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Abstract—Sampling technology has been widely deployed in compromising the above contradiction [3] [4] [5] [6]. There
measurement systems to control memory consumption and pro- are two generic sampling approaches for passive measutemen
cessing overhead. However, most of the existing sampling theds packet samplingndflow sampling The former samples each

suffer from large estimation errors in analyzing small-siz flows. . . . . h
To address the problem, we propose a novel adaptive non-liae packet independently with a certain probability, while Eager

sampling (ANLS) method for passive measurement. Instead Samples packets at the granularity of flows (i.e., packets in
of statically configuring the sampling rate, ANLS dynamicaly different flows are sampled with different sampling ratd3)e
adjusts the sampling rate for a flow depending on the number of passive measurement system/infrastructure typicallysists
packets having been counted. We provide the generic princips of three components. Anonitoring componentapped into

guiding the selection of sampling function for sampling rae ad- : .
justment. Moreover, we derive the unbiased flow size estimain, the network link uses a sampling strategy to select packets

the bound of the relative error, and the bound of required cownter ~ and forwards them to a reporting component. Taporting

size for ANLS. The performance of ANLS is thoroughly studied componenaggregates the packet information into flow records
through theoretic analysis and experiments under synthetireal and exports them to emote data center and analysis system
network data traces, with comparison to several related samling componentThe data center is equipped with high-density data

methods. The results demonstrate that the proposed ANLS t hich kes th t It ilabheto t
can significantly improve the estimation accuracy, particlarly storage, which makes the measurement results availa 0

for small-size flows, while maintain a memory and processing analysis system for different applications. In this papee,
overhead comparable to existing methods. focus on the sampling strategy for the monitoring component

and study how to design an efficient sampling scheme that
enables precise estimations with a reasonable cost.
|. INTRODUCTION An efficient sampling method is expected to be applicable

The Internet has been evolving into a common communici®- different types of applications, where different sizefs o
tion infrastructure supporting a variety of applicatiomsich flows may be of importance. For example, flow-leuslage
at the same time requires dedicated network managemenggountingis essential for management applications [4] [5]
necessary quality of service provisidrassive traffic measure- [7], .9., usage-based charging/pricing, network plagnand
mentis very important to network management, which cafiaffic engineering. For usage accounting, the main target i
provide various network status information including fiaf to catch theelephant flowgi.e., the flows of large size). For
matrix, packet length distributions, traffic volumes, $ess network securityapplications, the flow-level traffic patterns
durations, etc., to be exploited for charging, engineeringften help reveal anomalies [8] [9] [10]. A typical scenario
managing, and securing the communication networks [1] [#.Sharp increase of 40 bytes TCP flows with only one packet
With the continuous increasing of line speed and number i§f Probably caused by SYN flooding attacks or flash crowds.
flows, per-flow passive measurement has become a challendititiike the usage accounting, network security application
task due to the demanding requirements on both memdBgUire accurate estimation anice flows(i.e., the flows of
size and memory bandwidth. Off-the-shelf memory is eith&mall size). It is the diverse application requirementst tha
high speed or high capacity. Large capacity DRAM can hol@otivate us to develop a new sampling method, which should
more flow records but its low speed limits the samp"ngound the estimation error for both small and large flows.
rate. Fast SRAM supports high speed sampling but is sus-The existing static sampling (SS) methods (as adopted by
ceptible to overflow due to limited memory capacity. Thud3] [11] [12] [13]) selects packets with the same sampling
it is necessary to deve|0p an efficient Samp"ng method f{ﬁte/prObabllltW It can be proved that the unbiased estimation
value of the flow sizen is ¢/p and the relative error of this
This work is partly supported by NSFC (60573121, 606252@hina  estimation is,/(1/p — 1)/n, wherep is the static sampling rate,

973 program(2007CB310702),the Cultivation Fund of the Bejentific and . is the counter value for a sampled flow amdk the flow size
Technical Innovation Project, MoE, China (705003), thectgized Research

Fund for the Doctoral Program of Higher Education of Chin@0@0003058), in terms of number of packets (See the proof n Appendlx).
Tsinghua Basic Research Foundation(JCpy2005054). From the results, we can see that the major problem of



