Tacoma: Enhanced Browser Fuzzing with Fine-Grained Semantic
Alignment

Jiashui Wang” Peng Qian* " Xilin Huang
Zhejiang University & Ant Group Zhejiang University Ant Group
Hang Zhou, China Hang Zhou, China Hang Zhou, China
12221251@zju.edu.cn pqian@zju.edu.cn huangxilin. hxl@antgroup.com
Xinlei Ying Yan Chen’ Shouling Ji
Ant Group Northwestern University Zhejiang University

Hang Zhou, China
xinlei.yxl@antgroup.com

Evanston, USA
ychen@northwestern.edu

Hang Zhou, China
sji@zju.edu.cn

Jianhai Chen Jundong Xie Long Liu
Zhejiang University Ant Group Ant Group
Hang Zhou, China Hang Zhou, China Hang Zhou, China
chenjh919@zju.edu.cn jundong.xjd@antgroup.com 11280345@antgroup.com

Abstract

Browsers are responsible for managing and interpreting the diverse
data coming from the web. Despite the considerable efforts of de-
velopers, however, it is nearly impossible to completely eliminate
potential vulnerabilities in such complicated software. While a fam-
ily of fuzzing techniques has been proposed to detect flaws in web
browsers, they still face the inherent challenge of generating test
inputs with low semantic correctness and poor diversity.

In this paper, we propose TACOMA, a novel fuzzing framework tai-
lored for web browsers. TAcoMA comprises three main modules: a se-
mantic parser, a semantic aligner, and an input generator. By taking
advantage of fine-grained semantic alignment techniques, Tacoma
is capable of generating semantically correct test inputs, which sig-
nificantly improve the probability of a fuzzer in triggering a deep
browser state. In particular, by integrating a scope-aware strategy
into input generation, TACOMA is able to deal with asynchronous
code generation, thereby substantially increasing the diversity of
the generated test inputs. We conduct extensive experiments to eval-
uate TAcoma on three production-level browsers, i.e., Chromium,
Safari, and Firefox. Empirical results demonstrate that Tacoma
outperforms state-of-the-art browser fuzzers in both achieving
code coverage and detecting unique crashes. So far, Tacoma has
identified 32 previously unknown bugs, 10 of which have been
assigned CVEs. It is worth noting that Tacoma unearthed two bugs
in Chromium that have remained undetected for ten years.

*Jiashui Wang and Peng Qian are the co-first authors.
TPeng Qian and Yan Chen are the co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680351

CCS Concepts

« Security and privacy — Web application security; Software
security engineering.

Keywords
Browser, Fuzzing, Semantic Alignment, Vulnerability Detection

ACM Reference Format:

Jiashui Wang, Peng Qian, Xilin Huang, Xinlei Ying, Yan Chen, Shouling Ji,
Jianhai Chen, Jundong Xie, and Long Liu. 2024. Tacoma: Enhanced Browser
Fuzzing with Fine-Grained Semantic Alignment. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA °24), September 16—20, 2024, Vienna, Austria. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3650212.3680351

1 Introduction

As one of the most influential software applications, web browsers
play a key role in facilitating the access to web-based content.
They adeptly render a variety of resources, including HTML, CSS,
and JavaScript, allowing users to engage with a wide range of
online content. Nevertheless, developing a flawless web browser -
complete with compilers, interpreters, and parsers - to handle the
multifarious data from the Internet is an extremely challenging task.
The intricacies involved make it nearly impossible to completely
eliminate defects from the sophisticated software.

Nowadays, browser security has become a focal point for both
academia and industry due to the increasing prominence of browser
bugs [3, 34, 45]. These flaws have led to severe consequences, expos-
ing security threats to individuals, organizations, and the broader
Internet ecosystem. The Chrome Threat Intelligence Team has dis-
closed a total of 12 exploited bugs in the last two years. For example,
in April 2023, a zero-day vulnerability (CVE-ID: CVE-2023-2033)
was found in Chrome. This bug, residing in the JavaScript engine,
empowers attackers to crash the browser using a specially crafted
web page and read or write memory data beyond the buffer limit.
More recently, an information disclosure bug (CVE-ID: CVE-2023-
4357) was found in Chrome, which enables a remote attacker to

https://doi.org/10.1145/3650212.3680351
https://doi.org/10.1145/3650212.3680351

ISSTA °24, September 16-20, 2024, Vienna, Austria

steal a user’s local sensitive information by tricking the user into
visiting a crafted HTML page. Such occurrences are not isolated
incidents; rather, browser bugs are regularly discovered and ex-
ploited every few months, posing a significant threat to the entire
web ecology. Undoubtedly, it is crucial to detect browser flaws as
early as possible to prevent them from being exploited by attackers.

Fuzzing, recognized as a highly promising technique in soft-
ware testing, has shown considerable potential in bug detec-
tion [10, 19, 23-25, 28]. A prevailing trend among numerous
browser vendors is to apply fuzzing techniques to dig up the vul-
nerabilities hidden in browsers [47]. Notably, browser fuzzing can
be broadly classified into several main domains, including syntax
fuzzing, protocol fuzzing, document object model (DOM) fuzzing,
and JavaScript engine fuzzing [8, 17, 35, 42, 48]. Among these,
JavaScript engine fuzzing has proven to be a highly effective method
for triggering crashes in web browsers, as evidenced by the devel-
opment of several JavaScript fuzzers in recent years [13, 15, 18, 27].
However, despite extensive efforts directed at JavaScript engines,
the associated binding code has been largely overlooked. This over-
sight can be attributed to the complicated implementation of the
binding layer within JavaScript engines. While a recent advance-
ment [8] has taken advantage of semantic information to inspect
the binding code, it still has difficulties in generating test inputs
without syntactic errors, and thus could only explore a limited set
of browser backend logic. Therefore, there is an urgent need to
develop a browser fuzzer that is tailored to effectively examine the
JavaScript engine and pinpoint bugs within its binding code.

However, navigating the binding code introduces significant
challenges since the JavaScript binding layer involves complex
logic that enables interactions between JavaScript and other pro-
gramming languages. Effective fuzzing at this layer requires a deep
understanding of the underlying language interoperability, includ-
ing data type conversion and memory management. Fuzzing, in
this context, requires rigorous attention to ensure correct interac-
tion between different languages, coupled with the challenge of
generating semantically correct JavaScript code, which increases
the difficulty of creating effective test inputs.

Upon scrutinizing existing browser fuzzers [8, 9, 42, 47], we
found that, due to the lack of semantic alignment, they still face the
following problems. (1) Current browser fuzzers exhibit remarkable
room for improvement in terms of both the semantic correctness
and the diversity of test inputs. They fundamentally rely on man-
ually defined rules for input generation, resulting in the failure
of the generated test inputs to explore a wide range of browser
states. More importantly, in the absence of semantic correction, the
generated input may contain semantic errors that trigger browser
runtime errors, thus hindering fuzzing from reaching deep browser
state. (2) They expose inadequate support for the binding code. This
deficiency is evident in the limited control over parameters, scope,
asynchronous operations, and other critical elements, making it
difficult to generate effective inputs for the binding layer. (3) Exist-
ing browser fuzzers do not take into account different execution
contexts, confining their scope to the Window execution context sce-
nario. This oversight excludes other critical execution contexts such
as Worker and Worklet, limiting the scalability of browser fuzzing.

To tackle the aforementioned challenges, we present Tacoma, a
novel fuzzing framework for web browsers. Specifically, Tacoma

Jiashui Wang and Peng Qian et al.

consists of three main components: (1) First, we design a semantic
parsing module, which extracts and analyzes the semantic informa-
tion within browsers. Note that the browser semantic information
is extracted via a parser based on WebIDL [37]. Browsers use We-
bIDL to describe the interfaces of the binding layer. Parsing the
WebIDL provides most of the semantic information required to
generate an effective JavaScript code. (2) Second, we propose a se-
mantic alignment module that aims to complement and rectify the
semantic information extracted by the parser, namely to correct the
WebIDL definitions and make the expressed semantic information
consistent with the implementation of the browser source code. (3)
We introduce an input generation module composed of a JavaScript
code generator and an HTML document producer. This module is
used to generate test inputs for the browser fuzzer.

We perform extensive experiments on three mainstream
browsers, i.e., Chromium, Safari, and Firefox. During the evalu-
ation, Tacoma has successfully found 32 previously unknown bugs,
to which 10 CVEs have been assigned. TacoMa significantly out-
performs the state-of-the-art browser fuzzers, in terms of both the
achieved branch coverage and the number of detected bugs. For ex-
ample, Tacoma achieves 17.49% branch coverage in Chromium over
a 24-hour run period, 8.38% more than the state-of-the-art fuzzer
Favocapo [8]. More importantly, Tacoma identifies a use-after-
free bug (CVE-ID: CVE-2023-5996) in Chromium, which has been
introduced for ten years. Notably, this bug has been exploited [6].

Main Contributions. To summarize, our key contributions are:

e We propose a semantic alignment technique to guide a browser
fuzzer in generating semantically correct and diverse test inputs,
thereby increasing the probability of triggering vulnerabilities in
the JavaScript binding code. Specifically, the semantic alignment
module furnishes a set of solutions to optimize the generated
test inputs, including scope-aware mechanism, context-aware
strategy, and cross-execution-context navigation scheme.

