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Abstract—Mobile users are increasingly becoming targets of
malware infections and scams. Some platforms, such as Android,
are more open than others and are therefore easier to exploit than
other platforms. In order to curb such attacks it is important
to know how these attacks originate. We take a previously
unexplored step in this direction and look for the answer at
the interface between mobile apps and the Web. Numerous in-
app advertisements work at this interface: when the user taps on
an advertisement, she is led to a web page which may further
redirect until the user reaches the final destination. Similarly,
applications also embed web links that again lead to the outside
Web. Even though the original application may not be malicious,
the Web destinations that the user visits could play an important
role in propagating attacks.

In order to study such attacks we develop a systematic
methodology consisting of three components related to triggering
web links and advertisements, detecting malware and scam
campaigns, and determining the provenance of such campaigns
reaching the user. We have realized this methodology through
various techniques and contributions and have developed a ro-
bust, integrated system capable of running continuously without
human intervention. We deployed this system for a two-month
period and analyzed over 600,000 applications in the United
States and in China while triggering a total of about 1.5 million
links in applications to the Web. We gain a general understanding
of attacks through the app-web interface as well as make
several interesting findings, including a rogue antivirus scam,
free iPad and iPhone scams, and advertisements propagating
SMS trojans disguised as fake movie players. In broader terms,
our system enables locating attacks and identifying the parties
(such as specific ad networks, websites, and applications) that
intentionally or unintentionally let them reach the end users and,
thus, increasing accountability from these parties.

I. INTRODUCTION

Android is the predominant mobile operating system with
about 80% worldwide market share [1]. At the same time,
Android also tops among mobile operating system in terms of

malware infections [2]. Part of the reason for this is the open
nature of the Android ecosystem, which permits users to install
applications for unverified sources. This means that users can
install applications from third-party app stores that go through
no manual review or integrity violation. This leads to easy
propagation of malware. In addition, industry researchers are
reporting [3] that some scams which traditionally target desktop
users, such as ransomware and phishing, are also gaining ground
on mobile devices.

In order to curb Android malware and scams, it is important
to understand how attackers reach users. While a significant
amount of research effort has been spent analyzing the malicious
applications themselves, an important, yet unexplored vector
of malware propagation is benign, legitimate applications that
lead users to websites hosting malicious applications. We call
this the app-web interface. In some cases this occurs through
web links embedded directly in applications, but in other
cases the malicious links are visited via the landing pages
of advertisements coming from ad networks.

A solution directed towards analyzing and understanding
this malware propagation vector will have three components:
triggering (or exploring) the application UI and following
any reachable web links; detection of malicious content; and
collecting provenance information, i.e., how malicious content
was reached. There has been some related research in the
context of the Web, to study so-called malvertising or malicious
advertising [4], [5]. The context of the problem here is however
broader and the problem itself requires different solutions to
triggering and detection to deal with aspects specific to mobile
platforms (such as complicated UI and trojans being the primary
kinds of malware).

In order to better analyze and understand attacks through
app-web interfaces, we have developed an analysis framework
to explore web links reachable from an application and detect
any malicious activity. We dynamically analyze applications
by exercising their UI automatically and visiting and recording
any web links that are triggered. We have used this framework
to analyze 600,000 applications, gathering about 1.5 million
URLs, which we then further analyzed using established URL
blacklists and anti-virus systems to identify malicious websites
and applications that are downloadable from such websites. Our
methodology enables us to explore the Web that is reachable
from within mobile applications, something that, we believe, is
not yet done by traditional search engines and website blacklist
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systems such as Google Safebrowsing.

We make the following contributions.

• We have developed a framework for analyzing the app-
web interfaces in Android applications. We identify
three features for a successful methodology: triggering
of the app-web interfaces, detection of malicious con-
tent, and provenance to identify the responsible parties.
We incorporate appropriate solutions for the above
features and have implemented a robust system to
automatically analyze app-web interfaces. The system
is capable of continuous operation with little human
intervention.

• As part of our triggering app-web interfaces, we
developed a novel technique to interact with UI widgets
whose internals do not appear in the GUI hierarchy.
We develop a computer graphics-based algorithm to
find clickable elements inside such widgets.

• In order to assist with determining the provenance of
identified malicious links, we conducted a systematic
study to associate ad networks with ad library packages
in existing applications. Our study reveals 201 ad
networks and their associated ad library packages. To
the best of our knowledge, this is the largest number
of ad libraries identified.

• We deployed our system for a period of two months
in two continents, with one location in Northwestern
University campus and the other in Zhejiang University
campus. We studied over 600,000 applications from
Google Play and four Chinese stores for a period of
two months and identified hundreds of malicious files
and other scam campaigns. We present a number of
interesting findings and case studies in an attempt to
characterize the malware and scam landscape that can
be found at the app-web interface. As some examples,
we have found rogue ad networks propagating rogue
applications; scams enticing users by claiming to give
away free products propagating through both in-app
advertisements and links embedded in applications;
and SMS trojans propagating through well-known ad
networks.

In our findings, we have detected both applications embed-
ding links leading to malicious content as well as advertisements
that are malicious. We note that the two cases are different in
terms of which party is to blame: the application developer, or
others like the advertisement networks. Our results indicate that
in both the cases, the users can be offered better protection on
the Android ecosystem by screening out offending applications
that embed links leading to malicious content as well as making
ad networks more accountable for their ad content.

The rest of this paper is organized as follows. Section II
presents the necessary background. Our methodology is pre-
sented in Section III while Section IV discusses implementation
details. Section V and VI presents our results and some
interesting findings characterizing the studied malware and
scam landscape. Miscellaneous relevant aspects are discussed
in Section VII and related work is presented in Section VIII.
Finally, we conclude in Section IX.