. . . o : TABLE |
employing the static sampling method is its intolerablyhhig TABLE OF NOTATIONS

relative error for small flows. For instance, the relativeoer
will be 300% withp = 0.1 andn = 1. Using a largerp ~Notations _ Descriptions

can mitigate the relative error but lead to higher memory¢ the counter value
ti hich conflicts with the purpose of sampling. ' the counter value in fime
consump on, w p p . p g_' P the static sampling rate
In this paper, we propose an adaptive non-linear sampling(c) the sampling rate when the counter value:jsising ANLS
(ANLS) method for passive measurement. Instead of stitical /() the sampling function which is used to calculdtc)
- . - the parameter of ANLS defined ifi(c)
conﬂg_urmg the sampling rate, ANLS dynamically tunes the the actual flow size
sampling rate for a flow depending on the number of packets the estimation of flow size

having been samples, which is maintained byoanter The  Qi(n) me PTObab”tity ”}agA?Ei thr? gcwa' flow size is

. . . . e parameter o metno

intuition of ANLS is to use a large sampling rate for small - the final sampling rate of BNF

flows and a small sampling rate for large flows. Specifically,« the parameter of the sampling function defined in Section IV

this paper contributes in the following three aspects:

1) We provide the general principles guiding the selectiofyoposed in [6] to improve memory utilization by an adaptive
of sampling function for sampling rate adjustment. Thgnear sampling method. A relatively large sampling rate is
sampling rate is adjusted according to the counter valugnfigured at the beginning of the measurement interval and
There is no need to predict or estimate the flow sizgj|| adaptively decrease when possible memory overflow is
distribution. detected. A size-dependent sampling (SDS) mechanism was

2) We derive the unbiased flow size estimation, the bound gfesented in [5]. A flow whose size is larger thais always
the relative error, and the bound of the required countgglected, while the flow with size < = is sampled with
size for ANLS. probability z/z. The authors in [16] provided an important

3) The performance of ANLS is thoroughly investigateg¢heorem specifying the minimum number of packet samples
through theoretic analysis and experiments under syRsquired to be sampled to guarantee the expected relative er
thetic/real network data traces, with comparison to seévelgng they also proposed an adaptive random sampling (ARS)
related sampling methods. The results demonstrate thaéthod. However, to utilize their theorem, it is requireditst
the proposed ANLS significantly improve the estimatiogstimate the total packet amount using a linear auto-reiyes
accuracy, particularly for small-size flows, while main{aR) prediction model. The accuracy and the implementation
taining a memory and processing overhead comparaligmplexity of ARS are greatly restricted by the determioati
to those of existing methods. Furthermore, flow size digf the AR model parameters. All the above methods optimize
tribution has almost no impact on the estimation accurag@ either the memory size or accuracy for medium to large

The rest of the paper is organized as follows. Section flows, while the relative error in estimating small flows is

reviews the related work. Section Ill presents the proposednsiderably large.

ANLS method. Section IV demonstrates the properties of Many previous works estimated the original flow size dis-
ANLS. Section V evaluates the performance of ANLS. Sectiafibution from sampled flow statistics [4] [17] [18], or ugin
VI gives the concluding remarks. a data stream algorithm with “lossy data structure” [19]eTh
flow size distribution is one of the most fundamental stasst

. . L , , from which we can deduce many other statistics, such as the
A pioneering work on statistical traffic sampling was pubgya| numper of flows and the average flow size. However,

lished in [3], which uses static sampling to estimate thekpac ,q fi6\y size distribution can not indicate flow-specific prop
size distribution in a backbone network. The primary flowgiies e.g., accurate size estimation for a particular fio

level measurement tool used by network operators nowad%population which is to be addressed in this paper.
is NetFlow [14], which resorts to packet sampling (known as ’

sampled NetFlow [13]), to handle the large traffic volume and I11. ADAPTIVE NON-LINEAR SAMPLING METHOD
diversity in high speed links. Considering the multi-hoptfee
of most flows, the work [11] [12] deployed the samplin

system in a distributed manner for the purpose of passive X i ) .
measurement. The “sample and hold” method was introducdge are in terms of number of packets. With static sampling

in [7], which uses a small and fast memory to process eve'fnftEOd of.ratl@,fthe gourl_tervallijet will %‘? refresrr:e(: L:Ipon an
packet in a real-time manner. This method is used to capt cket arrival after time interval, according to the following

large flows but not for small flows. CATE was proposed iff XPression

[15] which estimates the proportion of each flow by making

multiple comparisons for each arrival and counting the nemb Ctyt! = {

of coincidences. This method is accurate for media-size and

large-size flows but is not accurate for small-size flows.  The ANLS is proposed to replace the static sampling pdte
In the context of adaptive sampling, several mechanisms i8¢ with a functionP(c) over the counter value It is expected

introduced for different purposes. Better NetFlow (BNF)swathat P(c) diminishes with the increasing of Specifically,P(c)

