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Abstract—Software-Defined Networking (SDN) promises un-
precedentedly flexible network management but it is susceptible
to forwarding faults. Such faults originate from data-plane
rules with missing faults and priority faults. Yet existing fault
detection ignores priority faults because they are not discovered
on commercial switches until recently. In this paper, we present
RuleScope, a more comprehensive solution for inspecting SDN
forwarding. RuleScope offers a series of accurate and efficient
algorithms for detecting and troubleshooting rule faults. They
inspect forwarding behavior using customized probe packets to
exercise data-plane rules. The detection algorithm exposes not on-
ly missing faults but also priority faults. Beyond simply detecting
rule faults, the troubleshooting algorithms uncover actual data-
plane flow tables. They help track real-time forwarding status
and benefit reliable network monitoring. We explore various
techniques for enhancing algorithm efficiency without sacrificing
inspection accuracy. Experiments with our prototype on the Ryu
SDN controller and Pica8 P-3297 switch show that RuleScope
achieves accurate and efficient forwarding inspection with limited
bandwidth and packet-switching overhead.

I. INTRODUCTION

Recent measurement studies expose SDN forwarding’s vul-

nerability to various faults [1]–[3]. When reflected to data-

plane rules, such faults behave as missing faults and priority

faults. A missing fault occurs when a rule is not active on

a switch as expected [4]. It is mainly attributed to switch

firmware or hardware bugs [4] or even rule-update message

loss [1]. Current SDN can hardly notice missing faults be-

cause it acknowledges rule update at batch level instead of

desired rule level [1]. Furthermore, a priority fault occurs

when overlapping rules (i.e., rules with common matching

packets) violate designated priority order. Priority faults have

already been observed on commercial switches [2]. Since

SDN requires that a packet be processed by the highest-

priority rule among matching ones [5], either missing faults or

priority faults might lead to undesirable forwarding behavior.

Rudimentary network debugging tools (e.g., ping, traceroute,

SNMP, and tcpdump), however, do not support automatic and

efficient analysis of centralized SDN [6]. It is thus important

to explore SDN-specific inspection schemes.

Because priority faults are not discovered until recently [2],

they evade previous solutions for inspecting SDN forwarding.

For example, typical such solutions—ATPG [6], ProboScope

[4], and Monocle [7]—focus mainly on verifying rule ex-

istence on switches. We observe that without verifying rule

priority order, verifying only rule existence cannot guarantee

forwarding correctness. Table I exemplifies such concern. It
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Fig. 1. RuleScope framework.
X: Switch.

Priority Matching Action
phigh src=10.10.∗.∗ deny
plow prot=http allow

TABLE I
MOTIVATING RULE SET. GIVEN

POSSIBLE PRIORITY SWAP, THE

EXISTENCE OF BOTH RULES

CANNOT GUARANTEE CORRECT

PROCESSING OF THEIR COMMON

MATCHING PACKETS.

regulates that users from the 10.10.0.0/16 subnet are not

served. If a priority fault occurs to rules with priorities phigh
and plow, http requests from the 10.10.0.0/16 subnet become

allowed and breach the access control policy even if we may

have verified the existence of both rules. Detecting missing

faults alone is already proved NP-hard [4], [6]. It is more

challenging to combat both missing and priority faults.

In this paper, we present the RuleScope system for accurate-

ly and efficiently inspecting SDN forwarding. Beyond existing

inspection solutions [4], [6], [7], RuleScope detects not only

missing faults but also priority faults. It can also uncover actual

data-plane forwarding states. In line with established systems

[4], [6], [7], RuleScope inspects forwarding behavior through

probing. As Figure 1 shows, probing functionality relies on the

probing core inside the controller. The probing core injects

probe packets to data plane and collects probing results for

forwarding inspection. While the probing core can leverage

packet tracing tools like NetSight [8], how to generate probe

packets and how to process probing results for accurate and

efficient inspection still remain challenging. RuleScope fulfills

this mission by introducing monitoring applications atop the

probing core. The heart of monitoring applications is a series

of algorithms we propose for detecting and troubleshooting

rule faults.

Our detection algorithm reveals forwarding faults using

customized probe packets to exercise data-plane rules. To test

rule r’s activeness, feasible probe packets should match with r

but not with r’s higher-priority overlapping rules. Meanwhile,

the probe packet should also match with r’s lower-priority

overlapping rules to detect r’s priority fault. Whenever any

such probe packet is not processed by r, the on-switch flow

table encounters a rule fault. For ease of tracking overlapping

rules, we model a flow table using dependency graph, where

each vertex represents a rule and each edge connects a pair of

overlapping rules [9]. We further explore other techniques to

enhance detection efficiency without sacrificing accuracy. For



example, we decompose dependency graph to enable parallel

probe generation, leverage priority-fault probing results to

eliminate missing-fault probing, and minimize the constraints

of probe generation to speed up detection.

Beyond detecting rule faults, we explore also troubleshoot-

ing algorithms to uncover actual data-plane flow tables. This

enables tracking real-time forwarding status and inferring how

switches handle rule updates. It is, however, computationally

challenging to generate all necessary probe packets in an

offline way as the detection algorithm does. Our analysis

demonstrates its potential exponential complexity with respect

to flow table size. Toward effective troubleshooting, we first

design an adaptive online algorithm. It generates and injects

probe packets one at a time. The probing result helps cal-

ibrate subsequent probe generation such that we can mini-

mize the number of probe packets. We also accelerate probe

generation through simplifying computational constraints. To

achieve higher efficiency, we further propose a semi-online

troubleshooting algorithm. It adaptively generates and injects

probe packets at a batch level. Albeit costing more probe pack-

ets than the online algorithm does, the semi-online algorithm

promises faster troubleshooting because it mitigates redundant

code re-execution and enables parallel switch-port utilization.