We design and implement a novel browser fuzzing framework
Tacoma, which consists of three key components, namely se-
mantic parser, semantic aligner, and input generator.

We evaluate TAcCOMA on three mainstream browsers, i.e.,
Chromium, Safari, and Firefox. Tacoma achieves higher branch
coverage and triggers more unique crashes than state-of-the-art
browser fuzzers. It has detected 32 previously unknown bugs,
out of which 10 have been assigned CVEs so far.

2 Background

2.1 Fuzzing on Web Browser

Web browsers serve as critical gateways for accessing and rendering
Internet content. However, they can also be vulnerable to attackers
who seek to exploit potential weaknesses for malicious purposes.
Browser fuzzing [20], a software testing technique, aims to uncover
security flaws in browsers. It identifies those vulnerabilities by
subjecting browsers to systematic testing with diverse inputs.

In the context of browser fuzzing, the goal is to generate var-
ious and unexpected inputs for browsers, including malformed
HTML, JavaScript, or other web content, to discover and exploit
potential security vulnerabilities. This allows security researchers
and developers to effectively address the weaknesses that may be

Tacoma: Enhanced Browser Fuzzing with Fine-Grained Semantic Alignment

Application
<html> .
<script> HTML File
/I APl Invocations &
<script> i
<lhtml>p JavaScript Code

JavaScript Engine

Binding Code

JavaScript Runtime System

Figure 1: Binding code is used to extend the functionality
of JavaScript by providing a bridge between the JavaScipt
application code and the runtime system.

exploited by malicious actors. For example, FREEDoMm [42] is a state-
of-the-art browser fuzzer that enhances the fuzzing effectiveness
by categorizing browser APIs into various fuzzing operations based
on their functionalities. Recently, FaAvocapo [8] has been proposed
to identify vulnerabilities in the JavaScript binding code. Despite
these advancements, it is noteworthy that current browser fuzzers
encounter challenges in detecting vulnerabilities within the com-
plicated semantics of the JavaScript binding layer.

2.2 JavaScript Binding Code

JavaScript is a high-level programming language that is interpreted
by JavaScript engines. Given its high-level nature, JavaScript relies
on the runtime systems to implement low-level functionality, such
as memory management and file access. These underlying func-
tions are typically written in low-level and unsafe languages. To
take advantage of such functionality, JavaScript runtime systems in-
corporate the binding code, which is an integral native component
of JavaScript engines, as shown in Figure 1. Due to the different ap-
proaches to typing, memory management, and exception handling
between the high-level and low-level languages, direct invocation
of runtime routines by the scripting code is not feasible [5]. In-
stead, the scripting code calls upon the binding code to extend the
functionality of JavaScript by facilitating the translation of data
representations between different languages.

Binding code is used to establish the necessary data type map-
pings between JavaScript and low-level code. Native functions in
the binding code provide JavaScript objects by defining them using
an interface definition language (IDL). When JavaScript creates such
objects, the binding code dynamically generates the required native
data formats and types them with JavaScript variables. Scripts can
then invoke native functions and manipulate data from native com-
ponents. However, the translation process does not fully interpret
the type and memory safety features inherent in JavaScript. Binding
code, implemented in low-level and unsafe languages, is suscepti-
ble to vulnerabilities that are not uncommon. In practice, writing
binding code is inherently complex and prone to failure at different
stages. It is critical to accurately detect defects in the binding code
and effectively communicate any errors back to JavaScript.

ISSTA °24, September 16-20, 2024, Vienna, Austria

1 <template>
2 <script id =“audioworklet’> // Audioworklet execution context
3 try{
4 var Class_0=class extends AudioWorkletProcessor {
5 process(inputs, outputs, parameters) {
6 try{varvar_1=true}catch (e){};
7 returnvar_1;
8 }
9 static get parameterDescriptors() {
10 try{varvar_3 ={name: “AAA” } }catch (e){};
1 try{varvar_2 ={var_3}}catch (e){};
12 returnvar_2;
13 }
14 }
15 }catch (e) {};
16 try{ varvar_4 = registerProcessor(“Class_0", Class_0)} catch (e) {};

17 </script>

18 </template>

19 <script> // Window execution context

20 let template = document.querySelector(“template”);

21 let audioWorkletSource=URL.createObject URL(new Bob(

22 late.content. y ().textContent], { type: “text/javascript”}));
23 try { var var_5=new AudioContext()} catch (e){}; //audio context

24 try { var var_6=new AudioContext()} catch (e){}; //audio context

25 try {

26 var resolve_7 =function (){

27 try { var var_8 =new AudioWorkletNode(var_5, “Class_0")} catch (e){};

28 try { var var_9 =var_8.connect(var_5.destination) } catch (e) {};

}
30 } catch (e) {};

31 try { var var_10=var_5.audioWorklet ioWork|).then(resolve_7); } catch (e) {};
32 try{varvar_11=var_6.createScriptProcessor(512, 8) } catch (e){};

33 try{

34 var audioprocess_12 =function (arg_13) {

35 try { var var_15=var_5.createBufferSource()} catch (e) {};

36 try { var var_16 =var_15.connect(var_5.destination, 0, 0) } catch (e) {};

37 try {var var_17 =var_11.connect(var_6.listener.positionZ, 0) } catch (e){};

38 try {var var_20=var_11.connect(var_19.gain, 0) } catch (e) {};

39 }

40 } catch (e) {};

41 try {var var_14 =var_11.addEventListener(“audioprocess”, audioprocess_12) } catch (e){};
42 try { var var_18 =var_11.connect(var_6.destination, 0, 0) } catch (e){};

43 try {var var_19=var_6.createGain()} catch (e) {};
44 </script>

Figure 2: A JavaScript binding code sample that is difficult to
generate with existing browser fuzzers.

Several efforts [5, 8, 41] have been proposed to detect vulnera-
bilities in the binding code, focusing on the issues arising from the
absence of necessary checks, violations of data translation rules, and
mishandling of exceptions within the binding code. These works
employ various static analysis techniques and fuzzing strategies.
However, their applicability and scope are limited. Static analy-
sis may not comprehensively capture vulnerabilities due to the
dynamism and diversity of the JavaScript binding code, limiting
its effectiveness to the identified scope. Conversely, while fuzzing
has proven its practicality in uncovering browser vulnerabilities,
current JavaScript fuzzers face challenges when applied to fuzzing
binding code. Fuzzing requires a profound understanding of the
interaction between JavaScript and the underlying language, along
with the creation of test inputs that achieve high code coverage.
This task becomes increasingly difficult in the context of complex
applications and extensive code libraries.

3 Overview

In this section, we begin by providing a motivating example to
highlight the key challenges of generating complex JavaScript code.
We then discuss the limitations of current browser fuzzers and show
that they fail to generate the test input in the example. Finally, we
present our strategy and show how it copes with the example.

3.1 Motivating Example

Considering an example in Figure 2, we present the JavaScript bind-
ing code. This example comprises two audio contexts (lines 23-24)

ISSTA °24, September 16-20, 2024, Vienna, Austria

Semantic Parsing

Semantic Alignment

Jiashui Wang and Peng Qian et al.

Input Generation

p
Scope-Aware
Paradigm

Cross Execution

Context

WebIDL

‘Web Browsers

o Files

Context-Aware
Strategy

} [IDL Supplement

A

¥+

WebIDL Definitions

* Idlinterface

WebIDL Context

* IdINamespace
* IdIDictionary

i
1
1
1
1
1
1
1
1
: Parsing
1
1
1
1
1
1
1
1
1

(wWindow) [Woret) [worer |

=

HTML Documents

n

Figure 3: The overall architecture of Tacoma, which mainly consists of three components. (1) A semantic parser aims to
capture the WebIDL definitions from web browsers. (2) A semantic aligner is designed to complement and correct the semantic
information. (3) An input generator is used to produce the HTML document input for the browser fuzzer.

and a collection of audio nodes, which are responsible for render-
ing audio data in the browser. In addition, it involves two different
execution context semantics, namely Window and AudioWorklet. It is
worth mentioning that current browser fuzzers encounter signifi-
cant difficulties when tasked with generating test inputs akin to this
example. In the following, we summarize three major challenges
faced by existing browser fuzzing approaches.

Challenge #1. Current browser fuzzers struggle to effectively man-
age scopes, especially in asynchronous code generation, leading to
a limited diversity in generating test inputs. For example, one line of
work, exemplified by DomaTo [9], relies on manually defined rules
for input generation, but lacks a scope management strategy dur-
ing the process, making it unable to generate asynchronous code,
such as lines 33-40 in Figure 2. Another line of work, exemplified
by Favocapo [8], adopts a recursive generation strategy based on
semantic dependencies. While this method takes into account the
scenario where variables are situated in different scopes, its scope
management remains constrained. For example, after completing
code generation within a scope, FAvocaDpo loses scope informa-
tion upon exiting the scope, which hinders its ability to continue
generating code within that scope. As depicted in Figure 2, the
generation of the statement on line 38 depends on the information
of var_19. When Favocapo leaves the scope audioprocess_12 to
create var_19 (line 43) after generating the first three lines of code
(lines 35-37) within that scope, it will lose the scope information
of audioprocess_12, and thus fail to generate the subsequent code
within scope audioprocess_12, i.e., line 38. In summary, browsers
contain complex and diverse scopes, and existing fuzzers cannot
effectively capture information across different scopes, resulting in
generated test inputs that are prone to triggering browser crashes.

