sketch
with multiple counters for each bucket in the hash tables. The num-
ber of counters is logarithmic to the key space size (e.g., 32 for
IP address), so that for every (key, value) entry, instead of adding
the value to one counter in each hash table, it is added to multi-
ple counters (32 for IP addresses and 64 for IP address pairs) in
each hash table. This significantly increases the necessary amount
of fast memory and number of memory accesses per packet, thus
violating both of the aforementioned performance constraints. For
instance, it requires more than 1MB to detect 100 or more changes,
and therefore cannot even fit into the latest FPGAs, which only has
up to 600KB of block SRAM that can be efficiently utilized [27].

7. CONCLUSIONS
We have proposed novel reverse hashing methods for improving

sketch-based change detection in high speed traffic. Our techniques
can efficiently and accurately output the set of keys which show
heavy change in two different time intervals, without storing the
key information explicitly. Being able to reversea sketch in this
fashion is a key step to enhance the power of sketch based change
detection to online, single pass settings. Without adding any mem-
ory or memory access to record the streaming data, our algorithms

use sub-linear time and space in the size of the key space for heavy
change detection [23], and are scalable to large key spaces.
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