Toward a more comprehensive solution for inspecting SDN

forwarding, we make the following contributions.

• Detect both missing faults and priority faults for accurate

inspection.

• Not only detect rule faults but also troubleshoot them to

uncover actual data-plane flow tables.

• Present various techniques to enhance inspection efficien-

cy without sacrificing accuracy.

• Validate accuracy and efficiency of RuleScope through

theoretical analysis and experiments on a testbed with

the Ryu controller [10] and Pica8 P-3297 switch [11].

Paper organization. Section II defines the forwarding inspec-

tion problem and analyzes its hardness. Section III proposes

a series of algorithms for detecting and troubleshooting rule

faults. Section IV and Section V respectively implement

RuleScope prototype and report evaluation results. Finally,

Section VI concludes the paper and indicates future work.

II. PROBLEM

In this section, we define SDN forwarding faults and the

forwarding inspection problem. We prove its NP-hardness by

reduction from the satisfiability (SAT) problem.

A. Forwarding Basics

SDN enforces network policies through transforming them

to switch-understandable rules. A rule should specify a match-

ing field and an action field that respectively regulate which

packets to process and how to process them. The matching

field is compared against packet headers. Since SDN advo-

cates flow-based forwarding [5], a rule aggregates multiple

traditional exact-match rules using don’t care bits or wildcards

(denoted by ∗) that match with both bit 0 and bit 1. Thus, a

packet can match with more than one rule. To avoid matching

ambiguity, SDN further assigns each rule with a priority value.

When a packet matches with multiple rules, it follows the one

with the highest priority.

Based on the preceding basics, we introduce the following

definitions to facilitate subsequent presentation.

Definition 1. Header space is a union set of all possible

packet headers. Given l-bit packet headers, the header space

is {0, 1}l [12]1.

Definition 2. Rule r is an ordered triplet (rP, rM, rA), where

rP, rM, and rA respectively represent priority field, matching

field, and action field2. Matching field rM corresponds to a

point in the {0, 1, ∗}l space and matches with a subspace of

the header space {0, 1}l.
Definition 3. Matching space of rule r is a set rMS of all

packet headers that match with r’s matching field rM. If rM

has w bits of wildcards, we have |rMS| = 2w.

Definition 4. Flow table is a set FT of n rules. That is,

FT = {ri | ri = (rPi , r
M
i , rAi ), 0 ≤ i ≤ n− 1}.

Given that flow tables undergo various checks before run-

ning to switches [12], [14], [15], we assume that FT contains

neither duplicate rules nor obscured rules. An obscured rule

cannot take effect due to its matching space being a subset of

matching space of higher-priority rules.

B. Forwarding Faults

SDN forwarding correctness, however, is vulnerable to

rule faults on data plane. Possible rule faults manifest as

missing faults and priority faults. Both are observed in recent

measurement studies of commercial SDN switches [1]–[3].

Definition 5. Missing fault happens to a rule if the rule

cannot take effect on any packets in its matching space. More

formally, rule r ∈ FT is missing on a switch if for all packet

p ∈ rMS the switch processes p without following rA.

Missing faults arise from two scenarios. The first is when a

rule is not successfully installed [4]. Current SDN, however,

acknowledges rule updates at batch level instead of desired

rule level [1]. The controller divides rule updates into batches

and isolates them using barrier commands. A switch executes

all updates prior to a barrier command and sends a barrier

reply. The controller takes the barrier reply as an acknowledge-

ment that all update commands are executed, hardly noticing

missing ones therein if any. The second scenario for missing

faults is when a rule becomes obscured due to priority faults.

Definition 6. Priority fault happens to a pair of overlapping

rules if their priority order is swapped. More formally, two

overlapping rules ri and rj (i.e., rMS
i ∩ rMS

j 6= ∅) with rPi >

rPj encounter a priority fault on a switch if for all packets

p ∈ rMS
i ∩ rMS

j the switch processes p following rAj .

A recent measurement study reveals priority faults on com-

mercial SDN switches [2]. For example, HP 5406zl trims

priorities before installing rules to hardware and treats rules

installed later as higher-priority ones. According to the test on

HP 5406zl with two rules [2], the one installed later always

1We use terms “packet” and “packet header” interchangeably.
2We omit rule fields that do not affect forwarding for simplicity [13].



dominates packets that match with both rules. If the installation

order does not strictly conform to the reverse priority order, it

leads to priority faults and therefore incorrect forwarding.

C. Forwarding Inspection Problem

The forwarding inspection problem is to reveal inconsis-

tency between flow table FTctr issued by the controller and

flow table FTsw implemented on the switch. We tackle it

in two ways, fault detection and fault troubleshooting. First,

fault detection aims to detect whether FTsw raises rule faults.

Second, fault troubleshooting aims to reproduce FTsw after

a fault is detected. Solving such problems needs to exercise

rules in FTsw using probe packets [4]. If a probe packet for

rule r ∈ FTctr does not follow r’s action on the switch, r

is faulty. RuleScope strives for accurate forwarding inspection

with limited probing overhead.

Before detailing RuleScope design, we analyze the hardness

of the forwarding inspection problem. Inspired by ProboScope

[4], we first prove the NP-hardness of probe packet generation

via reduction from the SAT problem in Theorem 1. We then

demonstrate priority-fault troubleshooting’s exponential com-

plexity in terms of the number of probe packets in Theorem 2.

Theorem 1. Generating probe packets to detect missing faults

and priority faults is an NP-complete problem.

Proof. Missing fault. We first prove the NP-completeness of

missing-fault probe packet generation.