II. RELATED WORK

For convenience, we summarize the main notations used
this paper in Table |, where the counter value and flow

¢t +1  with probability p;

e« with probability1 — p. (1)



1 ‘ ‘ ‘ ‘ 4000 sample until the end of the flow. Moreover, it is not difficult

to see tha;(1) =1 andQo(n) = Qn(n —1) = 0.
© Let F(n) denote the expectation af(c) when the actual
9 flow size isn, we have
S o5 12000 E n
* F(n) = E[a()] = Y f(5)Qi(n) )
=0
Based on (4) and (5), we can further have
% 200 400 800 800 1000 F(n)—-Fn-1)=
Fig. 1. An example off(c) and P(c). Zf NQi—i(n—1DP>i— 1)+ Qi(n — 1)(1 — P(:))]
for the proposed ANLS is calculated as 1:111_1
Pe) =1/[f(c+1) = )] @) 2 SO =IO =0 = PO)
where f(c) is a sampling function to be selected according to L
the following general principles. = Z F@Qi—1(n—1)PE-1) Z f@Qi(n — 1)P(i)
Definition 1: Sampling functionf(c),c > 0, is defined as a ;:fl

function satisfying the following conditions:

1) a real increasing convex function;

2) f(0)=0andf(1) =

3) f(c) < fle+1) <bf(e)+1 with b>1 andc > 0.
Now, given a pre-defined(c),c > 0, we could adaptively
tune the sampling rate depending on the counter value. Wacording to (2),f(i + 1) — f(i) = 1/P(i). Thus,
the convexity, it is not difficult to check that 1— [f(c +
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[ +1) = f(]Qi(n — 1) P(i).
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1) — f(e)] T— P(c) |. Namely, the sampling rate decreases F(n)—F(n—1)= Z Qi(n—1)=1. (6)
as the counter value (as well as the flow size) increases. A i=1
nice feature of ANLS compared to existing work is that the " ) )
sampling rate is adjusted according to the counter value and F(n) = Z [F(@) = F(i = D] + F(0) = n. @)
there is no need to predict or estimate the flow size disiobut =t
In Fig. 1, we illustrate an example gfc) and P(c). That is,

Eln(c)] = E[f(c)] = F(n) = n. )

IV. PROPERTIES OFANLS

In this section, we theoretically investigate the properti Which represents an unbiased estimation of the flow sime.
of adaptive non-linear sampling from the perspectives of 2) Bounded relative error:
accuracy, memory consumption and processing overheau, wit Theorem 2:Using () = f(c) as the unbiased estimation,
sampling function selected accordingB@finition 1 the relative error is upbounded T — bz—_nl
Proof: Let H(n) denote the expectation gf(c) when

A. Accuracy L
) o ) _ the flow size isn. We have
The accuracy in estimating the flow size can be examined "
through two aspects: unbiased estimation and bounded/eelat H(n) = E[f?(c Z (9)
error. i=0

1) Unbiased estimation:

) Thus, from (4) and (9), we get,
Theorem 1:Under the ANLS methodf(c) = f(c) is an

unbiased estimation of the flow size H(n)— H(n—1) (10)
Proof: Let Q;(n) denote the probability that counter value =
¢ equalsi when current actual flow size is. We have, = (f2@)Qi-1(n = )P — 1) + Qi(n — 1)(1 — P(i))]
i=1
1—1 . N o nei
Qm=11PH 3, A-PO.A-PO™ = SRRt~ DIPG) + (1 - P())
Jj= ag+...fa;=n—1i i=1
(3) n n—1
Qi(n) =Qi_i(n—1)P>i — 1)+ Q;(n — 1)(1 — P(:)). 4 = Z (f2()Qi—1(n — P> — 1) — Z (f*(1)Qi(n — 1) P(i)
wherea;,j =0,--- ,i—1 represents the number of unsampled ;__21 n—ll_l
packets between thih and the(j+1)th sampled packets, and = > (f*(i +1)Qi(n — )P() — > (f*(1))Qi(n — 1)P(i).
a; represents the number of unsampled packets afteitthe =1 i=1