Challenge #2. Recent advancements aim to address the challenges
of input generation by exploring rule rectification methods. For
instance, SAGE [47] dynamically adjusts the generation rules of the
fuzzer based on abnormal state feedback observed during browser
runtime. However, certain semantic errors are difficult to correct
automatically via runtime state feedback. As shown in Figure 2,
where two audio contexts are generated (lines 23-24), a potential
issue arises when an audio node (e.g., var_15) tries to connect to
another audio node (e.g., var_16) using the connect function. The
browser checks whether the two audio nodes belong to the same

audio context. If not, an exception is triggered. It is noteworthy that
in such scenarios, SAGE encounters limitations as it struggles to cap-
ture contextual semantics, and thus cannot conclusively determine
which audio nodes belong to the same audio context. Consequently,
the test inputs generated by SAGE could lead to exceptions.

Challenge #3. While existing browser fuzzers are adept at generat-
ing inputs within the Window execution context, they often struggle
with handling semantic information across other different execu-
tion contexts, such as Worklet, ServiceWorker, and DedicatedWorker.
For example, current browser fuzzers face significant challenges
when generating the JavaScript code that involves scenarios like
the one depicted in Figure 2, where two different execution contexts
- Window and AudioWorklet - are present. Indeed, enabling a fuzzer to
generate the test inputs involving different execution contexts re-
quires a comprehensive understanding of browser semantics, which
is undoubtedly difficult for prevailing methods.

3.2 Ouwur Strategy

To tackle the above challenges, we integrate a semantic alignment
mechanism into TAcoMmA to improve both correctness and diver-
sity of the generated test inputs. This module embraces three key
strategies. (1) We propose a scope-aware mechanism that allows
the generator to generate asynchronous code in different scopes
guided by a scope tree. In addition, a scope pending pool is specifi-
cally designed to ensure that the generator can automatically find
the appropriate scope for code generation without introducing ad-
ditional redundant code. (2) We design a context-aware strategy
to dynamically correct semantic information. This strategy is ca-
pable of tracking the relationships between variables during code
generation, thereby ensuring the accurate recognition of variable
mapping relationships. (3) We introduce a cross-execution-context
navigation scheme that facilitates code generation across different
execution contexts. Specifically, we make it possible to switch be-
tween different execution contexts for code generation at any point
during input generation by independently storing the semantics of
different execution contexts. Furthermore, the code generated in
different execution contexts can share state information, allowing
for the generation of more complex inputs that more accurately
reflect real-world application scenarios. To the best of our knowl-
edge, TAcOMA represents the first initiative to effectively enable

Tacoma: Enhanced Browser Fuzzing with Fine-Grained Semantic Alignment

the code generation across different execution contexts, marking a
significant advancement in the field of browser fuzzing.

4 Design

In this section, we present the technical details of the proposed
fuzzing framework. Figure 3 illustrates the overall architecture of
Tacoma, which consists of three main components: (i) a semantic
parsing module, which is capable of extracting and analyzing the se-
mantic information of web browsers. Specifically, the parser extracts
semantics by capturing the WebIDL definitions from browsers. (ii) a
semantic alignment module, which is designed to complement and
rectify the semantic information under the guidance of advanced
correction strategies. This module aims to correct the WebIDL def-
initions so that the expressed semantic information is consistent
with the implementation in the browser source code. Notably, cor-
rected WebIDL definitions are stored in different execution contexts.
As such, the JavaScript generator can decide to select which We-
bIDL context to obtain semantic information based on the execution
context. (iii) an input generation module, consisting of a JavaScript
code generator and an HTML document producer, which work
together to generate test inputs for the browser fuzzer.

4.1 Semantic Parsing

To ensure effective input generation for the browser fuzzer, a criti-
cal step is to extract accurate semantic information from the web
browser. Towards this, we develop a WebIDL parser specifically
designed to analyze the syntax of WebIDL files. Note that WebIDL
is commonly used to define the JavaScript binding layer interface
implemented by a browser [33]. By parsing the semantics of We-
bIDL, we can obtain a comprehensive set of information necessary
for generating JavaScript code, including but not limited to object
creation methods, object dependencies, and callable methods asso-
ciated with objects. An advantage of using WebIDL for this purpose
is its inherent connection to the browser source code. As the con-
tent of WebIDL is automatically synchronized with browser source
code upgrades, it ensures that the semantic information remains
up-to-date. As such, when generating test inputs for a new version
of a browser, there is no need for manual intervention to add inter-
face semantic information. Instead, a straightforward update to the
WebIDL file is sufficient, streamlining the process and maintaining
accuracy in line with the evolving browser codebase.

To be specific, the WebIDL parser aims to capture the WebIDL
definitions from web browsers. We implement a parsing framework
IDLark!, based on lark which is a Python parsing toolkit. IDLark
parses the WebIDL file and translates various definitions in the
file into the corresponding Python objects. Tacoma then performs
semantic alignment and input generation based on these Python
objects. As an example, the interface definition in WebIDL is parsed
as follows:

inter face < name > {< attributes >< operations >}

LIDLark

class IdlInter face{name, attributes[], operations[]}

1Code is available at https://github.com/Messi-Q/IDLark

ISSTA °24, September 16-20, 2024, Vienna, Austria

Global Scope (Window) W

Variable Information

var_S5, var_6, var_10, ke 7
var_11, var_14, GF — 1
T 18 1) audioprocess_

(Local Scope (reso/vef7n

Variable Information

Local Scopes

ﬁ.ocal Scope (aduioprocess._ 12ﬂ
L Variable Information

var_15, var_16,

var_17, var_20
Figure 4: The scope tree (simplified version) extracted from
the example in Figure 2.

4.2 Semantic Alignment

It is important to emphasize that the original intent of the WebIDL
design is to establish a broad standard without specifying specific
code implementations. However, relying solely on the original We-
bIDL semantics to generate JavaScript code may lead to substandard
test inputs, resulting in inadequate coverage during browser fuzzing
or potential browser crashes. Moreover, WebIDL merely defines
the interface of the browser’s JavaScript binding layer and does
not prescribe the browser’s internal implementation. Consequently,
browsers only need to implement interfaces within the specifica-
tion, leading to a narrower implementation scope compared to
the specification itself. For example, while the parameter type of a
certain method may be defined as unsigned long in WebIDL, the
browser implementation may restrict the parameter values to a
smaller range, such as [0, 2]. If the generator creates parameters
based on the range of unsigned long, the actual code coverage could
be significantly reduced. More importantly, many WebIDLs may
contain certain semantic deficiencies or inaccuracies after pars-
ing, underscoring the critical importance of supplementing and
correcting the semantics of the parsed WebIDL definitions. This
ensures that the generated test inputs accurately reflect the browser
behavior and effectively exercise its functionalities during fuzzing.

In particular, depending on the granularity of the required correc-
tion, the semantic alignment strategy can be categorized into three
main types, namely scope-aware management, static correction,
and dynamic correction.

4.2.1 Scope-Aware Management. Let us begin by diving into the
specific technical details of the scope-aware mechanism.

Scope Tree. To address Challenge #1 shown in Figure 2, we
introduce a scope tree that encapsulates scope information and
delineates the dependency relationships between scopes during
input generation. Figure 4 depicts the corresponding scope tree for
the example. Each node within the scope tree symbolizes a distinct
scope [7], while the tree meticulously characterizes the dependen-
cies between scopes. Within the scope node, variable details are
documented in the form of a dictionary. As such, with the aid of the
scope tree, the generator can access variable information spanning
multiple scopes, thus facilitating asynchronous code generation.

Scope Pending. In addition, the generator might inadvertently
produce redundant code, impeding the efficiency of the input ex-
ecution. Considering the example in Figure 5, this code snippet
contains an audio context (line 3), two audio nodes (lines 6 and 12),

https://github.com/Messi-Q/IDLark

ISSTA °24, September 16-20, 2024, Vienna, Austria

T 5
2 Il global scope
3 let context=new AudioContext();
4 letsource = context.createConstant(); // Redundant node
5 {//local scope A
6 let mediaStreamDestination = context.createMediaStreamDestination();
7 Iet'source = context.createConstantSource() // Redundant node
8 .
9}
10 {/Illocal scope B
11 // merger: an audio node with both input and output interfaces
12 let merger = context.createChannelMerger();
13 let source = context.createConstantSource();
14 source.connect(merger);
15 }
16 ...