1) Missing-fault probing is in NP. To detect missing fault

of ri ∈ FTctr, a probe packet p should match with ri but

not with higher-priority rules than ri. Otherwise, p will be

processed by another present rule ri′ with higher priority and

yield no proof of ri’s existence. Given l-bit matching field, we

represent ri’s matching field as rMi = (xi0, ..., xib, ..., xi(l−1)),
where xib ∈ {0, 1, ∗} and 0 ≤ b ≤ l − 1. Matching with ri is

equivalent to the following conjunction being satisfied.

ri.Match =
∧

0≤b≤l−1

S(xib), (1)

where

S(xib) =











xib, if xib = 1;

¬xib, if xib = 0;

True, if xib = ∗.
Then not matching with ri is equivalent to the following

disjunction being satisfied.

ri.¬Match = ¬ri.Match =
∨

0≤b≤l−1

¬S(xib). (2)

Based on Formula 1 and Formula 2, we can derive that if

probe packet p for detecting missing fault of rule ri exists,

the following formula should be satisfied.

ri.Match ∧ (
∧

∀rj∈FT ′

sw

rj .¬Match)

=
∧

0≤b≤l−1

S(xib) ∧ (
∧

∀rj∈FT ′

sw

(
∨

0≤b≤l−1

¬S(xjb)), (3)

where FT ′
sw = {rj | rj ∈ FTsw and rPj > rPi }. Given a

packet p, verifying whether it satisfies Formula 3 is equivalent

to verifying whether given truth assignments make a CNF true.

Such verification can be efficiently done in polynomial time.

Therefore, missing-fault probe packet generation is in NP.

2) An SAT problem is reducible to a missing-fault probe

packet generation problem in polynomial time. Consider an

SAT instance with s CNF clauses. Each clause comprises some

or all of elements in {xb | 0 ≤ b ≤ l−1}. Formally speaking,

the SAT instance I can be modelled as the following.

I =
∧

0≤i≤s−1

(
∨

0≤b≤l−1

Ci(xb)),

where Ci(xb) denotes how an element xb contributes to the

ith clause as follows.

Ci(xb) =











xb, if xb is in the ith clause;

¬xb, if ¬xb is in the ith clause;

Faulse, if xb is NOT in the ith clause.
We now use the SAT instance I to construct a probe packet

generation instance. Based on S(xib) and Ci(xb), we observe

that the ith clause can be mapped to a rule rj as follows.

rj .xjb =











0, if Ci(xb) = xb;

1, if Ci(xb) = ¬xb;

∗, if Ci(xb) = False.

Considering rules mapped from s clauses in I as rules rj ∈
FT ′

sw in Formula 3, we reduce the SAT instance I to missing-

fault probe packet generation as follows. Specifically, it is to

generate probe packets for rule ri containing l wildcards given

the above mapped rules rj as constraints. Since the newly

introduced all-wildcard rule ri contributes only a number of

True to Formula 3, it does not affect the truth assignment

space of rj .xjb in the mapped rules and therefore of xb in

the original clauses. Now it is straightforward to show that

I is satisfied if and only if the corresponding probe packet

generation problem is satisfied. Since the above construction

takes polynomial time and probe packet generation is in NP,

missing-fault probe packet generation is NP-complete.

Priority fault. We now prove the NP-completeness of

priority-fault probe packet generation. To detect priority fault

of a pair of overlapping rules ri and rj , a probe packet p should

match with both ri and rj . We introduce a new rule r∩ij with

matching space rMS
∩ij = rMS

i ∩rMS
j and action rA∩ij = rAi or rAj .

Then probing priority fault for (ri, rj) ∈ FTctr is equivalent

to probing missing fault for r∩ij ∈ FTctr − ri − rj + r∩ij ,

which we have already proved an NP-complete problem.

Theorem 2. Troubleshooting priority order of a pair of

overlapping rules with l-bit matching fields requires O(2l)
probe packets in worst cases.

Proof. We first explore possible cases of troubleshooting pri-

ority order for a pair of overlapping rules (ri, rj) ∈ FTctr.

Let rule r∩ij capture their matching-space intersection with

rMS
∩ij = rMS

i ∩ rMS
j . Let R∩

ij represent the set of rules that

overlap with both ri and rj , that is, R∩
ij = {r | r ∈

FTctr− ri− rj and rMS ∩ rMS
∩ij 6= ∅}. Assume that rM∩ij has l′

bits of wildcards (i.e., |rMS
∩ij | = 2l

′

). We derive the number of

probe packets in the following two cases according to whether

rules in R∩
ij jointly exhaust all 2l

′

points in rMS
∩ij .

Case 1: When rules in R∩
ij CANNOT jointly exhaust all

2l
′

points in rMS
∩ij , one probe packet is sufficient. We explain



this along with how we construct the l-bit packet header for

a feasible probe packet p. For the l − l′ non-wildcard bits in

rM∩ij , we simply copy them to corresponding bits of p. For

r ∈ R∩
ij , let rl

′MS denote the subset of rMS supported by the

l′ bits locating at the same positions as the l′ wildcards in

rM∩ij . We then select one point in rl
′MS
∩ij −

⋃

∀r∈R∩

ij
rl

′MS for

the left l′ bits of p.

Case 2: When rules in R∩
ij CAN jointly exhaust all 2l

′

points

in rMS
∩ij , we have rl

′MS
∩ij =

⋃

∀r∈R∩

ij
rl

′MS and require probe

packets to enumerate all possible rule combinations. We next

complete the proof by studying two extreme cases.

• First, R∩
ij contains only one rule r and rMS has same-

position l′ bits of wildcards as rM∩ij . In this case, we

need only one probe packet because any point in rl
′MS
∩ij

simultaneously exercises ri, rj , and r.