II. BACKGROUND

In this section we provide the necessary context in which
our system and study fits as well as some details which led to
important decisions in our methodology.

A. Android Ecosystem

Android is a dominant mobile operating system. The core
operating system is developed primarily by Google and is used
by many device vendors as the platform for their devices. Apart
from system applications, Android also allows running third-
party applications, which serve to enrich the functionality of
user’s devices.

Application stores serve as the primary venue for the users
to find and install applications. Google maintains the official
Android application store, called Google Play. However, there
also exist other application stores. In some countries, such as
China, Google services are not as popular and so the unofficial
stores serve as the primary method of application distribution.
Most devices and vendors allow application installation from
unofficial sources, including third-party application stores and
web links.

Apart from the discovery mechanisms built into the ap-
plication stores, users may also discover applications through
advertisements in other applications. These advertisements may
be served through ad networks or may be directly embedded by
the application developers without the involvement of interme-
diary ad networks. Furthermore, in some cases applications may
include direct web links (i.e., not affiliated with any application
store).

B. Advertising

In-app advertisements are a significant source of revenue
for application developers, and form a large portion of app-web
interaction on mobile devices. As an ad-supported application
runs, it shows advertisements from various ad networks.
Advertisements take a variety of forms ranging from banners
at top or bottom area of the screen, whole-screen interstitials
during switching of activities (roughly equivalent to windows)
in the application, and as system notifications.

In the context of mobile advertising, the advertisers are
parties who wish to advertise their products, the publishers
are mobile applications (or their developers) that bring adver-
tisements to the users. Ad networks or aggregators link the
publishers to the advertisers, being paid by the latter and paying
the former. Tapping on advertisements may lead users to content
on Google Play or to web links. This often happens through a
chain of several web page redirections. We generally refer to
all these URLs in these web page redirections as the redirection
chain and the final web page as the landing page. Ad networks
themselves may participate in complex relationships with each
other. Certain parties, which may be ad networks themselves,
run so-called ad exchanges where a given ad space is auctioned
among several bidding ad networks so as to maximize profits for
the publishers. Ad networks also have syndication relationships
with each other: an ad network assigned to fill a given ad space
may delegate that space to another network. Such delegation
can happen multiple times through a chain of ad networks and
is visible in the redirection chains.
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Applications with advertisements embed some code from ad
networks. This code provides the glue between the ad network
and the publisher. It is responsible for managing and serving
advertisements and is called ad library.

C. Android Malware

Among the mobile operating systems, Android is particu-
larly troubled by malware. Part of the reason for this is the
openness in the ecosystem: applications can be downloaded
from the Web and through unofficial application stores. The
stores may be checking for malware with varying strictness
while for Web links, there may be very little the user can do
to know whether the downloaded applications are trusted.

It is also noteworthy that most Android malware comes as
trojans, i.e., applications that have a purported useful function
as well as a hidden malicious function. Android implements a
sandboxed application model, so that the compromise of one
application does not directly mean compromise of the whole
system. In the context of the Web and browsers, this means
that drive-by-download attacks are difficult. Therefore, malware
infections on Android happen not through drive-by-download
attacks, which are fairly common on some other operating
systems, but through trojans.

In our methodology, therefore, we do not attempt to detect
drive-by-download attacks but rather scams that may entice
users into downloading trojans or applications that charge users
exorbitant amount of money.

III. METHODOLOGY

Our methodology for analyzing app-web interfaces will
involve the following three conceptual components:

• Triggering. This involves interacting with the applica-
tion to launch web links, which may be statically em-
bedded in the application code or may be dynamically
generated (such as those in the case of advertisements).

• Detection. This includes the various processes to
discriminate between malicious and benign activities
that may occur as a result of triggering.

• Provenance. This is about understanding the cause or
origin of a detected malicious activity, and attributing
events to specific entities or parties. Once a malicious
activity is detected, this component provides the
information required in order to hold the responsible
parties accountable.

Different processes and techniques may be plugged-in to these
different components almost independently of what goes into
the other components. The rest of this section elaborates on
these three components, describing the various processes we
incorporate into each of them. An overall schematic depiction
of all the involved processes is presented in Figure 1.

A. Triggering App-Web interfaces

Recall from previous discussion that web links in ap-
plications are often dynamically generated (such as from
advertisements). Thus a static approach of extracting web
links is not sufficient. Therefore, in order to trigger web links

from within the application, we run the applications in a
custom dyanamic analysis environment. To enable scalability
and continuous operation, running applications on real devices
is not a feasible option. Therefore, each application is run in a
virtual machine based on the Android emulator. The applications
we are interested in are primarily GUI oriented and therefore
we need to navigate through the GUI automatically to trigger
app-web interfaces. The rest of this subsection describes the
techniques that we leverage from past research in order to
accomplish this, as well as some new techniques designed to
overcome issues specific to the app-web interface.

1) Application UI Exploration: Application user interface
(UI) exploration is necessary to trigger app-web interfaces.
Researchers have come up with a number of systems for
effective UI exploration catering to varied applications and
incorporating different techniques (Section VIII). An effective
UI explorer will offer high coverage (of the UI, which may
also translates to code coverage) while avoiding redundant
exploration. For our work, we used the heuristics and algorithms
that we had developed earlier in AppsPlayground [6]. We briefly
describe these next.