Sincef(i+ 1) — f(i) = 1/P(:) andQp(n — 1) = 0, we have 2

“““ static sampling/BNF, p=0.25

n—1
. . == gdapti ling, u=0.01
H(n) = H(n=1) = 3 Qi(n = D[f(i+1) + f@).  (11) L adapive sampling 120,002
=1

Applying Definition 1and Theorem 1we obtain,

relative error

n—1
H(n)—H(n—1) < (14+b) > Qi(n—1)f(i) +1

i=1 0.5

=(1+bFn-1)+1
=(14+bn-1)+1 0 Lmmimmim e ey sy
0 200 400 600 800 1000
and therefore n
H(n) = i [H(i) — H(i — 1)] + H(0) Fig. 2. Theoretical results of relative error.
=1
(b+1)n%—(b—1)n Therefore,
s 2 (12) H(n) = n? 4+ n(n2— 1)u, (16)
The variation of adaptive non-linear sampling is then com- o ] )
puted as, and the variation and relative error can be obtained as,
. -1
Varli(e) = Hin) - P2 < (/0= _ =D (13 Var[a(e)] = H(n) — (F(n))? = ”(”2 b, 1)
- 2 on ' D)
and the relative error of ANLS can be upbounded by, vVarla(e] _ V75— * _ [(L-1/n) (18)
n n 2
\/Var[ﬁ(c)] \/(b -1 (-1
- < IR (14) [ |

With Theorem 3and Theorem 6(see Appendix), we can
examine the relative error of ANLS and static sampling versu
the flow sizen, as shown in Fig. 2. Better NetFlow (BNF) [6]
adaptively adjusts the sampling rate, but it samples all the
flows with the same sampling rate. BNF can be viewed as
adaptive linear sampling since it adjusts sampling rateslity.

If the final sampling rate of BNF in a sampling intervalyig,
(fhe relative error of BNF is the same as the relative error
of static sampling with sampling rate;. In other words, in
flo) =[(14+u)=1]/u,0<u<1, (15) theory, the relative error curve of BNF is the same as that
wherew is a constant parameter. It can be easily proved th%%StagC samphngf] (as shown in .F'g' 2) \?.”th _salg\ph.ng fﬁfgf. d
(15) satisfiedDefinition 1by settingb = 1 +u. From Theorem €a vantagep BNF over sta‘uc_ sampling is that it could fin
a proper sampling rate automatically to control the memory

1, it is known thatn(c) = [(1 + »)¢ — 1]/u iS an unbiased . 2 L .
estimation with (15) {E\d)opte[((j as tfie sar]r<pling function. Is thconsumpt|on (this is the motivation of BNF). From the figure,

. . ... we observe that 1) for the static sampling method, the veati
case, we can further obtain the accurate relative erroeaust . )
error is quite large for smalt as we demonstrated before; 2)
of an upper bound.

Theorem 3:when the sampling function ig(c) = [(1 + For the ANLS method, the relative error is almost the same for

W) — 1]/u, the relative error of the unbiased estimation i ifferent values of:; 3) The relative error of ANLS decreases

(1 —1/n)u/2. as parametes diminishes.

Proof: From (15), we have, Frpm the Lemma 4 in [15], we can calculate the theoretical
relative error of CATE as follows,
fla+1)—f@)—1 1 ;

Theorem 2tells that the relative error is zero whenis
one. The relative error increases with the increment,ofut
converges to,/(b—1)/2 whenn — oo. The relative error
decreases als diminishes, whileb should be larger than one
as described iefinition 1

To give an intuitive illustration, we select one specifi
sampling function according tDefinition 1as

" = [l +w)" = 1] = f(i). \/(1_p§.)(1+2(2/«—1)pf/(1 +p5))
Consequently, (11) is equivalent to 20 VNE (19)
H(n) - H(n-1) The theoretical results of CATE and ANLS are listed in

= ) . _ Table 1l. When we compute the results, the parameter for
N ; @iln = D{FE) + 1+ G +1) = fG) 1]} CATE is set ask = 1000, and the parameter for ANLS is
:;1 1 configured as: = 0.002. In this comparisonN = 10°, and
- Z Qi(n—1)(2f(3) + 1) +u Z Qi(n —1)f(4) the traffic proportions for large-size flows, medium-sizeviéo
i=0 i—0 and small-size flows ar@1 ~ 0.2, 0.0001 ~ 0.0002, and10~7,
= 2n—1)+1+u(n-1). respectively. The results indicate that ANLS is more acieura



than CATE for medium-size and small-size flows. It is a little 03
bit less accurate for large-size flows for ANLS but the accyra
is reasonably acceptable.