Figure 5: An example of scope pending-based correction.

and three scopes. When creating a new node (i.e., source) to connect
to other nodes that have output interfaces, the general logic is as fol-
lows: (i) Randomly select a scope associated with the audio context.
(ii) Construct a statement to instantiate the new node and insert it
into the selected scope. (iii) Traverse the current scope to identify
audio nodes that meet certain criteria (i.e., have both input and
output capabilities). Upon discovery, connect the two nodes using
a connect function, such as line 14 in Figure 5. Otherwise, exit the
current scope and repeat the previous steps. However, the overall
process can yield redundant code, as exemplified by lines 4 and 7 in
Figure 5. In the worst case, the generator may exhaustively explore
all available scopes. In practical scenarios where the generated test
inputs entail numerous scopes, this can result in the production of
large amounts of superfluous code, thereby significantly reducing
the efficiency of the input execution.

To this end, we incorporate a scope pending mechanism that
mitigates the generation of redundant code while ensuring that vari-
ables are created within the appropriate scope. Specifically, when-
ever a variable is created, the associated scope enters a suspended
state. At this point, the newly created variables and statements are
not immediately incorporated into the scope but instead deposited
into a pending pool. Upon encountering a node within the current
scope that satisfies certain criteria, the code residing in the pending
pool is merged into the scope. Conversely, the generation of the
current statement is revoked. This mechanism effectively prevents
the introduction of additional code during the test input generation
process, further enhancing the overall fuzzing efficiency.

Cross Execution Context. Additionally, to address Challenge #3,
TacoMa incorporates a cross-execution-context navigation scheme
that allows code generation across different execution contexts.
Tacoma autonomously stores the WebIDL semantics of various
execution contexts, facilitating seamless switching between them at
any time during the code generation process. Furthermore, TAcoma
allows state information to be shared between the code generated in
different execution contexts, enabling the creation of more complex
inputs that accurately reflect real-world application scenarios.
Consider the example generated by Tacoma in Figure 2, which
enables code generation in two different execution contexts: Window
and AudioWorklet. Initially, Tacoma utilizes the semantic informa-
tion of the AudioWorklet to create Class_0 within the AudioWorklet
execution context and completes the registration process through

Jiashui Wang and Peng Qian et al.

~a
constructor(unsigned long numberOfChannels,

unsigned long numberOfFrames, float sampleRate);
“python
try {var var_0 = new offlineAudioContext(4363346, 23855302, 16.0)} catch (e) {}
try {var var_0 = new offlineAudioContext(22, 50967462, 338455.95)} catch (e) {;

o s WN =

Figure 6: An example of static correction.

RegisterProcessor (line 16 in Figure 2). Subsequently, TaAcoma tran-
sitions to the Window execution context and automatically generates
an AudioWorkletNode based on the information previously generated
in the AudioWorklet context (line 21). To the best of our knowledge,
TacoMa is the first browser fuzzer that is able to generate code in dif-
ferent execution contexts, expanding the code coverage of browser
fuzzing. This scheme enhances TacomA’s ability to explore diverse
execution states within the browser, ultimately leading to more
thorough testing and identification of potential vulnerabilities.

4.2.2 Static Correction. Static correction mainly focuses on nu-
meric or type correction, relying on predefined rules or patterns.
Once the WebIDL parsing is completed, Tacoma undertakes static
correction by rectifying the parameter value range and parameter
type on the corresponding Python object in accordance with the
WebIDL definition. This process ensures that the semantic informa-
tion captured in the Python objects accurately reflects the specified
constraints and requirements outlined in the WebIDL specifications,
increasing the accuracy and consistency of generated test inputs.

Let us look at a static correction example of TacoMma. Figure 6
shows the constructor function of 0fflineAudioContext in the We-
bIDL definition (lines 2-3). After parsing, the 0fflineAudioContext
definition is translated into a Python object, as depicted in line 5.
Notably, the generated statement is fully compliant with the We-
bIDL semantics. However, the parameters number0OfChannels and
sampleRate in line 5, if used as is, may result in browser exceptions
in practice. This discrepancy arises because browsers impose addi-
tional restrictions on the parameter ranges when implementing in-
terfaces, which are often not explicitly reflected in WebIDL files. For
instance, the value range for the nunber0fChannels parameter spans
from 1 to 32 for all browsers, while the sampleRate parameter ex-
hibits varying ranges across different browsers, namely: Chromium:
[3000, 768000], Firefox: [8000, 192000], and Safari: [3000, 384000].
If the generated value falls outside these specified ranges, the re-
sulting code will trigger a runtime exception during execution. To
address this issue, Tacoma performs static correction by modify-
ing the range of parsed parameter values to ensure consistency
between the WebIDL semantics and the browser implementation.
The corrected code, as displayed in line 6 of Figure 6, adheres to the
parameter range requirements of the browser, thereby mitigating
the risk of exceptions during execution.

4.2.3 Dynamic Correction. Dynamic correction adaptively rectifies
the semantic information based on contextual analysis, allowing
for more flexible and effective corrections. TaAcoma engages with
two types of dynamic correction strategies.

Context-Aware Strategy. Tacoma executes dynamic correction
in a context-aware manner by systematically tracking specific val-
ues along with context information. The context-aware function
is called to store context information for both locally and glob-
ally generated variables, with them organized in a tree structure.

Tacoma: Enhanced Browser Fuzzing with Fine-Grained Semantic Alignment

“idl
partial interface Document {
HTMLVideoElement createVideoElement();
b
js
Document.prototype.createVideoElement = function(){
return this.createElement(‘video’);

o N OO~ WN

}

Figure 7: An example of dynamic correction.

This strategy enables Tacoma to document associations between
variables throughout code generation, ensuring the accurate recog-
nition of variable mapping relationships. For example, to address
Challenge #2 shown in Figure 2, when generating an audio node,
TacoMa marks the audio context variables linked to that node.
Specifically, var_8, var_9, var_10, var_15, and var_16 are associated
with an audio context (line 23), while var_11, var_14, var_17, var_18,
and var_19 pertain to another audio context (line 24). Consequently,
when the connect function is called, the generator automatically
selects an audio node created within the same audio context for the
connection. This process ensures semantic coherence and correct-
ness by facilitating appropriate connections within the designated
audio context. By evaluating the context during code generation,
TacoMma ensures that the corrected semantic information is opti-
mally adapted to the specific requirements of browsers. The context-
aware strategy enhances TacoMa’s ability to generate semantically
correct test inputs that faithfully reflect browser behavior.

IDL Semantic Supplement Strategy. In addition, Tacoma
also corrects test inputs by supplementing IDL semantics and
JavaScript code. Often, the definitions provided in WebIDL files
lack the necessary granularity, resulting in the generation of
code with inaccurate or missing semantics. For example, con-
sider the IDL definition for creating DOM elements, namely
Element Document.createElement(DOMString localName), with a
return value type of Element. While this definition is techni-
cally correct, it presents a challenge for the generator in de-
termining the specific type of return value. Specifically, when
Document.createElement(‘video’) is called, it should ideally re-
turn an HTMLVideoElement. However, if Element is used as the
return value type, essential semantic information pertaining to
HTMLVideoElement may be overlooked. Towards this, TAcOMA ex-
tends the WebIDL definitions by enriching them with additional
IDL semantics and associated JavaScript code. Illustratively, in the
example depicted in Figure 7, we extend the definition of Document
by supplementing it with IDL semantics (lines 2-4). Additionally,
we introduce the necessary JavaScript code (lines 6-8) to ensure
the accurate generation of HTMLVideoElement objects without com-
promising the semantic integrity. This supplementation process
allows TacoMma to make more informed corrections and adjust-
ments, thereby enhancing the fidelity of the generated test inputs.

4.3 Input Generation

With the corrected WebIDL semantics, an input generator is called
to create test inputs. The input generator comprises two submod-
ules: a JavaScript generator and an HTML producer, working in
tandem to generate test inputs for the fuzzer.

ISSTA °24, September 16-20, 2024, Vienna, Austria

(&) Repeat Periodically

(@ Retrieve WebIDL Align ® Report
WebIDL Definition File Semantic Result
T T Bug Report
Web @ Parse WebiDL || @ Generate Test Main Fuzzing 19 Repo

Browser | \nTut Process Coverage

WebIDL Generate . i

Definition HTML (® Start Fuzzing

(python object) Document

Figure 8: The overall workflow of Tacoma.

JavaScript Generator. The JavaScript generator focuses on gen-
erating JavaScript code. It takes advantage of the semantic infor-
mation extracted from the corresponding WebIDL context to con-
struct JavaScript statements such as variable definitions, function
invocations, and more. Note that the corrected semantic informa-
tion is stored in the appropriate WebIDL context. During the code
generation process, the JavaScript generator recursively parses the
dependencies of the target statement, ensuring comprehensive code
completion for all dependent elements. Then, the generator exposes
all functions to the HTML producer in the form of interfaces.

HTML Producer. Tasked with creating an executable target in-
put, i.e., an HTML document, for a browser, the HTML producer
plays a key role. It leverages predefined HTML templates and com-
bines them with the JavaScript code provided by the JavaScript
generator to generate the HTML document. Notably, depending
on the fuzzing goals, the producer is able to adopt a targeted input
generation strategy. For example, it can generate test inputs for
all browser interfaces or selectively generate input for a specific
module, allowing for a tailored and focused fuzzing approach.