UI exploration generally involves extracting features (the
widget hierarchy) from the displayed UI and iteratively con-
structing a model or a state machine of the application’s UI
organization, i.e., how different windows and widgets are
connected together. A black-box (or grey-box) technique, such
as AppsPlayground, may apply heuristics to identify which
windows and widgets are identical to prevent redundant explo-
ration of these elements. Window equivalence is determined by
the activity class name (an activity is a code-level artifact
in Android that describes one screen or window). Widget
equivalence is determined by various features such as any
associated text, the position of the widget on the screen, and
the position in the UI hierarchy. In order to prevent long,
redundant exploration, thresholds are used to prune the model
search.

2) Handling Webviews: While studying advertisements, we
faced a significant challenge: most of the in-app advertisements
are implemented as customizations of Webviews (these are
special widgets that render Web content, i.e., HTML, JavaScript,
and CSS). Webviews and some custom widgets are opaque in
the UI hierarchy obtained from the system, i.e., the UI rendered
inside them cannot be observed in the native UI hierarchy and
thus interaction with them will be limited. To the best of our
knowledge, previous research has not proposed a satisfactory
solution to this problem.

Certain open source projects, such as Selendroid [7], may
be used to obtain some information about the internals of the
Webview. We developed code around Selendroid to interact
with Webviews. However, our experience was that it is difficult
to use the information provided from Webviews to trigger
advertisements. Advertisements often include specific buttons
(actually decorated links) that should be clicked to trigger the
ads. They may also present other features such as those relating
to users’ preferences, but which are irrelevant for our purposes.
The relevant links cannot easily be distinguished from the
irrelevant ones. Often times the click-able link is represented
by images instead of text. If we click the irrelevant links, ads
may not get triggered, resulting in low click-through rates.
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Fig. 1. Overview of measurement methodology

In order to overcome this issue of essentially flat (i.e., with
no hierarchical structure in the UI debug interfaces provided by
Android) Webviews, we apply computer graphics techniques
in order to detect buttons and widgets as a human would see
them. Algorithm 1 presents the detection algorithm.

Algorithm 1 Button detection algorithm
1. Perform edge detection on the view’s image
2. Find contours in the image
3. Ignore the non-convex contours or those with very small
area
4. Compute the bounding boxes of all remaining contours

The first step, edge detection, is the technique of identifying
sharp changes in an image. Fundamentally, it works by detecting
discontinuities in image brightness. We specifically use the
Canny edge detection algorithm, a classical, yet generally well-
performing edge detection algorithm. In the second step we
compute contours of images, using the computed edges, to
obtain object boundaries. Since buttons typically have a convex
shape and a large enough area so that a user can easily tap
on them, we ignore non-convex contours and those with a
small area within a threshold parameter. Numerous contours
such as those arising out of text or the non-convex or open
contours in embedded images are eliminated in this step. For
the remaining contours, we compute the bounding boxes, or
the smallest rectangles that would contain those contours. This
step is simply to identify a central point where a tap can be
made to simulate a button click.

The resulting bounding boxes signify the buttons that would
be visible to a human being. We have not performed a thorough
evaluation of the accuracy of our technique but the results are
good in the cases we have examined. Figure 2 presents some
cases related to ads as well as other views. We note that this
technique depends only on computer graphics algorithms, is
completely black box as it does not even need to extract the UI
hierarchy from the system. It can therefore be generally used
for any widget whose internals are opaque to the UI hierarchy
extraction.

In a small comparison with Selendroid-based implemen-
tation, we found that on a total of 968 applications, the

Fig. 2. Examples of detecting buttons with bounding boxes. The bounding
boxes are depicted as red rectangles. The top two figures contain the whole
screen while the bottom figure is just an ad. Note the detection of buttons.

Algorithm 1-based implementation uncovered 525 links while
the Selendroid-based implementation uncovered 100 web links.
We note that our Selendroid-based implementation has scope
for possibly significant improvement (as it is currently based
on simple heuristics). However, given the better performance
of graphics-based implementation, we decided to employ this
technique only in our large-scale deployment.

B. Detection

As the links are triggered, they may be saved for further
analysis and detection of malicious activity such as spreading
malware or scam. We would like to capture the links, their
redirection chains, and their landing pages. The links, redirec-
tion chains, and the content of the landing pages may then be
further analyzed using various methods.
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http://mdsp.avazutracking.net/tracking/redirect.php?bid_id=8425..&ids=BMjgzfjI1..&_m=%07
publisher_name%06%07ad_size%06320x50%07campaign_id%0625265%07carrier%06%07category%06IAB7%07
country%06..%07exchange%06axonix%07media%06app%07os%06android&ext=

http://track.trkthatpaper.org/path/lp.php?trvid=10439&trvx=f3ea3ff0&clickid=XVm..&pub_name=
{publisher_name}&ad_size=320x50&camp_id=25265&carrier={carrier}&iab_category=IAB7&country=..&
exchange=axonix&media=app&os=android

http://com-00-usa5.com/lps/thrive/android/hp/win/us/congrats_blacksmrt/index.php?isback=1&backid1
=10451&backid2=90ca7507&sxid=b2f..&tzt=..&devicename=&mycmpid=10439&iphone_o=2199&ipad_o=2198&
os=android&isp=..&country=US&clk=fln&trkcity=..&clickid=X..Q&pub_name=%7Bpublisher_name%7D&
ad_size=320x50&camp_id=25265&carrier=%7Bcarrier%7D&iab_category=IAB7&exchange=axonix&media=app

http://track.trkthatpaper.org/path/lp.php?trvid=10608&trvx=2721e17a&clk_ip={clk_ip}&clk_campid=
{clk_campid}&clk_country={clk_country}&clk_device={clk_device}&clk_scr=480x800&clk_tch=true&
clk_campname={clk_campname}&clk_tzt=0&clk_code=fln

http://com-00-usa5.com/lps/thrive/android/hp/sweeps/us/iphone-winner/index_ipad.php?isback=1&
backid1=10451&backid2=90ca7507&sxid=377..&tzt=..&devicename=&mycmpid=10608&os=Android&
devicemodel=Android+4.2&devicetype=mobile&isp=..