I
[N

TABLE I
THEORETICAL RELATIVE ERROR COMPARISON BETWEEICATE WITH
k = 1000 AND ANLS WITH p = 0.002.

o
[

Flow size Relative error of CATE  Relative error of ANLS
large-size 0.0018 ~ 0.0028 < 0.0316
medium-size 0.1061 ~ 0.1871 < 0.0316
small-size 158 < 0.0316

the expected counter value

Gap between the bound and

O ": Il Il Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
n

B. Memory consumption Fig. 3. Gap between the bound and the expected counter value.

There are two parts of memory usage, the sample count 14 e
and the precomputed mapping table fBtc) (equation 2), B | e e bl w0 002
respectively. The former one dominates the memory usage —— static sampling, u=0.25

1) Memory for sample counter&¥hen the actual flow size
is n, the expected counter value in ANLS can be calculate
as

# of counter bits

Blem] =" Qulwyi (20) 4

for which we have the following theorem.
Theorem 4:The expected counter valu€lc(n)] is up- 10 10 ﬂo\to;ze 10 10°
bounded byf~!(n), where f~!(n) is the inverse function of

fle). o ) o ) Fig. 4. Counter bits required for different sampling mets.od
Proof: As indicated inDefinition 1, f(c) is a convex

function, which satisfies note that when we design the counter system, the width of
the counter entry is determined by the largest counter value
> — ) fi(y), Y,y >0 21 . . .
f@) 2 1) + @ =y ), Yo,y > (21) Therefore, while keeping the same number of entries, ANLS
wheref/.(-) is the derivative off(-) on the right. Now, let: = ¢ consumes a smaller amount of memory than static sampling.

andy = E[c]. We get, 2) Memory for mapping tablesTo avoid the high compu-
, tation overhead, we pre-compute the values¢f) and store

fe) = f(Bd) + (e = EleD) fr (Elc]) (22) it in a table. For on-line operation, we only need a single
E[f(e)] > E[f(E[e]) + (¢ — El) fH(E[d)]- (23) memory access to read out the required). Considering

the worst case of a fully loaded OC-48 link, which contains
only one flow with all 40-Byte packets. In this scenario, we
E[f(c)] =n > f(Elc]) (24) could compute the flow length in a one-minute measure-
ment interval, and then the counter value will not exceed
f~Y(n) < 10000 (actually it is about 9992). We store a 16-
Ele(n)] < fY(n) (25) bit for eachP(c) wherec < 10000. Therefore, the extra table
to keep the mapping table(c) is only 160kb. Such amount
B of memory is not large compared with that for counters and in

The sampling function is specified in (15), and the expectggle evaluations of Section V, we focus on the counter memory
counter value of adaptive non-linear sampling method cagage.

be accurately calculated by (3) and (20). We compare this )

calculated value with the bound indicated Theorem 4and C- Processing overhead

plot the gap between them in Fig. 3. The figure shows that theThe processing overhead is the computation cost of pro-
bound inTheorem 4is a tight one for the specific samplingcessing each packet, including the memory accesses and CPU
function defined in (15): the exact gap is very small and treperations.

relative gap is approximately on the order wf~* or below. There are five steps for the general sampling model. (i)
The counter values of the static sampling method and ANLiBe flow classification module picks up the flow ID from
are shown in Fig. 4. When the flow size +s the expected the incoming packet, (ii) the flow sampling module decides
counter value for static sampling is obviously. The counter whether to sample the packet or not. If yes, (iii) it fetches
value for adaptive non-linear sampling is larger than the onhe counter address from the flow table, (iv) gets the counter
for static sampling whem is small, but it becomes muchvalue using the address, and (v) writes back the update@ valu
smaller than the one for static sampling whegrows. Please to counter. Otherwise, drop the packet and wait for the next

Substituting (8) into (23), we obtain,

Since f(c) is an increasing function, we can have



consumption for flow measurement.