Insight: The semantic alignment module works through-
out the entire input generation process. Before input gen-
eration, static correction is applied to rectify the WebIDL
semantics, mainly focusing on the range of variables. Dur-
ing input generation, dynamic correction is invoked using
the context information of the generated code to adjust the
WebIDL semantics. Meanwhile, the scope-aware mechanism
continuously performs code correction on the generated code
during input generation.

4.4 The Workflow of Tacoma

The overall workflow of TAcomaA consists of six main steps. Given
the browser source code as input, TAcoMA initiates the process
by retrieving WebIDL files @©. It then parses the WebIDL files to
extract the corresponding definitions and transforms them into
Python objects @. Next, Tacoma generates HTML documents that
serve as test inputs for the fuzzer @. In particular, Tacoma employs
the semantic alignment technique to ensure the correctness of the
extracted semantic information. After that, the input generator is
invoked to produce the HTML documents. Then, Tacoma launches
the fuzzer to interact with the web browser @ and reports the
fuzzing results, including exposed bugs and coverage information
®. The workflow concludes by looping back to the third step and
repeating the subsequent process ®. Notably, when applying the

ISSTA °24, September 16-20, 2024, Vienna, Austria

Jiashui Wang and Peng Qian et al.

Table 1: Previously unknown bugs discovered by Tacoma. We have evaluated the bug-finding ability of Tacoma on three
mainstream browsers. In total, Tacoma has unearthed 32 new bugs. Among them, 21 bugs have been confirmed with 17 fixed.
In particular, 10 have been assigned CVEs. Note that the bugs found in WebKitGTK are first verified in Safari. If they can be
triggered in Safari, we report them to Safari. Otherwise, we report them to the WebKitGTK community.

ID Browser Version Bug Type Bug Location Impact Status

1 Chromium 95.0.4628.3 Out-of-bounds Read blink::AudioDelayDSPKernel::ProcessKRate Medium CVE-2021-37992

2 Chromium 102.0.4956.0 Out-of-bounds Read blink::AudioDelayDSPKernel::ProcessKRate Medium Issue #40059351 (fixed)

3 Chromium 103.0.5058.0 Null Dereference blink::WebCryptoResult::Cancelled None Issue #40225230 (fixed)

4 Chromium 103.0.5058.0 Null Dereference PromiseRejectInternal None Issue #40260504 (confirmed)
5 Chromium 118.0.5951.0 Use-after-poison blink::NodeMoveScope::SetCurrentNodeBeingRemoved Low Issue #40070829 (duplicated)
6 Chromium 118.0.5993.129 Use-after-free blink::AudioNodeOutput::Pull High CVE-2023-5996

7 Chromium 119.0.6045.159 Use-after-free blink::AudioNodeOutput::Pull High CVE-2023-6346

8 Chromium 120.0.6099.129 Use-after-free blink::DelayHandler::Process High CVE-2024-0224

9 Chromium 120.0.6099.225 Use-after-free blink::AudioWorkletHandler::Process High CVE-2024-0807

10 Chromium 120.0.6099.225 Stack Buffer Overflow blink::SetSinkIdResolver::Start None Issue #41493757 (fixed)

11 Chromium 120.0.6099.225 Null Dereference blink::SetSinkIdResolver::OnSetSinkIdComplete None Issue #41492759 (confirmed)
12 Chromium 120.0.6099.225 Null Dereference cc::PaintRecord:num_slow_paths_up_to_min_for MSAA None Issue #41492786 (fixed)

13 Chromium 125.0.6382.0 Access Violation blink::ScriptState None Issue #332382759 (fixed)

14 Chromium 125.0.6410.0 Assert Failure Element::setAnchorElement None Issue #41493748 (confirmed)
15 Chromium 125.0.6410.0 Assert Failure blink::Animation:: TimeToEffectChange None Issue #333795269 (reported)
16 Chromium 125.0.6410.0 Null Dereference blink::OutOfFlowLayoutPart::SaveStaticPositionOnPaintLayer None Issue #333957174 (reported)
17 Chromium 125.0.6410.0 Null Dereference IsScrollContainer None Issue #333795271 (reported)
18 Chromium 125.0.6410.0 Null Dereference HasLayer None Issue #333952115 (reported)
19 Safari 14.1 Buffer Overflow CoreAudioModule High CVE-2021-30957

20 Safari 14.1 Buffer Overflow CoreAudioModule Medium CVE-2021-30958

21 Safari 14.1 Buffer Overflow CoreAudioModule Medium CVE-2021-30959

22 Safari 14.1 Buffer Overflow CoreAudioModule Medium CVE-2021-30960

23 Safari 14.1 Buffer Overflow CoreAudioModule Medium CVE-2021-30963

24 Safari 17.4.1 Use-after-free SincResampler::SincResampler High OE197284258884 (reported)
25 Safari 17.4.1 Heap Buffer Overflow computeSampleUsingLinearInterpolation High OE197316913793 (reported)
26 Safari 17.4.1 Heap Buffer Overflow AudioBufferSourceNode::renderFromBuffer High OE197316182173 (reported)
27 Safari (WebKitGTK) 2434 Null Dereference FloatingObjects::moveAllToFloatInfoMap None Webkit bug #272296 (reported)
28 Safari (WebKitGTK) 2434 Null Dereference RenderLayerCompositor None Webkit bug #272289 (reported)
29 Safari (WebKitGTK) 2434 Null Dereference LayoutIntegration::BoxTree::layoutBoxForRenderer None Webkit bug #272294 (reported)
30 Firefox 125.0al1 Stack Buffer Overflow WebCore::HRTFKernel::HRTFKernel High Bugzilla #1881947 (duplicated)
31 Firefox 125.0al Null Dereference mozilla::MediaTrackGraphImpl::Onelterationlmpl None Bugzilla #1882924 (duplicated)
32 Firefox 126.0al Null Dereference NS_ABORT_OOM None Bugzilla #1891164 (reported)

fuzzer to a new browser, TAcOMA automatically sets up the fuzzing
requirements, eliminating the need for additional human resources.

5 Evaluation

In this section, we carry out extensive experiments to evaluate the
effectiveness and practicality of TaAcoMmA. Our evaluation seeks to
answer the following research questions.

RQ1. How effective is Tacoma in finding new bugs in mainstream
browsers, i.e., Chromium, Safari, and Firefox? Can Tacoma
uncover bugs in the JavaScript binding code? (§5.2)

RQ2. How well does Tacoma perform compared to existing state-
of-the-art browser fuzzers? (§5.3)

RQ3. How much does the semantic alignment technique contribute
to performance improvement? (§5.4)

RQ4. What is the running overhead of TAcoMA in generating test
inputs? What is the impact of semantic alignment? (§5.5)

5.1 Experimental Setup

Benchmarks. To comprehensively evaluate the effectiveness of
TacoMa, we compare it to five state-of-the-art browser fuzzers,
namely DomaTo [9], FREEDoM [42], FAvocADo [8], MINVERA [48],
and SAGE [47]. Table 2 demonstrates the key characteristics of
each browser fuzzer. DoMATO stands out as an industrial-grade
DOM fuzzer, with both MINVERA and SAGE built upon its foun-
dation. FREEDOM is a state-of-the-art DOM fuzzer, while Favo-
cADO is a novel browser fuzzing framework that focuses on the
JavaScript binding code. We compare TacoMa against them in terms
of both bug-finding ability and code coverage achieved over three

Table 2: The characteristics of each browser fuzzer.

Fuzzer | Year | Publication | Type | Automation
Domaro [9] 2017 - Structure-Aware | Hand-written
FreeDom [42] | 2020 CCS’20 Context-Aware | Hand-written
FavocADo [8] 2021 NDSS’21 Semantic-Aware Fully-auto
MINERVA [48] 2022 | ESEC/FSE’22 API-Oriented Semi-auto
SAGE [47] 2023 | OOPSLA’23 | Semantic-Aware Fully-auto
TacoMma (ours) | 2024 | ISSTA’24 | Semantic-Aware | Fully-auto

production-level browsers, i.e., Chromium, Safari, and Firefox. Note
that all fuzzers in our evaluation are generation-based and do not
require any initial seed input for the fuzzing process. This standard-
izes the comparison and allows for a fair evaluation.
Implementation. We have implemented Tacoma, which is able to
test modern web browsers, including Chromium, Safari, and Firefox.
TacoMma is implemented in approximately 15K lines of Python code,
consisting of three main modules: a semantic parser, a semantic
aligner, and an input generator.

Device. We perform our evaluation on an AMD 5950X CPU
(2.20GHz) equipped with 16 cores and 64GB RAM running Ubuntu
22.04 LTS. Since Safari cannot be executed on a Linux system, we
utilize WebKitGTK, a comprehensive port of Safari’s rendering
engine, as an alternative. All experiments are conducted consis-
tently on the same hardware configuration. In practice, we launch
10 independent browser instances simultaneously. Each instance
undergoes an automatic restart in case of a crash or a 30-second
timeout. Tacoma compiles the target browsers with AddressSani-
tizer (ASan) [31] for bug detection. We leverage Geov [2] to collect
the code coverage information during the fuzzing campaign.