Fig. 3. An example redirection chain. Lengthy query parameters and those that are could reveal authors’ identity (through location/ISP) have been redacted. This
example chain is also useful in understanding the case study presented in Section VI-B.

a) Redirection chains: Advertisements redirect from
one link to another until they finally arrive at the landing page.
As discussed earlier, the redirection may be a result of ad
syndication and auction or may even be performed within an
ad network itself or by the advertisers themselves. An example
redirection chain of length five is shown in Figure 3. Redirection
chains may also be observed in non-ad links. Redirection
may be performed using several techniques, including HTTP
301/302 status headers, HTML meta tags, and at the JavaScript
level. Furthermore, we found that certain ad networks such as
Google ads apparently use time-based checks in order to reduce
possibility of click fraud. The result of this is that the links
must be launched in real-time to obtain redirection messages.
In order to ensure that our approach accurately follows the
redirection chain regardless of the redirection technique used,
we use an instrumented web browser to follow the chain, just as
a real user would. We implemented a custom browser that runs
inside the virtualized execution environment so that the ads are
loaded completely realistically inside the browser allowing full
capture of the redirection chains. Our browser implementation
is based on the Webview provided in Android. With Javascript
enabled and a few other options tweaked, it behaves completely
like a web browser. We additionally hook onto the relevant parts
to log every URL (including redirected ones) that is loaded in
it while freely allowing any redirections to occur.

b) Landing pages: Landing pages, or the final URLs in
redirection chains, in Android may contain links that may lead
to application downloads. Malicious landing pages may lure the
users into downloading trojan applications. We load the landing
pages in a browser configured with a realistic user agent and
window size corresponding to a mobile device, so that the
browser appears to be the Chrome browser on Android. We
then collect all links from the landing page and click each to see
if any files are downloaded. Simulating clicks on pages loaded
in a browser ensures that links are found and clicked properly
in the presence of Javascript-based events. The downloaded
files are analyzed further as below.

c) File and URL scanning: The collected URLs and
files may be analyzed in various ways for maliciousness. In
this paper, rather than developing our own analysis, we used
results from URL blacklists and antiviruses from VirusTotal.

VirusTotal aggregates results from over 50 blacklists and a
similar number of antiviruses. Each URL collected, either the
landing page or any other URL involved in the redirection chain,
is scanned through URL blacklists provided by VirusTotal. This
includes blacklists such as Google Safebrowsing, Websense
Threatseeker, PhishTank, and others. Files that are collected as a
result of downloads from the landing pages are scanned through
the antiviruses provided on VirusTotal. Antivirus systems and
blacklists are known to have false positives. In order to minimize
the impact of this, we use agreement among antiviruses to
reduce the false positive rate: we say a URL or a file is malicious
only if it is flagged by at least three different blacklists or
antiviruses.

C. Provenance

Once a malicious event is detected, it is necessary to make
the right attributions to the parties involved so that these parties
can be held responsible and proper action may be taken. In
our system, we use two aspects as part of provenance.

• Redirection chain. The redirection chain, which is
already captured as part of the detection component.
The redirection chain can be used to identify how the
final landing page was reached: if the landing page
contains something malicious, the parties owning the
URLs leading up to the landing URL can be identified.

• Code-level elements. The application itself may include
code from multiple parties such as the primary appli-
cation developer as well as ad libraries from a variety
of ad networks. In order to launch one application
from another, Android uses what are called intents.
URLs may be opened by applications in the system’s
web browser by submitting intents to the system with
specific parameters. We modify the system to log
specific intents that are indicative of URL launches
together with which part of the code (the Java class
within which the launching code lies) that submitted
the intent. This allows us to determine which code
with an application launched the malicious URL.

It is important to identify the owners of the code classes
captured as part of provenance: do they belong to the application
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developer or an ad library, and if they belong to an ad library,
which one is it? In order to assist us in doing this, we therefore
perform the one-time task of identifying prevalent ad libraries
and their associated ad networks.

D. Ad Library Identification

Applications that monetize with advertisements typically
partner with ad networks and embed code called ad libraries
from them in order to display and manage advertisements. Our
goal is to comprehensively identify ad networks that participate
in the Android ecosystem and their associated ad libraries.
Such an identification is important for automatically classifying
if a malicious activity is a result of an advertisement or is
the responsibility of the application developer. Some simple
domain knowledge, such as which ad networks are there in the
market, may not provide a comprehensive list we are looking
for. We instead resorted to two systematic approaches to do
this identification based on the ad libraries embedded in the
code.

a) Approach 1: We exploit the fact that one ad network
will likely be used by many applications and thus common
ad library code will be found in all applications using an
ad network. The native programming platform for Android
applications is Java and Java packages provide mechanisms to
organize related code in namespaces. Ad libraries themselves
have packages that can serve as their identifying signatures.