V. PERFORMANCEEVALUATIONS

i) In this section, we compare ANLS with other existing
i(if) approaches including SS, BNF [6], SDS [5], CATE [15],
Fa i() | —— and ARS [16] in terms of accuracy, memory cost, and pro-
ds ife o [P 9 E cessing overhead by performing two sets of experiments in
M the evaluation comparisons: 1) employing synthetic traces
to test the different methods and 2) utilizing real IP data
traces from NLANR [21] to validate our observations. All the
results in this section are obtained by configuring the sargpl
function of ANLS as the specific form in (15). Furthermore,

packet. The ANLS model is in Fig. 5. (ii) fetches the countge discuss the processing overhead of each method and the
address from the flow table, (iii) uses the address to reggack resilience of ANLS in this section.

out the counter value, (iv) based on the counter value, the
flow sampling module decides whether to sample and upd#te Experiments and results on synthetic data

the counter or not. From the model it is clear that we can |n order to examine the effects of flow size distribution on
implement ANLS using a five-stage pipeline. Thus the moagiNLS, we generate synthetic data for experiments. Suppose
time-consuming stage determines the processing speed. (A& we measure a fully loaded OC-48 (2.5 Gbps) link with
analyze the processing overhead of these five stages beloy. one-minute measurement interval. The required memory
Classification stagé(i) in Fig. 5). Before deciding whether is calculated as the number of entries multiplied by the bit
to sample a packet or not, the associated flow ID needs\i@ith of the entry, since each entry is of same width in real
be identified. Such a flow classification is also required Oyhplementation as we mentioned before. The counter width
other flow sampling methods, like BNF and SDS. As thg determined by the largest flow to avoid overflow. Please
flow classification issue has been extensively discusseldein hote that different sampling approaches vary in the number
literature [20], we here ignore the detailed descriptions tb  of entries and entry width. We first generate the flows whose

Fig. 5. System processing model of ANLS method.

space limitations. sizes follow Pareto distribution (the shape parameter(§3.
Address fetching stagii) in Fig. 5). The processing is a and the scale parameter is 4). We also synthesize data flows
table lookup operation on an on-chip SRAM. with an exponentially distributed size (the location pagten

Sampling rate computation stag@v) in Fig. 5). A concern X\ = 500, i.e.,, the mean flow size is 500), and with uniformly
of ANLS is that the sampling rate needs to be calculated on tisstributed size between 1 and 1000.
arrival of each packet. However, the computational comiplex The detailed results under different flow size distribuson
of P(c) should not be a big issue when ANLS is implementeare depicted in Table I, Table IV and Table V. From the table
in the real system by hardware. The valugxgt) could be pre- we observe that ANLS provides the most accurate estimation
computed and stored in a table. Thus we only need a direatd that different flow size distributions have almost neeff
address lookup on a table maintained by a small (on-chiph the average relative error (in fact, the average relative
SRAM. error of ANLS is only determined by the parameteas we
Memory /0 stageg((iii) and (v) in Fig. 5). Since the demonstrated in Section IV).
sampling method is utilized, the statistical results carkdyet

in a SRAM The Operation Speed in thIS Stage iS determinelqEMORY AND RELATIVE ERROT:\E(ISII\EAILQRISON UNDER SYNTHETIC DATA
by the access time on SRAM. GENERATED FROMPARETO DISTRIBUTION.

From the analysis above, we find that the processing Methods  Parameters  Average relative error  Memory
bottleneck is mainly due to SRAM operations. Suppose the —aNrs ©=0.01 0.07 Z.49 Mb
frequency of SRAM is 200 MHZ and, in the worst case, SS p=01 ~ 0.96 5.17 Mb
that each packet is 40 bytes. The /O throughput of SRAM  23¢ i”:lgggk b ‘116433'\",\%

could match up to a 32 Gbps link speed. Actually, the
processing overhead for sampling can be reduced greatly if
the measurement function is implemented by hardware in