Tacoma: Enhanced Browser Fuzzing with Fine-Grained Semantic Alignment

ISSTA °24, September 16-20, 2024, Vienna, Austria

20 50 50
PO “© 40 """
LT el - =l = = O S S S e B R PR RN}
T I e et s | [N P . pa e
= |2 = [- = [
£ £ v e o = °of £ v
2 b= g30] a-e Sa0| ©
S y Y : 2 -t - - EFa—
[SRL RN o © H o i
= fgp e e = e e S ke SR S Tacoma = et int it it et L i I W -e- Tacoma
3 h S 20 & S 20 &
2 o -e- Domato £ H -e~- Domato 2 H -e~ Domato
S sy -&= FreeDom g » -A- FreeDom g H -&= FreeDom
a " ~#= Favocado R TI R ~#%- Favocado Loy ~#- Favocado
4 Minerva iy Minerva H Minerva
0]d 8- SaGe ° " -B- SaGe 0 " 8= SaGe
0 5 10 20 0 5 10 15 20 0 5 10 20
Time (h) Time (h) Time (h)
(a) Chromium (b) Safari (c) Firefox

Figure 9: The tendency of the branch coverage achieved by each browser fuzzer on Chromium, Safari, and Firefox, respectively.

1 <html>

2 <body>

3 <script>

4 let ctx = new AudioContext();

5 let sp = ctx.createScriptProcessor();

6 let delay = ctx.createDelay(1);

7 sp.onaudioprocess = function (event){

8 delay.delay Time.automationRate = “k-rate”;
9 delay.delay Time.automationRate = “a-rate”;
10 h
11 delay delayTime.linearRampToValueAtTime(1, 2);
12 delay.delayTime.value = -100;

13 delay.connect(ctx.destination);

14 sp.connect(delay);

15 <Iscript>

16 </body>

17 </html>

Figure 10: CVE-2024-0224 on Chromium found by Tacoma.
The code fragment triggers both UAF and Segv.

5.2 Discovering New Browser Bugs

We now evaluate the bug-finding ability of Tacoma (to answer
RQ1). We ran TAcoMA intermittently on the three mainstream
browsers for a month. Table 1 provides the details of all the new bugs
found by Tacoma in Chromium, Safari, and Firefox, respectively.
In total, Tacoma has found 32 previously unknown bugs. 21 bugs
have been confirmed, out of which 17 have been fixed. 10 of the
bugs are assigned CVEs, and 9 of which are rated as high impact
by the National Vulnerability Database [36]. Notably, more than
100K USD in bug bounty rewards have been awarded thus far.
Encouragingly, Tacoma identifies a ten-year-old bug in Chromium
(ID 6 in Table 1), which has been exploited [6]. These findings
underscore that TacoMma is effective in finding new bugs in browsers.
In what follows, we present a case study that shows the ability of
TacoMma to identify bugs in the JavaScript binding code.

Case Study: CVE-2024-0224. TacoMa detected a use-after-free
(UAF) vulnerability in WebAudio in Chromium (ID 8 in Table 1).
This bug may allow remote attackers to potentially exploit heap
corruption via a crafted HTML page. Figure 10 presents a PoC
code snippet of the JavaScript layer generated by Tacoma. This
code creates a binding object ctx of type AudioContext (line 4). Sub-
sequently, ctx activates two variables of a script processor node
script_processor and a delay node delay (lines 5-6), respectively,
and establishes the connection of the three objects in the order
of sp -> delay -> ctx.destination (lines 13-14). Particularly, the
property delay.delayTime.automationRate is updated in the thread

sp.onaudioprocess, leading to the creation and release of an au-
dio array inside the delay node. It is important to note that an
audio thread is automatically constructed when the AudioContext is
initiated, and the audio thread also accesses this property. Unfortu-
nately, the property delay.delayTime.automationRate lacks protec-
tion from any mutex lock for thread safety, thus its modifications
may result in a use-after-free vulnerability.

On the other hand, in Chrome, the default range for the property
delay.delayTime.value is [0, 1]. However, due to an oversight by
Chrome developers, any value can be set to this property. Although
Chrome implements a clamp function to restrict the illegal values to
the range [0, 1], it fails to correctly execute the clamp logic during
runtime. As a result, when delay.delayTime.value is set to -100, the
browser encounters an invalid value during processing, thereby
leading to referencing of illegal memory and causing a segv crash.

Notably, we ran the five state-of-the-art browser fuzzers, but
they failed to trigger the two aforementioned bugs. By contrast,
TacoMma successfully discovered them within approximately about
a day and a half. The UAF bug has been assigned CVE-2024-0224
by Chrome Inc., with a high security severity rating.

5.3 Comparison to Existing Browser Fuzzers

To answer RQ2, we benchmark Tacoma against five state-of-the-
art browser fuzzers listed in Table 2. We evaluate each fuzzer based
on the achieved branch coverage and the detected unique bugs.
Each experiment runs for 24 hours and is repeated five times. We
report their average statistical performance.

Branch Coverage. The growth in branch coverage of each fuzzer
over a 24-hour period is depicted in Figure 9. It is evident that
TacoMma not only consistently outperforms the other fuzzers, but
also achieves higher coverage in a shorter duration over all three
browsers. On average, Tacoma achieves 17.49%, 39.35%, and 43.81%
branch coverage on Chromium, Safari, and Firefox, respectively,
making 1.74%, 1.05%, and 3.79% improvement over the state-of-the-
art fuzzer SAGE. Note that 1% indicates about 10K branches.

Unique Bugs. We count the number of crashes triggered by each
fuzzer using ASan. Table 4 showcases the number of unique bugs
discovered by each fuzzer on Chromium and Safari, respectively.
We deduplicate each crash based on its root cause as reported by
Asan. Notably, within a 24-hour period on Firefox, none of the
fuzzers triggered any ASan-reported bugs, so we omit Firefox from
Table 4. From the table, we can see that Tacoma outperforms state-
of-the-art fuzzers by a large margin. Compared to its counterparts,
TacoMma not only leads in the number of crashes but also uncovers

ISSTA °24, September 16-20, 2024, Vienna, Austria

Jiashui Wang and Peng Qian et al.

Table 3: Running overhead of input generation with Tacoma and its variants.

Generating 100 inputs

Generating 2,000 inputs

Generating inputs for one hour

Method

#Line Running Time Generation Speed #Line Running Time Generation Speed #Line #Sample Generation Speed
Tacoma 39,466 8.46s 4,663.50 line/s 791,586 168.74s 4,691.23 line/s 16,543,948 41,632 4,595.53 line/s
Tacoma*? 39,923 8.21s 4,865.06 line/s 802,554 164.48s 4,879.40 line/s 17,080,005 42,532 4,744.14 line/s
Tacoma WO 40,372 34.94s 1,155.41 line/s 801,439 691.59s 1,158.83 line/s 3,969,508 9,904 1,102.51 line/s

Table 4: The number of bugs detected by Tacoma and its
counterparts within a 24-hour run.

Method Chromium Safari (WebKitGTK)
#Crash #Unique #Crash #Unique
Domaro [9] 1 1 45 7
FreeDowm [42] 12 4 26 5
Favocapo [8] 1 1 0 0
MINERVA [48] 0 0 16 6
SAGE [47] 1 1 74 7
TAacoma (ours) 23 5 114 9

the highest count of unique bugs within a 24-hour timeframe, for
both Chromium and Safari.

We conjecture that the advantages of Tacoma stem from three as-
pects. First, the scope-aware mechanism integrated into the seman-
tic alignment module indeed helps TAcoMA generate diverse test
inputs more efficiently, facilitating the exploration across a broader
range of browser functionalities. Second, the context-aware strat-
egy significantly enhances the accuracy of the generated test inputs,
thereby reducing the probability of browser execution exceptions
during fuzzing. Third, the newly developed cross-execution-context
navigation scheme empowers the fuzzer to effectively navigate
through binding code, increasing the probability of finding bugs.

5.4 Effectiveness of Semantic Alignment

By default, TAcoma engages with the semantic alignment to gener-
ate test inputs. We are curious about how much this module con-
tributes to the performance gain of Tacoma. To evaluate its effec-
tiveness, we conduct an ablation study (to answer RQ3). Specifically,
we disable the strategy in TACOMA, resulting in a variant termed
TacoMma without semantic alignment, i.e.,, Tacoma™°™¢. Note that
the scope tree of scope-aware mechanism is an integral aspect of
the input generator and thus cannot be disabled independently. We
then run Tacoma and Tacoma™¢ on Chromium for 24 hours.

First, we record the code coverage achieved and the number of
crashes detected during execution. Table 5 presents the fuzzing
results, from which we can see that Tacoma completely outper-
forms Tacoma™°* across all metrics. Tacoma achieves a 2.11%
increase in branch coverage and finds 9 more unique crashes com-
pared to TacoMa™?%¢. Note that we only use the audio template
of Tacoma in the ablation experiment, so the achieved coverage
is lower than that in the comparison experiments shown in Fig-
ure 9. In addition, we also measure the occurrence of runtime errors
raised by both Tacoma and TacomMa™™ %, as summarized in Table 6.
Whereas TacoMa™?5¢ consumes samples more efficiently, it results
in more runtime errors. Overall, 18.87% of the lines caused run-
time errors when running Tacoma™°*¢, while the probability of
TacoMA causing a runtime error is less than 1%.