In our first approach, we collected packages from all appli-
cations in our dataset and created a package hierarchy together
with the frequency of occurrence of each package. We sorted
the packages and then manually searched the most frequent
packages to identify ad libraries. For example, after sorting,
packages such as com.facebook and com.google.ads
appear at the top. Then we identified the nature of each
package, i.e., whether it constituted an ad library, based on
either prior knowledge or manually searching information about
that package on the Web.

b) Approach 2: The previous approach became cum-
bersome when we reached frequencies of a few hundred
because many non-ad packages also had such frequencies. Our
alternative approach allows for comprehensive identification of
ad libraries without depending on the frequency of occurrence
of those ad libraries. Our second approach relies on the
fact that the main application functionality is only loosely
coupled with the functionality of ad libraries. Thus, we use
the technique described by Zhou et al. [8] to detect loosely
coupled components in the applications. The coupling is actually
measured in terms of characteristics such as field references,
method references, and class inheritances across classes. Ideally,
all the packages of one ad library will be grouped into one
component. In reality, this does not always happen and it may
also happen that classes that should have been in different
components end up in the same components. However, the
errors are tolerable and can be manually analyzed.

The manual analysis is further eased by employing a
clustering technique described as follows. We create a set
of Android APIs called in an application component. This set
of APIs forms a signature for the component. We map these
APIs to integers to enable efficient set computations. Based on
this, ad library instances with the same version have matching

API sets. For different versions, the sets will be similar but not
identical. We run this analysis on components extracted from
all applications and then use the Jaccard distance to compute
dissimilarity between API sets. If it is below a certain threshold
(we used 0.2), we place the components in the same cluster.
Thus packages of different ad libraries end up in different
clusters, and then clusters can be easily mapped to ad libraries.

c) Results: Using the two approaches, we were able to
identify 201 ad networks in our dataset. To our knowledge,
this is the highest number of ad networks identified. Some
ad networks have ad libraries with several package names.
For example, com.vpon.adon and com.vpadn belong to
the same network. We combine such instances together to be
represented as a single ad network. More notably, Google’s
Admob and DoubleClick platforms are both represented as
Google ads.

Note that our approach to use package names to identify ad
libraries is contingent upon the assumption that ad library
packages are not obfuscated. This is true for most cases
that we know of: the top-level packages work quite well to
identify most ad libraries. However, Airpush is one known
ad network that obfuscates its ad libraries such that they
are no longer identifiable with package names [9]. While
applying our second approach, which is immune to lexico-
graphic obfuscations, we also detected obfuscated Airpush
packages, all ending up in a few clusters. The clusters have
the non-obfuscated package com.airpush.android as well as
obfuscated ones like com.cRDpXgdA.kHmZYqsQ70374 and
com.enVVWAar.CJxTGNEL99769.

IV. IMPLEMENTATION

We implemented most of our system in Python. For
UI exploration, we make use of the source code of the
AppsPlayground tool [10]. However, the existing version of
the tool is unable to run on current versions of Android,
and we therefore reimplemented the system to work on
current Android versions with the same heuristics as are
described in the AppsPlayground paper. Furthermore, instead
of using HiearchyViewer for getting the current UI hierarchy
of the application, we used UIAutomator, which is based on
the accessibility service of Android. This had a significant
and positive effect on the speed of execution. The graphics
algorithms used for button detection were provided by the
OpenCV library and appropriate thresholds were chosen after
repeated testing.

To improve speed of dynamic analysis, we take advantage
of KVM-accelerated virtualization. To use this, we use Android
images that can run on the x86 architecture. About 70% Android
applications have no native code and so can run without problem
on such targets. Other applications contain ARM native code
and cannot run on x86 architecture without proprietary library
support. We therefore excluded applications containing native
code. Despite this we believe the study results are generally
representative. Furthermore, not being able to run ARM native
code is not a fundamental limitation of our approach: third-
party Android emulators, e.g., Genymotion, or the use of
a dynamic ARM-to-x86 code translation library (libhoudini)
can allow running ARM code on hardware-accelerated x86
architectures [11], [12].
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For post-trigger analysis, our entire framework is managed
through Celery [13], which provides job management with the
ability to deploy in a distributed setting. In our implementation
the app UI exploration as well as the recording of redirection
chains with a real browser happens in tandem. Once this stage is
completed, any recorded redirection chains are queued through
a REST API into the Celery-managed queue together with
information about the application and part of the code that
was responsible for the triggering of the intent that led to the
redirection chain. Tasks are pulled from the queue to perform
further analysis on the landing pages and scan the files and
URLs with VirusTotal as described above. The whole system
has proper retry and timeout mechanisms in place and could
run for multiple months without significant need of human
attention.

All the resulting analysis data is stored in MySQL and
MongoDB databases. Since the framework works in a dis-
tributed, concurrent manner, server-based SQL engines such as
MySQL were more appropriate than serverless implementations
like SQLite. SQL commands are additionally wrapped with
SQLAlchemy, a library that provides object-relational mapping
(ORM), generally easing the programming.

We implemented the analysis of the landing pages or the
final URLs in the redirection chains on top of Chromium web
browser using Watir and the Selenium Webdriver framework.
We use Watir and Webdriver to script browser actions for auto-
matically loading web pages, clicking on links, automatically
download content that is available on clicking links, as well
as going back to the original page if a new page loads after
clicking on links. All the processing is done headlessly (i.e.,
without any GUI) using the Xvfb display server, which is an
X server implementation that does not present a screen output.

Applications are run in the virtualized environment for a
maximum of five minutes, with the average running time less
than two minutes. The post-trigger analysis, especially the
analysis of landing pages, is allowed to run for a maximum of
fifteen minutes. We allow for such a long time as our crawler
may traverse many links and each link may have complex
redirection mechanisms that may trigger only after a short
wait.