P N ; TABLE IV
a router. An intuitive explanatlon 1S t_hat the processmg 1:OMEMORY AND RELATIVE ERROR COMPARISON UNDER SYNTHETIC DATA
flow measurement should be much simpler than all the other GENERATED EROM EXPONENTIAL DISTRIBUTION

rocessing functions in the router. By comparing with the :
P g, .. y P 9 . Methods  Parameters  Average relative error  Memory
other tasks’ processing in a router, the measurement BoCes ANLS  u =00l 007 510 Mb
module should not be a big concern. Note that the flow ANLS u=0.2 0.31 1.41 Mb
measurement module can be a by-pass/parallel unit with all SS p=01 0.50 2.46 Mb
: BNF M =256k 1.48 1.05 Mb

other data-path components in a router. Therefore, we gantu  gpg ~—1000 0095 3.90 Mb

to pay more attention to the estimation accuracy and memory



TABLE V
MEMORY AND RELATIVE ERROR COMPARISON UNDER SYNTHETIC DATA
GENERATED FROM UNIFORM DISTRIBUTION

600,

400¢

Methods  Parameters  Average relative error  Memory 200

ANLS u = 0.001 0.07 503.08 kb

relative error

ss p=0.1 0.96 493 kb Opmmmsmwmen xx . - -
BNF M =256k 0.82 223.36 kb ‘ ‘ ‘ ‘ ‘ ‘ ‘
SDS 2=1000  0.699 744.49 Kb 200, 3 4 5 6 7 8
flow size vin®
05 ‘ ‘ ‘ . i ’
8 . ANLS, p=0.1 Fig. 7. relative error BNF{/ = 20k) or SS f = 1/20) on NLANR trace.
g o - ] 400
'(_% x x x x x
S -
g 2 200}
05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ s
0 1 2 3 4 5 6 7 8 @
flow size ¥ 10° 2
©
_ 0.5 : : : ‘ ; s o] S x x x
g ANLS, p=0.002
[ x
2 ot o - . ] 0% 1 2 3 4 s & 71 8
Kt .
° flow size % 10°
05 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 . 5 6 7 8
flow size x 10° Fig. 8. SDS relative error with = 1000 on NLANR trace.
Fig. 6. ANLS relative error results on real NLANR trace. In [16], a perfect theoretical theorem is provided to guide

the sampling method. However, to practically benefit from th

Table Il demonstrates the results for Pareto distributed fl theorem, we should have a pre-knowledge of the flow length
size. Even when BNF (thes parameter in the table is thedistribution. For this reason ARS, which employs an AR model
expected flow entry for BNF) is furnished with a larger amounb predict flow length distribution before deciding the saimgp
of memory comparable to ANLS, say 4.44Mb, its averageite, is proposed. This method has the potential flaw that the
relative error is almost 20 times worse than ANLS. Tablgccuracy is greatly limited by the AR model. We test ARS
IV, for the experiments on exponentially distributed s\ttt on a real trace using aR(1) prediction model and show the
data, shows that ANLS needs a slightly larger amount @fsults in Fig. 10. Note that even when we use the actual data
memory than BNF but will provide tens of times moreor the initial input to theAR(1) model, the relative error for
accurate measurement results. When a flow is generated vgithall flows is still larger than ANLS as shown in Fig. 6.
an uniformly distributed size between 1 and 1000, ANLS has Besides the comparison of accuracy, we further illustrate
an average relative error that is over 10 times better thak Bkhe memory sizes of all the approaches in Fig. 11. It is
at a cost of about two times as much memory as BNF, giown that BNF consumes the least amount of memory,
shown in Table V. while SDS requires the largest amount of memory due to

The average relative error and required memory size p§ optimization on large flows. The memory requirement for
SDS have no advantage over ANLS. Since SDS optimizes tRBILS/ARS/CATE is similar. From the experiments on real
statistic of large flows, it requires a lot of memory to recorg¢taces, we found that the memory consumed by CATE is
large flows. Compared with BNF, SDS has more accurai@t as small as expected in [15]. The difference probably
results but requires a larger amount of memory. comes from the assumption in [15] that the packet arrival is

Since CATE and ARS depend on the packet arrival processiform. In the experiment we observe many bursts of small
we do not use synthetic data to evaluate these two methofitsws, which will also make records in the coincidence count
The comparisons with them will be presented in Section V-Bible of CATE. Please note that, the above memory expense

using real traces. corresponds to different sampling accuracy. The corredipon
of relative errors of BNF, ANLS, ARS, SDS and CATE are
B. Experiments and results on real traces 1.82, 0.21, 1.96, 1.186 and 262.11.

When we use an OC-192 real trace published in [21] as the )
experiment input, the results of ANLS are illustrated in .Figc' Processing overhead
6, which shows the accuracy of ANLS for both small flows The processing overhead can be measured by the number of
and large flows. Fig. 6 also clearly validatBlseorem 3which memory access and CPU operations, and we summarize the
claims that a smallex is helpful to control the relative error. results of different methods in Table VI.