Table 5: The fuzzing results of TaAcoma and Tacoma™°™5¢

Chromium for a 24-hour run.

over

Method Coverage #Crash #Unique
Region Function Line Branch

Tacoma 13.68% 18.31% 13.95% 10.74% 2,502 19

Tacoma™ ¢ 11.51% 16.31% 12.17% 8.63% 30 10

Table 6: Runtime errors raised by Tacoma and Tacoma™’5¢

over Chromium for a 24-hour run.

Method #Line #Sample #Error #Error Rate
TAcoMA 6,765,173 17,045 63,466 0.94%
Tacoma™05% 8422483 21,005 1,589,726 18.87%

All of the findings underscore that adopting semantic alignment
significantly improves the performance of Tacoma. The perfor-
mance gain can be attributed to the fact that the semantically cor-
rected parameters and attributes are constrained within the valid
range, resulting in fewer exceptions generated by the test inputs.
As a result, this allows the fuzzer to execute more valid code, facili-
tating deeper exploration of the browser space.

5.5 Overhead of Input Generation

Finally, to answer RQ4, we evaluate the runtime overhead of
Tacoma with respect to input generation.

Efficiency of Input Generation. Our evaluation metrics include
the number of generated sample lines, the time required to gen-
erate test inputs, and the speed of input generation. To provide a
comprehensive evaluation, we recorded TAcoMA’s performance in
generating 100 inputs, 2,000 inputs, and continuous inputs for one
hour, respectively. Table 3 summarizes the experimental results, re-
vealing that TacoMa can generate approximately 4,600 lines of code
per second. Notably, Tacoma exhibits an average input generation
time of 0.0846 seconds, whereas browsers require an average of
0.9149 seconds to execute an input. As such, we can conclude that
the test inputs are generated significantly faster than the rate at
which the fuzzer consumes them, suggesting that input generation
does not affect the overall performance of TAcoMA.

Impact of Semantic Alignment. Furthermore, it is also inter-
esting to evaluate the impact of the semantic alignment module
on the input generation overhead. To this end, we conducted ex-
periments as part of an ablation study. First, TaAcoma was modified
by selectively disabling the dynamic correction part, denoted as
Tacoma™ 4. Then, we disable both the dynamic and static correc-
tion parts, referred to as TacoMa™*®. The experimental results
are illustrated in Table 3, leading to two main observations. (1)
Tacoma™0 ¢ generates test inputs slightly faster than Tacoma, sug-
gesting that the dynamic correction strategy has only a minimal
impact on the speed of input generation, an effect considered negli-
gible. (2) TacoMa™* S experiences a significant slowdown, approx-
imately 4 times slower than TAcoMA in generating test inputs. This

Tacoma: Enhanced Browser Fuzzing with Fine-Grained Semantic Alignment

highlights the substantial improvement in input generation speed
afforded by the static correction strategy.

6 Discussion

Upgrade of Semantic Alignment. Inspired by the mutation-
based input generation approach, in future work, we consider tak-
ing advantage of browser runtime information during fuzzing to
iteratively upgrade the semantic alignment mechanism of TAcoMA.
For example, based on the feedback information from code coverage
during browser runtime, the input generator is guided to generate
code with a higher probability of triggering those browser areas
that remained uncovered in previous fuzzing rounds.

Overhead of Semantic Alignment. We have disclosed the over-
head of semantic alignment in §5.5. It should be noted, however,
that not all semantic alignment operations affect the efficiency of
input generation. For example, the static correction method merely
constrains the value range and the enumeration value of certain
parameters or object attributes, thus yielding negligible runtime
overhead. Moreover, the context-aware strategy, which requires
computational time (e.g., to retrieve previously generated variable
information), may introduce additional overhead in generating test
inputs. Nevertheless, it does not impact the fuzzing process, as
TacoMa consistently generates test inputs at a pace that exceeds
the consumption rate of the fuzzer.

Potential Manual Audit. To improve the correctness of input
generation, a manual audit of the browser source code is necessary
for addressing unclear IDL definitions. The semantic information
identified during the audit is then integrated into the semantic align-
ment module. It is noteworthy to highlight that TAcoma operates
as an automated end-to-end fuzzing framework, and the auditing
process is a one-time requirement that is conducted before Tacoma
is initiated. Subsequent launches do not require manual auditing
unless there are updates to the source code of the relevant browser
interface. The goal of such an audit is to ensure that the semantic
alignment module consistently receives accurate semantics, thereby
optimizing the effectiveness of input generation.

7 Related Work

Generation-based Fuzzing. Generation-based fuzzing is an ef-
fective method for testing software programs that require highly
structured inputs [21, 26]. This approach is particularly well es-
tablished for structured input formats, including but not limited
to HTML documents. Two categories of generation-based fuzzing
strategies are commonly used. The first is to predefine grammar
rules for generating syntactically correct test inputs. For example,
JsrunFuzz [1] and CsmiTH [43] construct random code to test a
target program based on manually defined grammar models and
templates. DomaTo [9] and FREEDoM [42] follow the predefined
DOM rules to generate effective HTML documents. The second is
to capitalize on existing test cases to learn a grammar model for
input generation. SKYFIRE [39], for instance, builds a probabilistic,
context-sensitive grammar model for HTML and XSL files by learn-
ing from valid inputs, and then uses the grammar to generate inputs
that are accepted by a target software. DEEPFUZZ [22] employs a
sequence-to-sequence model to automatically and continuously

ISSTA °24, September 16-20, 2024, Vienna, Austria

generate well-formed C programs. Recently, FuzzGAN [14] learns
the representation of the input space of deep neural networks, and
yields test cases without the constraint of any concrete seed input.

Browser Fuzzing. Browser fuzzing is considered to be one of the
most effective ways to find bugs in web browsers [32, 38]. Among
the different types of browser fuzzing techniques, DOM fuzzing and
JavaScript engine fuzzing are the most relevant works to ours. Early
DOM fuzzers embedded themselves in a page loaded by the tar-
get browser and called random DOM APIs on-the-fly [30, 46]. The
popularity of such fuzzers has declined because a target browser
instance ages after a long run, which results in unstable executions
and irreproducible crashes. Recently, the generation-based DOM
fuzzers have become mainstream [8, 9, 29, 42]. DoMaTo [9] takes ad-
vantage of manually-created grammars and semantics to generate
DOM API invocations. FREEDoM [42] efficiently generates HTML
documents by relying on a context-aware intermediate representa-
tion. FAvocaDpo [8] mainly focuses on testing the browser’s binding
code with semantically correct test inputs. MINERVA [48] explores
deeper paths by generating highly relevant API invocations for
browser API bug detection using mod-ref relations.

In addition to DOM fuzzers, the active research area of fuzzing
JavaScript engines has gained prominence [4, 27, 40, 44]. Current
efforts in JavaScript engine fuzzing prioritize the production of
semantically correct JavaScript. For example, MONTAGE [18] em-
ploys abstract syntax trees for mutation, while CodeAlchemist [15]
and IDE [27] strive to generate semantically valid JavaScript in-
puts. Fuzziv [11] introduces an intermediate representation (IR)
to construct both syntactically and semantically correct test cases.
SoF1 [16] presents an innovative semantic-aware fuzzing technique,
leveraging fine-grained analysis, automatic repair, and reflection.
Fuzziii [12] generates semantically correct code using an IR, tar-
geting JIT vulnerabilities in JavaScript engines of modern web
browsers. It is worth noting that, despite advances in JavaScript
engine fuzzing, the testing of the JavaScript binding code remains
relatively unexplored, primarily due to the complex implementation
within the binding layer. Surpassing existing efforts, Tacoma excels
in performing semantic alignment on the generated test inputs,
thus improving the effectiveness of fuzzing the binding code.

8 Conclusion

In this paper, we present TAcOMA, a new fuzzing framework tailored
for web browsers with a special focus on JavaScript binding code.
TacoMa takes advantage of a newly designed parser and aligner
to generate semantically correct test inputs for the browser fuzzer.
Furthermore, Tacoma exhibits the capability to produce diverse test
inputs under the guidance of the semantic alighment mechanism,
allowing the detection of deeply embedded defects within web
browsers. It is noteworthy that the techniques proposed in Tacoma
have the potential to be applied to the fuzzing of other browsers as
well. Extensive experimental results show that Tacoma achieves
significant improvements compared to state-of-the-art browser
fuzzers in terms of bug-finding and code coverage. Quantitatively,
Tacoma has successfully detected 32 previously unknown bugs on
three mainstream browsers, out of which 10 are assigned CVEs.
We anticipate that our tool will assist developers in strengthening
browsers, thus contributing to the advancement of browser security.

ISSTA °24, September 16-20, 2024, Vienna, Austria

References

(1]

(9]
[10]

[11]

=
&

[13]

[14]

[15]

[16

[17]

[18

[19]

[21]

[22]

[23]

[24

[n.d.]. A collection of fuzzers in a harness for testing the spidermonkey javascript
engine. https://github.com/MozillaSecurity/funfuzz.

[n.d.]. Geov. https://en.wikipedia.org/wiki/Gcov.