V. RESULTS

A. Application Collection

Our application dataset consists of 492,534 applications
from Google Play and 422,505 applications from four Chi-
nese Android application stores: 91, Anzhi, AppChina, and
Mumayi. Google Play has a proprietary API for searching
and downloading applications from the store and it further
requires Google account credentials to do these tasks. We
used PlayDrone, which is an open source project to crawl
Google Play [14]. Google implements rate limiting based on
Google accounts and IP addresses and bans accounts and IP
addresses if there are two many requests in a given period of
time. PlayDrone mitigates this problem by seamlessly allowing
the use of multiple Google accounts and deploying the crawler
over multiple machines in a distributed manner. We used the
multiple Google accounts feature but simplified the system
by using a single machine and setting multiple IP addresses
for that machine. In our deployment, every new connection to

Google’s servers randomly chooses from among twenty source
IP addresses. To crawl applications from Chinese application
stores, we used our own in-house tool. These third-party stores
have a much simpler API than Google Play and typically have
a public http/https URL associated with each application. While
there can be sophisticated ways to search for each application,
the technique we employed was based on the observation that
applications in all these stores have identifiers in a small integer
range. Requesting URLs constructed for each possible identifier
sufficed to completely scrap these applications stores. After
removing applications that were redundant among these stores,
the total number amounts to 422,505. About 30% applications
have native code and due to implementation reasons mentioned
in Section IV cannot be tested on our system. Our entire usable
application dataset therefore consists of a little over 600,000
applications.

B. Deployment

We deployed our system to gather results over a period of
about two months from mid-April 2015 to mid-June 2015 in
two locations, one at Northwestern University campus in the
US and the other at Zhejian University campus in China. The
deployment ran continuously with little manual intervention,
and restarts were necessary only when we needed to update the
system for fixing bugs or adding features. To have a realistic
setting, the Northwestern University location ran applications
from Google Play (only the applications available from the US)
while the Chinese university location ran applications from
Chinese application stores. The location where the apps are run
is important because much of advertising, which forms bulk
of the app-web interaction we are studying, is targeted based
on location. The advertisements that are seen in one location
may not be shown in another location.

C. Overall Findings

Overall, we recorded a total of slightly over 1 million
launches of app-to-web links in the US deployment. In the
Chinese deployment, this number was 415,000. Note that this
is not a direct correspondence with the applications: some
applications may result in more than one launch while others
may not result in any. In the US, we detected a total of 948
malicious URLs coming from 64 unique domains. For the
Chinese deployment we detected 1,475 malicious URLs that
came from 139 unique domains. We also downloaded several
thousands of files of which many were simple text files or
docx files. As for the number of Android applications, the
US deployment collected 468 unique applications (from the
Web, outside Google Play) of which 271 were found to be
malicious. A large chunk (244) of these malicious applications
comes from the antivirus scam reported in Section VI-A.
Excluding this anomalous number of 244, we find that one in
six applications downloaded from the Web (outside Google
Play) are malicious. The file numbers above do not include the
applications hosted on Google Play. We accounted for such
applications separately: there were 433,000 landing Google Play
landing URLs, i.e., http URLs with play.google.com domain
or URLs with market scheme (beginning with “market://”).
These Google Play landing URLs led to a little over 19,000
applications on Google Play. About 5% of these labels are
labeled as malicious (based on our criterion of being flagged
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Fig. 4. Malicious files downloaded through ad libraries and through other links
not affiliated with any ad libraries in US deployment. Libraries not resulting
in malware downloads are not shown. Tapcontext malware numbers are not
shown here as they are too high.

Fig. 5. Malicious files downloaded through ad libraries and through other
links not affiliated with any ad libraries in Chinese deployment. Tapcontext
and libraries not resulting in malware downloads are not shown.

Fig. 6. Redirection Chain lengths in US Deployment Fig. 7. Redirection Chain lengths in Chinese Deployment

by at least 3 antiviruses) on VirusTotal. Based on our manual
check of the antivirus labels, however, all of these appear to be
adware. On the Chinese deployment side, we collected 1,097
unique files of which 435 are malicious. 102 of these files are
from the antivirus scam of Section VI-A.

Figures 4 and 5 present the distribution of malware
downloads through various ad libraries in the US deployment
and in the Chinese deployment respectively. The “others” bar
presents the downloads through web links not embedded in
advertisements. Both the higher diversity and higher number of
malicious downloads in the Chinese deployment are noteworthy.
This is likely because the North American Android ecosystem
is centered around Google Play and application downloads
outside it are rare. However, the Chinese ecosystem depends
much more on the Web and third-party Android application

stores.

We also plot the length of redirection chains in both North
American and Chinese Deployments. Note as the length of the
chains increases, the two curves come closer, i.e., we have a
greater fraction of malicious chains when they are longer. This
was also observed by [5] and can possibly used to enhance our
detection in future work.

VI. CASE STUDIES

In this section we describe some interesting cases of scams
and malicious applications.

A. Antivirus Scam

We discuss here an antivirus scam campaign. We found the
antivirus, Armor for Android, to be heavily campaigned for
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Fig. 8. Armor for Android antivirus scam. (a) Application conducting
gratuitous virus scan; (b) A web page imitating Android dialog box asking
user to install the antivirus.

through multiple applications in both the US and the Chinese
experiments. In our traces, the entire campaign is running off
an ad network known as Tapcontext. In fact, based on our
observation lasting a few months, the entire ad inventory of
this ad network appears to be related to Armor for Android
only.

Applications show the antivirus advertisements as any
normal advertisement. In addition, they also sometimes au-
tomatically begin scanning for malware on the device (Figure 8
(a)). Our investigations on the Web seemed to clarify this: an
apparent Tapcontext representative admits that the ad library
has a tie up with an antivirus company that conducts a real scan
of the device (perhaps by gathering application checksums and
getting information about them from their server) [15]. The
scan does show real results but labels minor adware also as
threats while still not revealing additional information to the
user what threats were found unless a purchase is made.