• Second, R∩
ij contains 2l

′

rules each corresponding to one

of the 2l
′

points in rM∩ij . In this case, although all rules

in R∩
ij overlap with both ri and rj , they mutually non-

overlap. We thus need to probe 2l
′

rule triplets, that is,

(ri, rj , r) for all r in R∩
ij .

With the second case we complete the proof.

For cases when rl
′MS
∩ij =

⋃

∀r∈R∩

ij
rl

′MS and |R∩
ij | is pro-

portional to l′, from Theorem 2 follows Corollary 1.

Corollary 1. Given a flow table with n rules, troubleshooting

priority order of (ri, rj) on data plane requires O(2n) probe

packets in worst cases.

III. DESIGN

In this section, we explore solutions to the stepping stone for

RuleScope—detection and troubleshooting algorithms. They

generate probe packets to exercise data-plane rules and de-

tect/troubleshoot rule faults based on probing results. The

detection algorithm reveals all existing rule faults while trou-

bleshooting algorithms uncover actual on-switch flow tables.

A. Probe

As Theorem 1 shows, probe-generation for priority fault is

equivalent to that for missing fault. For probing ri’s missing

fault, we solve Formula 3 to obtain an assignment of rMS
i =

(xi0, ..., xib, ..., xi(l−1)). We then construct the l bits in probe

packet p’s packet header used for matching as follows.

pb =

{

xib, if xib = 0 or 1;

0 or 1, if xib = True.
(4)

We solve Formula 3 using a high-performance SAT solver

called MiniSat [16] (Theorem 1). We integrate MiniSat into

our probe generation function SampleProbe(r,R). Accepting

rule r and a set R of rules as inputs, SampleProbe(r,R) out-

puts a probe packet p that matches r but does not match rules

in R. Furthermore, p has every bit automatically specified.

We, however, cannot efficiently and effectively probe for

ri’s missing fault directly using SampleProbe(ri, FT ′
sw),

where FT ′
sw = {rj | rj ∈ FTsw and rPj > rPi } (Theorem 1).

Given that flow table FTsw usually contains hundreds of

rules [17], FT ′
sw might impose too many constraints on

SampleProbe(ri, FT ′
sw). This seriously limits the speed of

Algorithm 1: Rule Fault Detection Algorithm

Input : Flow table FTctr

Output: Set Rfault of faulty rules
1 Rfault ← ∅;
2 G = < V,E > ← FTctr’s dependency graph;
3 C ← G’s weakly connected componets;
4 Set P of < packet p, rule v > ← ∅;
5 foreach weakly connected component in C do
6 Header space H ← ∅;
7 foreach vi in topological order do
8 if vi is not isolated (i.e., vi.degree ! = 0) then

9 if ∃vj that directly depends on vi then
10 foreach vj do
11 p← SampleProbe(vi ∩ vj , H);
12 if p == ∅ then
13 p← SampleProbe(vi, H);

14 P ← P ∪ < p, vi >;

15 else
16 p← SampleProbe(vi, H);
17 P ← P ∪ < p, vi >;

18 H ← H ∪ vi;
19 else
20 p← SampleProbe(vi, H);
21 P ← P ∪ < p, vi >;

22 foreach < p, vi > ∈ P do
23 Inject p to data plane;
24 if p does not follow vi’s action then

25 Rfault ← Rfault ∪ ri;

26 return Rfault;

probe generation. Even worse, given that FTsw may encounter

missing and priority faults, rules rj ∈ FT ′
sw are hardly known

a priori. Any rj ∈ FTsw with rMS
j ∩ rMS

i 6= ∅ could have

higher priority than ri does on the switch. FT ′
sw then should

incorporate all rj ∈ FTctr with rMS
j ∩ rMS

i 6= ∅. Whenever

such rj leads to rMS
j ⊃ rMS

i , SampleProbe(ri, FT ′
sw) is

not solvable. Such undesirable cases occur quite frequently

because flow tables contain many overlapping rules.

Our rule fault detection algorithm counterintuitively cali-

brates the inputs for SampleProbe(·) toward efficiency and

efficacy without affecting detection accuracy.

B. Detection

Goal. The detection algorithm aims to find faulty rules if

any on data plane. A faulty rule does not act on some or

all packets that it should process. The cause could be either

missing faults or priority faults. Consider again the example

in Table I—the toy rule set has two overlapping rules with

priorities of phigh and plow. When no fault exists, we expect

that packets match with both rules be processed by phigh-rule.

If one such packet does not follow phigh-rule’s action, we

consider phigh-rule as faulty. It is possible that either phigh-rule

is missing or the two rules encounter a priority-order swap.

Design. The detection algorithm consists of two key steps,

probe generation and fault detection (Algorithm 1). Probe

generation finds sufficient packets for verifying whether each

rule is faulty (lines 2-21). Fault detection then injects probe

packets to data plane and detects faulty rules based on probe

feedback (lines 22-25). Between the two steps, probe genera-

tion is the core of Algorithm 1. We adopt various techniques



toward efficiency while generating sufficient packets to guar-

antee detection accuracy. First, we reduce the scale of probe

generation by dividing a flow table to independently solvable

subsets of rules. Second, in each rule subset, we catch any

faulty rule without exercising it twice against missing fault

and priority fault. Third, we generate probe packets for a rule

without necessarily involving all other rules in the same subset

as constraints to SampleProbe(·).
Reduce probe generation scale using dependency graph.

The dependency graph G = < V,E > of flow table FTctr

is the following directed acyclic graph (line 3) [9].

• For each ri ∈ FTctr, there is a corresponding vertex vi
in V . We may use vi and ri interchangeably.