We also apply other sampling methods to analyze the realAs discussed in Section IV, for each packet, ANLS needs
trace and depict the results in Fig. 7 to Fig. 10. All thesene read operation, one write operation (update) on the
methods demonstrate a large relative error for small flowsounter, and a further memory read operation to get the pre-
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60 Fig. 11. Memory comparison of different approaches on NLAfHRe. The
corresponding of relative errors of BNF, ANLS, ARS, SDS andTE are
4Oi ] 1.82, 0.21, 1.96, 1.186 and 262.11
] TABLE VI
e 20 ] PROCESSING OPERATIONS PER PACKET OF DIFFERENT METHODS
=
3 Methods ANLS SS BNF SDS CATE ARS
Opmmmvocaoex X x * * o memory access 3 2 4 2 3 2
CPU operation 0 0 1 2 0 1
20 1 2 3 4 5 6 7 8
flow size 5

Fig. 10. ARS relative error on NLANR trace. Actual data is ider initial  D- Attack resilience

input of AR prediction model. ANLS keeps records for small flows. Although few re-
sources are needed to record each flow, one may be concerned
with the performance of ANLS when an attacker launches DoS

Consideri he imol . ¢ BNF. | q ttacks towards ANLS system with large number of small
_Considering the implementation of BNF, it needs an agg, s we use a trace file collected by NLANR during the
ditional CPU operation for re-normalization. Although re-

L } . _ spread of the Slammer worm in January 2003 to test the
normalization will not block the accounting process, it ma

¥ttack resilience of ANLS. Since the average traffic ratehef t

delay the report process to the remote data collector if ¢he roritginal trace is not very large, we scale down the time stamp

pormalizatior! ?5 not completed 6.“ the end of the measuremeiiteach packet so that the flows will fully utilize the links
interval. Additionally, to determine the sampling rate, BN 100Mbps and 1 Gbps respectively. When the measurement

needs to keep seve_ral histogram bins, which aIso_consumFerval is set as 5 seconds, the required memory size isrshow
memory. On the arival of a packet, the related histograp yop)e VI, which implies that ANLS is resilient to DoS
should be updated, and all the histograms must be refres cks

when a re-normalization process is activated. If a packet is
sampled, BNF needs one write and one read operation and TABLE VII
when the sampling is adjusted, BNF need two more memory RESILIENCE TO ATTACK TRACES

accesses. In most cases, a total of 4 memory accesses are traffic load 100 Mbps 1 Gbps _ flow entries
required. memory size 134 kb 441 kb 16549

SDS uses a minimum and division computation to decide
the sampling rate and employs a maximum computation for
re-normalization. For each packet, SDS requires one wyite o=+ Summary
eration and one read operation on the memory. To implement~rom the above results, the design spaces of different
CATE, k comparisons need to be done for each incomirgampling methods can be summarized in Table VIII, where
packet. It can be deployed with a CAM, which requires oné, B, C or D is used to indicate that the performance of
memory access. Two more memory accesses (one write andhethod isexcellent, good, acceptable, Or bad for a certain
one read) are needed if there is a hitting in the comparisanetric. ANLS bounds the error for both large and small flows.
ARS utilizes an AR(n),(n > 1) model, which increases The analysis of the relative error and the upper bound for
the memory consumption linearly with. Furthermore, to counter size, given in Section IV, can also be exploited to
determine the parameters of th&r(n) model, we need to tackle the tradeoff in case that the memory constraint arerr
solven linear equations, and its computational complexity isonstraint is given. In fact, from Fig. 2 and Fig. 4, we could
a bit high if n gets large. A nice feature of ANLS comparedind out that, increasing will decrease memory requirement
to ARS is that the sampling rate is adjusted according to thelatively quickly while slightly increasing the relativerror.
counter value and that no pre-knowledge on the flow siZ®r real implementationy can not be arbitrarily large since
distribution is required. Two memory accesses (one writg ait is limited by the constraints of the implementation and
one read) are needed to update the counter. expected error.

computed sampling rate.




TABLE VI
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Methods ANLS SS BNF SDS CATE ARS Var[i(c)]
Accuracy for Y =V (1/p—1)/n.
small flows A D D D D C
Accuracy for u
media/large flows B B B A A B R
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