The next aspect to the scam-like operation is that when the
user clicks on an advertisement to download the application,
the ad library launches a web page that looks very similar in
appearance to a native Android dialog box prompting the user
to download and install the antivirus application through the
“Download & Scan FREE Now” button. Upon clicking this
button, a file by the name of “Scan-For-Viruses-Now.apk” is
downloaded. We note that Tapcontext embeds a unique identifier
to each click so that the URL of the web page is different
every time while the appearance is the same. However, all the
URLs come from two domains only: www.fastermobile.org
and www.fastermobiles.com. Furthermore, each downloaded
Scan-For-Viruses-Now.apk file is the same application (has the
same functionality) but is slightly different so that their MD5
and SHA digests never match.

The antivirus application is considered a scam by several
antiviruses and some Internet outlets [16] and is variously called
as FakeApp, Fakealert, Fakepay, and FakeDoc by antiviruses
in their malware labellings. The application charges a hefty

subscription fee of 0.99 GBP a day. While the application was
also hosted on Google Play during the time of our experiments
(it was subsequently removed from Google Play without our
involvement), the advertisements we saw directed users to
download applications from outside Google Play.

Our detection of this campaign was through the “Scan-For-
Viruses-Now.apk” files that were detected by antiviruses on
VirusTotal. Manual analysis after these detections led us to
also discover how the web page with the appearance of an
Android dialog box was designed to phish users. We note that
we had already detected this scam campaign and identified
this phishing behavior at least twenty days prior to Google
Safebrowsing and a few other URL blacklists on VirusTotal
incorporating www.fastermobile.org URLs as phishing URLs.

The above highlights the importance of running such
frameworks on a continuous basis. It is likely that the phishing
web pages we detected are not discoverable directly through
the Web and hence inaccessible to either search engines or
URL safety evaluation infrastructures like those of Google
Safebrowsing (unless submitted through channels other than
web crawling). By exploring the Web that is reachable from
mobile applications, the doors for further analysis are opened
and it becomes easier to identify and blacklist phishing websites
leading to previously known malware and thus protecting the
users.

This case study also offers a good example of how
frameworks such as ours can be used to understand and expose
scamming ad networks such as Tapcontext. The Tapcontext ad
network is being used by more than 1,800 applications in our
dataset. Application developers incorporate ad networks for
making money; however, such scam networks jeopardize the
applications’ reputation and are likely to do more harm than
good to the developers’ revenue. Furthermore, such evidence
may also be used by application markets and law enforcement
groups to hold ad networks more accountable for the content
they present.

B. Free iPad Scams

In our experiments, we encountered several instances of
win-free-iPhone or win-free-iPad advertisements. In our traces,
these advertisements had a few landing pages with domains such
as com-00-usa5.com and 1.cdna.com, possibly from unrelated
parties (based on Whois records). These landing pages present
the user in flashy language that they have been lucky, an
iPhone (or some other electronic) is theirs if they go to the
next step. Examples are shown in Figures 9 (a) and (b). In
Figure 9 (a) all the users seeing the particular page are “lucky”
and “randomly selected to qualify for the special offer”. The
tricked users upon continuing are lead to a page like that in
Figure 9 (c). This same page may itself come from different
URLs such as http://www.electronicpromotion.com/Flow.aspx
and http://www.promotionalsurveys.com/Flow.aspx. The page
collects the users’ personal information such as name, email
address, physical address, and phone number and then leads to
a website called http://www.amarktflow.com/. The user ends up
answering lengthy surveys, confirming the personal information
already provided, and then prompted to install an app or a
browser toolbar.
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Fig. 9. Free iPad and iPhone scams. Figures (a) and (b) are typical landing pages shown to the users when they click on related advertisements in the apps.
Both these landing pages lead to the page shown in Figure (c). Note the language: the user is assured of getting an iPad or iPhone on answering a few questions.
What is likely is that the user hands over significant personal information without getting anything in return.

None of the above websites themselves are flagged by URL
blacklists on VirusTotal. WOT, a crowd-sourced reputation
system for websites, however presents a “very poor” reputation
for http://www.amarktflow.com/ and considers it a possible
scam [17]. The users are simply enticed to give away their
personal information, which could be sold or abused, and it is
not clear if even a single iPhone or iPad is distributed out to
any of the users. Similar scams have been covered in the past
in other contexts. Sophos reported a free iPad scam being run
through a Facebook application [18]. Similar scams propagating
through spam email and SMS messages and over the Web have
been covered and discussed elsewhere [19], [20].

We next bring the reader’s attention to how this scam
shows up in mobile advertisements. The URL blacklists on
VirusTotal flagged some of the intermediate redirection URLs
as malicious or phishing websites. The concerned domains here
include avazutracking.com and track.trkthatpaper.org. Based on
our results, all URLs relating to these domains are not actually
bad. These domains appear to be parts of some advertisement
networks and exchanges and do show non-malicious content
also. Likewise, the com-00-usa5.com mentioned earlier also
presents non-malicious advertisements.