• For each pair of rules ri and rj , if ri overlaps with rj
and has higher priority than does rj , there is a directed

edge < vi, vj > in E.

If edge < vi, vj > exists, we say that vj directly depends

on vi. If there is a directed path from vi to vj , we say that

vj depends on vi. Based on dependency graph, we find all

maximal subgraphs each with vertices connecting with no

vertex in other maximal subgraphs. Such maximal subgraphs

are essentially weakly connected components of G (line 3).

Since rules in different components involve no dependency,

we independently generate probe packets for each component

without wrestling with the entire flow table. This promises

faster probe generation with smaller problem scale within each

component and parallelism among different components.

Efficiently generate probe packets for each weakly connect-

ed component. Beyond reducing problem scale to independent-

ly solvable components, we further strive for efficiency in each

component (lines 5-21). Specifically, we enhance efficiency

through reducing the number of probe packets and speeding

up the generation of a probe packet.

First, we reduce the number of probe packets by leveraging

the fact that probing priority faults reveals also missing faults.

Consider, for example, a pair of rules where vj directly

depends on vi. We expect that a packet for probing their

priority order match with both rules and follow vi. One such

packet is sufficient for detecting faulty vi corresponding to vj .

Whether vi is missing or encounters priority swap with vj (or

with another lower priority rule that also matches the probe

packet), the probe packet will not be processed by vi. Since

more than one rule may directly depend on vi, we need to

enumerate all of such rules to ensure vi’s freedom of priority

faults (lines 10-14). We enforce the above probing of rule pairs

following topological order. When we reach a rule directly

depended by no rule, we generate a probe packet for probing

its missing fault only (lines 16-17 and 20-21).

Second, we speed up generating probe packets by sim-

plifying constraints for SampleProbe(·). As discussed in

Section III-A, SampleProbe(·) requires two parameters—the

first (or second) regulates rules that a probe packet should (or

should not) match with. When generating probe packets for vi,

the first parameter is vi if we probe its missing fault or vi∩vj
if we probe its priority fault. The second parameter is critical

for efficient and effective probe generation. To simplify its

imposing constraints on SampleProbe(·), we eliminate from

it as many rules irrelevant to detection accuracy as possible. An

easy example arises from probing a rule without dependency

(lines 20-21). Since a packet matching with such rule does not

match with other rules, we can use an empty set as the second

parameter of SampleProbe(·) for acceleration.

Correctness. Having explored how Algorithm 1 efficiently

generates probe packets, we now study its correctness in terms

of detection accuracy in Theorem 3.

Theorem 3. Algorithm 1 can accurately detect faulty rules on

data plane without false negatives or false positives.

Proof. A false negative occurs when Algorithm 1 regards a

faulty rule as correct. A false positive occurs when Algorith-

m 1 detects a correct rule as faulty.

No false negatives. Without loss of generality, we assume

that vi is the faulty rule under study. The proof falls into two

cases according to whether some rule directly depends on vi.

When no rule directly depends on vi, it is under missing

fault while it could be isolated or directly depend on another

rule. If vi is isolated, SampleProbe(vi, H = ∅) must gen-

erate a probe packet (line 20), which reveals vi’s missing

fault. If vi directly depends on another rule, we generate a

probe packet by SampleProbe(vi, {v | vi depends on v})
(line 16). The probe packet does not exist if any pack-

et matching with vi matches with a higher priority rule

v. In this case, vi is an obscured rule, which should be

eliminated from well crafted flow tables (Section II-A).

SampleProbe(vi, {v | vi depends on v}) thus can find a

probe packet to reveal vi’s missing fault.

When some rule vj directly depends on vi, it could be under

either missing fault or priority fault. If SampleProbe(vi ∩
vj , {v | vi depends on v}) finds a probe packet (line

11), it will not follow vi’s action whether vi is miss-

ing or priority swapped with vj (or another lower pri-

ority rule). We thus successfully detect faulty vi. If

SampleProbe(vi ∩ vj , {v | vi depends on v}) finds no probe

packet, any packet matching with both vi and vj must

match with a higher priority rule. In this case, we turn

to SampleProbe(vi, {v | vi depends on v}) (line 13) for

generating a probe packet. The probe packet will not follow

vi’s action whether vi is missing or priority swapped with a

lower priority rule, revealing faulty vi.

Because Algorithm 1 successfully detects faulty vi in both

cases, it has no false negatives.

No false positives. By Algorithm 1, vi is detected as faulty

if its probe packet p does not follow its action. Algorithm 1

generates p in one of four cases (lines 11, 13, 16, and 20).

If vi is isolated, p follows line 20 and matches with only

vi. If p does not follow vi’s action, vi must be missing.

If vi is not isolated, Algorithm 1 may generate p using

SampleProbe(vi, {v | vi depends on v}) (lines 13 and 16). If

p follows no action (for p from lines 13 and 16) or another low-

er priority rule’s action (for p from line 13), vi must be missing

or encounter a priority fault. Moreover, Algorithm 1 may also

generate p using SampleProbe(vi∩vj , {v | vi depends on v})
(line 11), where vj directly depends on vi. If p follows vj’s



or another lower priority rule’s action, vi must be missing

or encounter a priority fault. In summary, the faulty rule vi
detected by Algorithm 1 really is faulty. Algorithm 1 thus has

no false positives.

C. Troubleshooting

Goal and pre-thought. The troubleshooting algorithm aims

to uncover actual flow table FTsw on a switch. Since it is

hard to recover exact rule-priority values, we build dependency

graph Gsw =< V,E > of effective rules on the switch. Gsw

should satisfy the following two conditions.

• V : For each rule r ∈ FTctr, if it is not missing or

obscured on the switch, its corresponding vertex v must

be in V .