Devdatta Akhawe and Adrienne Porter Felt. 2013. Alice in warningland: a {Large-
Scale} field study of browser security warning effectiveness. In 22nd USENIX
security symposium (USENIX Security 13). 257-272.

Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and
Thorsten Holz. 2022.]JIT-picking: Differential fuzzing of JavaScript engines.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security. 351-364.

Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit Jhala, and
Deian Stefan. 2017. Finding and preventing bugs in javascript bindings. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 559-578.

Google Chrome. 2023. Security: TFC 2023 UAF in WebAudio / Renderer RCE.
https://issues.chromium.org/issues/40075943.

Antoine Colin and Guillem Bernat. 2002. Scope-tree: A program representation
for symbolic worst-case execution time analysis. In Proceedings 14th Euromicro
Conference on Real-Time Systems. Euromicro RTS 2002. IEEE, 50-59.

Sung Ta Dinh, Haehyun Cho, Kyle Martin, Adam Oest, Kyle Zeng, Alexandros
Kapravelos, Gail-Joon Ahn, Tiffany Bao, Ruoyu Wang, Adam Doupé, et al. 2021.
Favocado: Fuzzing the Binding Code of JavaScript Engines Using Semantically
Correct Test Cases. In NDSS.

Ivan Fratric. [n. d.]. DOM fuzzer. https://github.com/googleprojectzero/domato.
Patrice Godefroid, Adam Kiezun, and Michael Y Levin. 2008. Grammar-based
whitebox fuzzing. In Proceedings of the 29th ACM SIGPLAN conference on pro-
gramming language design and implementation. 206-215.

Samuel Grof3. 2018. Fuzzil: Coverage guided fuzzing for javascript engines.
Department of Informatics, Karlsruhe Institute of Technology (2018).

Samuel Grof3, Simon Koch, Lukas Bernhard, Thorsten Holz, and Martin Johns.
2023. FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities. In Network
and Distributed Systems Security (NDSS) Symposium.

Tao Guo, Puhan Zhang, Xin Wang, and Qiang Wei. 2013. Gramfuzz: Fuzzing
testing of web browsers based on grammar analysis and structural mutation. In
2013 Second International Conference on Informatics & Applications (ICIA). IEEE,
212-215.

Ge Han, Zheng Li, Peng Tang, Chengyu Hu, and Shanqing Guo. 2022. FuzzGAN:
A Generation-Based Fuzzing Framework for Testing Deep Neural Networks. In
2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th
Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/S-
martCity/DependSys). IEEE, 1601-1608.

HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines..
In NDSS.

Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou, Yang Liu,
Lei Yu, Jianhua Zhou, Wenchang Shi, et al. 2021. SoFi: Reflection-augmented
fuzzing for JavaScript engines. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. 2229-2242.

Sunwoo Kim, Young Min Kim, Jaewon Hur, Suhwan Song, Gwangmu Lee, and
Byoungyoung Lee. 2022. {FuzzOrigin}: Detecting {UXSS} vulnerabilities in
Browsers through Origin Fuzzing. In 31st USENIX Security Symposium (USENIX
Security 22). 1008-1023.

Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage: A
neural network language {Model-Guided} {JavaScript} engine fuzzer. In 29th
USENIX Security Symposium (USENIX Security 20). 2613-2630.

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the art. IEEE Transactions on Reliability 67, 3 (2018), 1199-1218.
Ying-Dar Lin, Feng-Ze Liao, Shih-Kun Huang, and Yuan-Cheng Lai. 2015. Browser
fuzzing by scheduled mutation and generation of document object models. In
2015 International Carnahan Conference on Security Technology (ICCST). IEEE,
1-6.

Jiawei Liu, Yuheng Huang, Zhijie Wang, Lei Ma, Chunrong Fang, Mingzheng Gu,
Xufan Zhang, and Zhenyu Chen. 2023. Generation-based Differential Fuzzing
for Deep Learning Libraries. ACM Transactions on Software Engineering and
Methodology 33, 2 (2023), 1-28.

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz:
Automatic generation of syntax valid ¢ programs for fuzz testing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 1044-1051.

Zhenguang Liu, Peng Qian, Jiaxu Yang, Lingfeng Liu, Xiaojun Xu, Qinming
He, and Xiaosong Zhang. 2023. Rethinking smart contract fuzzing: Fuzzing
with invocation ordering and important branch revisiting. IEEE Transactions on
Information Forensics and Security 18 (2023), 1237-1251.

Sanoop Mallissery and Yu-Sung Wu. 2023. Demystify the Fuzzing Methods: A
Comprehensive Survey. Comput. Surveys 56, 3 (2023), 1-38.

[25

[26

[27

I
=N

@ 'w
& S

&
=)

@
i

[40

[41]

[42]

[43

[44

[45]

Jiashui Wang and Peng Qian et al.

Valentin JM Maneés, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward] Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312-2331.

Chengbin Pang, Hongbin Liu, Yifan Wang, Neil Zhenqiang Gong, Bing Mao, and
Jun Xu. 2023. Generation-based fuzzing? Don’t build a new generator, reuse!
Computers & Security 129 (2023), 103178.

Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
javascript engines with aspect-preserving mutation. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 1629-1642.

Peng Qian, Hanjie Wu, Zeren Du, Turan Vural, Dazhong Rong, Zheng Cao, Lun
Zhang, Yanbin Wang, Jianhai Chen, and Qinming He. 2023. MuFuzz: Sequence-
Aware Mutation and Seed Mask Guidance for Blockchain Smart Contract Fuzzing.
arXiv preprint arXiv:2312.04512 (2023).

Mozilla Security. [n.d.]. dharma. https://github.com/posidron/dharma.
SensePost. [n. d.]. Wadi Fuzzing Harness. https://github.com/sensepost/wadi.
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. {AddressSanitizer }: A fast address sanity checker. In 2012 USENIX
annual technical conference (USENIX ATC 12). 309-318.

Chaofan Shou, Ismet Burak Kadron, Qi Su, and Tevfik Bultan. 2021. CorbFuzz:
Checking browser security policies with fuzzing. In 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, 215-226.
Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. 2016. Browser
feature usage on the modern web. In Proceedings of the 2016 Internet Measurement
Conference. 97-110.

Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most websites don’t need
to vibrate: A cost-benefit approach to improving browser security. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
179-194.

Suhwan Song and Byoungyoung Lee. 2023. Metamong: Detecting Render-Update
Bugs in Web Browsers through Fuzzing. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1075-1087.

NVD team. 2024. NATIONAL VULNERABILITY DATABASE.
https://nvd.nist.gov.
WebIDL Team. 2024. Web IDL Standard. https://webidl.spec.whatwg.org.

Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis
Papaevripides, and Elias Athanasopoulos. 2021. webfuzz: Grey-box fuzzing for
web applications. In Computer Security—ESORICS 2021: 26th European Sympo-
sium on Research in Computer Security, Darmstadt, Germany, October 4-8, 2021,
Proceedings, Part I 26. Springer, 152-172.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven
seed generation for fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 579-594.

Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen. 2023.
FuzzJIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT Compiler. In USENIX
Security Symposium. USENIX.

Peng Xu, Yanhao Wang, Hong Hu, and Purui Su. 2022. COOPER: Testing the
Binding Code of Scripting Languages with Cooperative Mutation.. In NDSS.
Wen Xu, Soyeon Park, and Taesoo Kim. 2020. Freedom: Engineering a state-
of-the-art dom fuzzer. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 971-986.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283-294.

Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-
aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
conformance testing for javascript engines via deep compiler fuzzing. In Proceed-
ings of the 42nd ACM SIGPLAN international conference on programming language
design and implementation. 435-450.

Jianjia Yu, Song Li, Junmin Zhu, and Yinzhi Cao. 2023. CoCo: Efficient Browser
Extension Vulnerability Detection via Coverage-guided, Concurrent Abstract
Interpretation. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security. 2441-2455.

M Zalewski. [n.d.]. cross_fuzz. https://lcamtuf.coredump.cx/cross_fuzz.
Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiy-
ong Wu, Shanshan Li, and Bin Gu. 2023. Towards Better Semantics Exploration
for Browser Fuzzing. Proceedings of the ACM on Programming Languages 7,
OOPSLA2 (2023), 604-631.

Chijin Zhou, Quan Zhang, Mingzhe Wang, Lihua Guo, Jie Liang, Zhe Liu, Mathias
Payer, and Yu Jiang. 2022. Minerva: browser API fuzzing with dynamic mod-ref
analysis. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1135—
1147.

Received 2024-04-12; accepted 2024-07-03

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzing on Web Browser
	2.2 JavaScript Binding Code

	3 Overview
	3.1 Motivating Example
	3.2 Our Strategy

	4 Design
	4.1 Semantic Parsing
	4.2 Semantic Alignment
	4.3 Input Generation
	4.4 The Workflow of Tacoma

	5 Evaluation
	5.1 Experimental Setup
	5.2 Discovering New Browser Bugs
	5.3 Comparison to Existing Browser Fuzzers
	5.4 Effectiveness of Semantic Alignment
	5.5 Overhead of Input Generation

	6 Discussion
	7 Related Work
	8 Conclusion
	References