• E: For each pair of rules ri and rj in FTctr, if ri has

higher priority than rj does on the switch, a directed edge

< vi, vj > connecting their corresponding vertices in V

must be in E.

Without knowing a priori the actual rule existence and priority

on the switch, we need to exhaust all possible dependency

relations and accordingly generate probe packets. This, as

Corollary 1 demonstrates, may cost offline troubleshooting of

exponential scale probes.

Online troubleshooting algorithm. We propose efficiently

troubleshooting rule faults in an online fashion (Algorithm 2).

It adaptively generates/injects probe packets, using previous

probe results to reduce the number of later probe packets. For

example, we could first generate and inject probe packet p for

a pair of rules vi and vj (lines 5-7). On the one hand, p may

be not processed by any rule upon injection. In this case, p

helps reveal that not only vi and vj but also all other rules

matching with p in FTctr are missing on the switch. We then

eliminate their related vertices and edges from Gsw and save

corresponding probes (lines 13-16). On the other hand, let vhit
denote the rule that processes p. Rule vhit could be vi, vj , or

another rule that also matches with p. Again, p might reveal

states of more than vi and vj—vhit has higher priority than

does any other rule matching with p. We then connect vhit
with these rules and exclude the connected pairs from later

probes (lines 18-21). The preceding cases indicate that online

design yields O(|E|) = O(|V |2) = O(|FTctr|
2) = O(n2)

complexity for probing rule dependency (lines 4-21).

To guarantee the correctness of Algorithm 2, we need to

further probe the existence of rules on which no other rule

depends (lines 22-29). For one such rule v, we first generate

its probe packet p (line 23-26). If p does not follow v upon

injection, v is missing on the switch. One corner case is that

p might not exist if v depends on other rules (line 26). In

this case, v is an obscured rule as any packet matching it

matches one of higher priority rule. In this case, whether or

not v exists on the switch, it will not take effect. We thus

regard also obscured rules as missing. Once a missing rule

is detected, we eliminate its corresponding vertex and edge(s)

from Gsw (lines 28-29). Probing missing rules in lines 22-29

yields O(|V |) = O(|FTctr|) = O(n) complexity.

Algorithm 2: Online Troubleshooting Algorithm

Input : Flow table FTctr

Output: Dependency graph Gsw =< V,E > of data plane rules
1 V ← {vi | vi corresponds to ri ∈ FTctr};
2 E = ∅;
3 Set S ← all pairs of overlapping rules in FTctr;
4 while S 6= ∅ do

5 (vi, vj)← any overlapping-rule pair in S;
6 H ← {v | if < v, vi > and < v, vj >∈ E};
7 p← SampleProbe(vi ∩ vj , H);
8 if {p} = ∅ then

9 S ← S − {(vi, vj)};
10 else
11 V ′ ← set of v ∈ FTctr that matches p;
12 Inject p to data plane;
13 if p matches with no rule then
14 V ← V − V ′;
15 E ← E − {edges connecting to v ∈ V ′};
16 S ← S − {rule pairs including v ∈ V ′};
17 else
18 vhit ← the rule in V ′ that processes p;
19 foreach v ∈ V ′ − {vhit} do

20 E ← E ∪ {< vhit, v >};
21 S ← S − {(vhit, v)};

22 foreach v ∈ V and v.outdegree = 0 do

23 if v.indegree = 0 then
24 p← SampleProbe(v, ∅);
25 else
26 p← SampleProbe(v, {v′ | < v′, v >∈ E});

27 if {p} = ∅ or p does not follow v upon injection then

28 V = V − {v};
29 E = E − {< v′, v > | < v′, v >∈ E};

30 return Gsw =< V,E >;

Combining the above two parts, the complexity for Algo-

rithm 2 to uncover actual on-switch flow table is O(n2), way

more efficient than its offline counterpart’s O(2n).

Algorithm 3: Semi-online Troubleshooting Algorithm

Input : Flow table FTctr

Output: Dependency graph Gsw =< V,E > of data plane rules
1 Initiate V , E, and S as lines 1-3 in Algorithm 2;
2 while S 6= ∅ do
3 Set P of probe packet p ← ∅;
4 foreach overlapping rule pair (vi, vj) in S do
5 Generate p as lines 6-7 in Algorithm 2;
6 if {p} = ∅ then
7 S ← S − {(vi, vj)};
8 else
9 P ← P ∪ {p};

10 foreach p ∈ P do
11 Lines 11-21 in Alg 2;

12 Lines 22-29 in Algorithm 2;
13 return Gsw =< V,E >;

Semi-online troubleshooting algorithm. We further ex-

plore a faster, hybrid design to reap the benefits of both offline

and online algorithms (Algorithm 3). Its major difference

from the online algorithm is issuing probe packets at a batch

level (lines 10-11). We can regard the online algorithm as

a special case of the semi-online algorithm with batch size

one. The semi-online algorithm regains a significant amount

of efficiency that is otherwise lost in the fully sequential



online algorithm. First, batch-level probing leaves out repeat of

operations without necessarily running from scratch for each

probe packet (lines 3-11). In light of this, generating x probe

packets at once may be faster than invoking probe generation

x times. Second, increasing the number of probe packets in

flight can exploit more parallelism among switch ports.

We analyze how many probe packets Algorithm 3 costs.

Each round generates a probe packet for each unverified pair

of overlapping rules (lines 3-11). The number of probe packets

per round is upper bounded by O(|V |2) = O(|FTctr|
2) =

O(n2). Moreover, each round reveals at least the highest-

priority rule among ones unmatched in previous rounds. The

number of rounds is thus upper bounded by O(|V |) =
O(|FTctr| = O(n). The complexity of Algorithm 3 in terms

of the number of probe packets is O(n2)×O(n) = O(n3).

IV. PROTOTYPE

In this section, we present our implementation of RuleScope

prototype. We first present the architecture and work flow. We

then detail the experiment setup.

A. Architecture

Figure 2 demonstrates the architecture and work flow of

RuleScope prototype. App transforms forwarding policies to

rules, which are populated to switches (step 1). Monitor App

hosts our algorithms for inspecting data-plane rule faults. They

take rules constructed by App as input and generate probe

packets. Injector injects probe packets to data plane (step 2).

Toward forwarding inspection, we need to know how switches

handle probe packets, that is, which probe packet is processed

by which rule (step 3). We obtain such probing results using

the postcard method by NetSight [8]. Postcard augments a

rule with two additional actions. First, it tags packet headers

with a unique rule ID. Second, it forwards a copy of the

tagged packet to Postcard Processor. It is such instrumented

rules by postcard (rather than the original rules from App)

that RuleScope installs on switches (step 1). This way, we

can recover packet processing history on data plane. To ease

extracting probe packets from received packets on Postcard

Processor, we encapsulate a unique packet ID in the payload

of each probe packet. Packet IDs facilitate also correlating

a probe packet with corresponding rule(s) under inspection.

Finally, Postcard Processor feeds the probing results back to

Monitor App, where our algorithms continue to complete the

remaining inspection process (step 4).

Of particular emphasis is multi-switch probing. It may

seem more complex as some probe packets need to traverse

through several switches before reaching the one they test

(Figure 2). However, we can simplify it in a straightforward

way. Specifically, Postcard Processor can directly inject probe

packets to any switch under test. This also enables parallel test

among switches. Another concern is that a probe packet may

further traverse through other switches, hit rules therein, and

trigger unnecessary postcarded probe packets. We can make

packet ID of probe packets to correlate to the switch it tests.

Then unnecessary postcards a rule triggers on uncorrelated
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Fig. 2. RuleScope prototype architecture and work flow. X: Switch.

switches will not affect inspection accuracy. In light of these

observations, we implement only the single-switch scenario

for ease of evaluation and presentation.

B. Experiment Setup

Control plane. We use the Ryu OpenFlow controller [10]

as the controller of RuleScope testbed. The controller runs

on a server with Intel(R) Xeon(R) CPU X5560 (8M cache,

2.80 GHz, 36 GB memory), where co-locates App, our Moni-

tor App, Injector, and Postcard Processor. We use ClassBench

[18] as App for generating flow table dataset. Monitor App

hosts our key design—Algorithms 1-3. We implement the

algorithms in Python (2600+ lines of code, in addition to

2800+ lines of open-source MiniSat codes in C++ [16]). The

server communicates with data plane via two 1 GE interfaces.

One is for Injector to inject probe packets. The other is for

Postcard Processor (in Python, 230+ lines of code) to issue

instrumented rules and collect postcarded packets.

Data plane. We use a Pica8 P-3297 [11] as the SDN switch

of RuleScope testbed. Per later results, 300+ rules on the

switch incur about 1500+ 52-byte probe packets within 16

seconds. They cost only 0.06% of controller-switch link band-

width and 0.0003% of switching fabric capacity (176 Gbps).

Such volume of traffic can hardly affect high-performance

networks. We thus omit measuring the impact of probe packets

on flow rate and mount no end-hosts to data plane.

V. EVALUATION

In this section, we evaluate the efficacy and efficiency of our

algorithms on the RuleScope testbed. Efficacy is measured in

terms of how accurately the algorithms detect/troubleshoot rule

faults on data plane. Experiments show that the detection algo-

rithm can detect faulty rules without false negatives/positves

while troubleshooting algorithms can faithfully construct the

dependency graph of on-switch flow table. We focus more on

reporting statistics for efficiency, which is measured in terms

of execution time and the number of probe packets.

Rule fault emulation. We concern with both missing

faults and priority faults. For emulating missing faults, we

directly ignore issuing some rules to the switch. We conduct

continuous measurements on Pica8 P-3297 and find no priority

fault as in [2]. As a work-around, we swap priorities of some

overlapping rules before issuing them to the switch.

A. Detection versus Troubleshooting with Correct Rules

We first evaluate the algorithms under varying number of

correct on-switch rules. Figure 3 reports the evaluation results.
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Fig. 3. Comparison of detection and troubleshooting algorithms with varying size of correct flow tables. (Same legend for all subfigures.)
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Fig. 4. Execution time of detection algorithm with 320 rules including varying
number of (a) missing rules and (b) pairs of priority-fault rules.

Figure 3(a): Overall execution time. All algorithms’ over-

all execution time increases with flow table size. Semi-online

troubleshooting algorithm keeps being faster than its online

counterpart. For experiment instances reported in Figure 3,

semi-online costs 23.1% less time than does online given 10

rules whereas this gap increases to 48.3% given 320 rules. We

were expecting that detection be faster than troubleshooting.

Then we could run faster detection first and invoke slower

troubleshooting only if rule faults are detected. Small flow

tables do live up to such expectation. For 10 to 80 rules, the

overall execution time of detection algorithm is 64.9% (83.8%)

on average of that of online (semi-online) troubleshooting al-

gorithm. However, when flow table size reaches 160, detection

becomes slower than troubleshooting. When flow table size is

320, detection algorithm costs 341.6 seconds whereas online

troubleshooting algorithm and semi-online troubleshooting al-

gorithm take 37.9 seconds and 19.6 seconds, respectively.

Figures 3(b)-(d): Probe overhead. The main reason why

detection is much slower than troubleshooting for large flow

tables is that its probe generation time leaps when flow table

size exceeds 160 whereas troubleshooting algorithms’ stays

smoother (Figure 3(b)). All algorithms’ probe generation time

increases with flow table size. The ratio of probe generation

time over overall execution time increases with flow table

size as well (Table II, with limited deviation for small flow

tables). Although taking different time, all algorithms generate

comparative number of probe packets (Figure 3(c)). This

indicates that the algorithms have quite different per-probe

generation time (Figure 3(d)). For 320 rules, per-probe genera-

tion time of detection, online troubleshooting, and semi-online

troubleshooting is 340 ms, 40 ms, and 20 ms, respectively.

This detection-troubleshooting gap stems from the scale of the

second input/constraint for MiniSat solver (Algorithms 1-3).

When generating a probe packet for a pair of rules, detection

algorithm considers all rules directly or indirectly depended

TABLE II
RATIO OF PROBE GENERATION TIME OVER OVERALL EXECUTION TIME

WITH VARYING NUMBER OF CORRECT RULES.

Algorithm Flow Table Size
10 20 40 80 160 320

Detection 4.2% 5.6% 5.1% 7.7% 74.2% 95.3%
Online Tr 2.8% 3.6% 3.7% 22.2% 28.9% 34.5%
Semi-online Tr 3.6% 2.8% 3.1% 4.3% 4.4% 8.2%

by the pair as constrains whereas troubleshooting algorithms

take into account only the directly-depended ones.

B. Detection with Faulty Rules

We then evaluate time efficiency of detection algorithm with

a 320-rule flow table including varying number of faulty rules.

The number of faulty rules comprises the number of missing

rules and the number of pairs of priority-fault rules. Figure 4(a)

and Figure 4(b) respectively report the evaluation results under

1-32 randomly picked missing rules and pairs of priority-fault

rules. All instances use the same flow table and therefore the

same set of probe packets.

We have three observations from the results. First, detecting

the first faulty rule approximates the overall detection time, re-

gardless of the number of faulty rules. Second,varying number

of faulty rules causes limited fluctuation to the overall detec-

tion time. The standard deviation of the overall detection time

is around 2 seconds, which is only 0.6% of the average overall

detection time. The preceding two observations are because

over 95% of the overall detection time is for generating probe

packets (Table II). Only after generating all probe packets can

detection algorithm start inspect rule correctness. Third, more

missing rules does not necessarily shorten detection time. To

what extent can a missing rule affect detection time depends

on the number of its associated probe packets. The more its

associated probe packets are, the more it accelerates detection

because of fewer postcarded packets to process.

C. Detection versus Troubleshooting with Faulty Rules

Finally, we compare the performance of all algorithms with

a 320-flow table including varying number of faulty rules.

For each instance reported in Figure 5, faulty rules contain

both randomly picked missing rules and priority-fault rules.

Again, limited number of missing rules make the execution

time of each algorithm rarely fluctuate (Figure 5(a)). The

overall execution time of online troubleshooting algorithm and

of semi-online troubleshooting algorithm are respectively 9.6%

and 5.9% on average of that of detection algorithm. Figure 5(b)

reports probe generation time while Table III reports the ratio
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Fig. 5. Comparison of detection and troubleshooting algorithms with 320 rules including varying number of faulty rules. The number of faulty rules comprises
the number of missing rules and the number of pairs of priority-fault rules. (Same legend for all subfigures.)

TABLE III
RATIO OF PROBE GENERATION TIME OVER OVERALL EXECUTION TIME

WITH VARYING NUMBER OF FAULTY RULES AMONG 320 ONES.

Algorithm No. of Faulty Rules
1 2 4 8 16 32

Detection 95.2% 95.2% 95.4% 95.2% 95.4% 95.6%
Online Tr 34.2% 34.5% 34.0% 27.4% 24.7% 26.8%
Semi-on Tr 8.3% 8.3% 8.2% 7.4% 5.3% 5.6%

of it over overall execution time. The ratio corresponding to

detection algorithm keeps constant as it works on the same

320 rules for each instance. For troubleshooting algorithms,

more faulty rules may yield less probe generation time when

detection of them helps simplify the constraints for MiniSat

solver. Another major part of overall execution time is probe

transmission time (Figure 5(c)), which is proportional to the

number of probe packets (Figure 5(d)). Probe transmission

time aggregates round-trip time of probe packets for all detec-

tion/troubleshooting rounds during one algorithm execution.

For a batch of probe packets in each round, the round-trip time

is from when the first probe packet leaves Injector to when

the last probe packet reaches Postcard Processor. Such round-

trip time for a probe packet depends on network bandwidth

and status. On our RuleScope testbed, the round-trip time per

probe packet is about 8 ms.

VI. CONCLUSION

We have studied accurate yet efficient inspection of S-

DN forwarding and proposed RuleScope design. RuleScope

provides a series of inspection algorithms to detect and

troubleshoot forwarding faults on data plane. The detection

algorithm exposes not only previously known missing faults

but also recently discovered priority faults. Given that com-

prehensive network monitoring might solicit more than fault

detection, we further propose troubleshooting algorithms. They

uncover actual data-plane flow tables, which enable tracking

real-time forwarding status and inferring how switches handle

rule updates. Such outputs of our algorithms are important for

building reliable networks. To make our algorithms readily

applicable, we explore also various techniques toward en-

hancing efficiency without sacrificing accuracy. We implement

RuleScope with Ryu controller and Pica8 P-3297 switch. The

proposed algorithms deliver accurate and efficient inspection

with limited overhead. For future work, we will evaluate

RuleScope on switches with identified priority faults [2],

extend RuleScope to handle dynamic rule updates [7], and

arm RuleScope with efficiency enhancements [19], [20].
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