The developers are actually unaware that they are using ad
services that may show scam content. In our experiments, all
the free iPhone and iPad scams appear from two ad libraries:
Mobclix and Tapfortap. These libraries retrieve ad content from
so-called ad exchanges where multiple networks participate
and bid to show advertisements in the given ad space. The
bidding ad networks may further have syndication relationships
with other ad networks and may allow those networks to show
ads on their behalf. In many of these cases of free iPad scams,
we believe that Mobclix leverages Axonix, which is another
ad exchange. Consider the example redirection chain shown in
Figure 3. This chain arises from the Mobclix ad library and
the landing page is what is seen in Figure 9 (c). In between it

redirects through multiple domains belonging to ad exchanges
and networks with the URLs passing information to those
following them through query parameters. Because of this
complicated infrastructure of multiple networks involved, it
becomes difficult for the developers, ad libraries like MobClix
and Tapfortap, and perhaps even the ad networks on top to
ensure the quality of the content presented.

Our system is again useful here. If deployed by a responsible
party, such as Google or a government agency, which can hold
the content publishers accountable, the collected traces can
be of invaluable help in getting to the offending parties and
gathering evidence against them. In this way, it may be possible
to limit the scam content shown to the users.

C. Scams Through Direct Links

We also encountered scams the result of which is very
similar to the free iPad scams described in the previous section.
However, how they originate is different. Rather than an
advertisement embedded in the application leading to the scam
page, in these cases, a web link statically embedded in the
application leads to the scam page. The web link appears to link
to a benign website not related with advertisements or scam;
however, it contains code that loads an advertisement, which
then redirects through a series of URLs to a scam landing page.
An example is shown in Figure 10. When the user taps on the
button labeled “Fiestas de hoy” (Parties Today), a web page
opens in the browser and redirects to the scam webpage. As an
aside, note the scam page actually shows the user’s city, derived
from the client’s IP address, perhaps to engender confidence
in the user. More importantly, it also shows the Facebook logo
even though it is not affiliated to Facebook, bringing the scam
at the brink of phishing as well.

We found a number of applications having such behavior
of leading to scams through links embedded in them. The
applications we found do not exist on Google Play anymore
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Fig. 10. Another free iPad scam. The scam originates not through an ad in
the app but through a link statically embedded in the application (in this case,
“Fiestas de hoy”). Upon clicking this link an ordinary URL is launched and
as the web page loads, it is redirected to web-based ad providers that show
the scam. Note also the presence of the Facebook icon on the web page even
though there is no association between Facebook and this website.

(although Google’s VerifyApps service does not label them
as malicious, so removal due to being malicious is unlikely).
Our detection of such scam was based on certain URLs whose
domains (e.g., zb1.zeroredirect1.com) are nearly always flagged
by VirusTotal blacklists. In our automatic attribution of the
attack, we found that this scam is not attributed to any of the ad
libraries that we detected in Section III-D. Looking manually,
some of the application’s own classes were involved, and it
was static links embedded in the app that led to scam pages.

We are not sure if the developers themselves are aware that
these applications are participating in propagating scams. It
is possible that the developers simply embedded some links
and host advertisements on those web pages without knowing
that advertisements could lead to scam. On the other hand,
some of these applications always seem to lead to scammy
advertisements (during the time we tried them); developers
may thus knowingly be participating in such scams. The link
in the application discussed here being named “Fiestas de hoy”
or “Parties today” seems to also signify this.

D. Fake Movie Player Malware

Our deployment in China also detected several instances
of advertisements on Baidu and Nobot ad networks. These
advertisements tell the user that they can play videos for free.
An example screenshot is shown in Figure 11.

Advertisements like the one at the bottom of the screenshot
lead the user to either directly download a video player
application, or take to a web page containing pornographic
images and prompt the user to download a video player from
there. Our system was able to trigger the ads and download
the video player applications. These applications are however
malicious and, more specifically, SMS trojans, i.e., they send
SMS messages to premium numbers without users’ consent. On

Fig. 11. A screenshot with an ad from Nobot at the bottom. The ad says
in Chinese that it is free to play video using your mobile phone. It leads
to download a video player. The purported video player is actually an SMS
trojan.

VirusTotal nearly 30 antiviruses detect these applications under
various names such as SMSSend and SMSPay. Based on their
permissions, some of these applications can also, apart from
sending SMS messages, make calls without user confirmation,
read and write SMS messages, and monitor applications running
on the system.

The number of instances of such advertisements we found
was not small either. Our system had triggered 30 advertise-
ments on the Baidu ad network and 3 on the Nobot network.
We also note that many of these advertisements do not have any
redirection chains: the ad just directly leads to the apk or the
landing page. Therefore, we believe it should have been easy
for them to spot the malware and block the advertisements. In
some cases, there would be a one-level redirection only, going
through a site such as http://csu.ssooying.com/QnqQvy. This
site is now blacklisted by four URL blacklists, including Google
Safebrowsing, on VirusTotal. However, it was not detected by
those blacklists at the time these advertisements were seen by
our system.

As an aside, when we manually studied these two ad
networks, we were able to see a pharmaceutical campaign
that sell alternative therapy drugs for sexual fitness. Based on
the content, the campaigns’ claims seem dubious so that they
could very well be classified as another scam. Even though
VirusTotal URL blacklists do not flag the campaign’s website,
other vendors such as Qihoo 360 flag it as fake and trick
website.

E. Questionable Results from Google ads

We have found reputed ad networks to be generally safe and
not propagating malicious content. Mobclix was one example
where we saw a few scams, although Mobclix itself may not
be aware of them. In this section, we will discuss how even
Google’s ad network appears to be not free from malicious
content. Google ads is the most popular ad network (we
consider both Doubleclick and Admob under one umbrella
of Google ads), being included in over 40% applications while
all other ad libraries are included in less than 10% applications.
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Consequently, we triggered many more Google ads than ads of
other libraries, and intuitively, have a greater chance of finding
malicious content in their network.

In our North American deployment, we detected a frequent
advertisement from Google ads that led to what is apparently a
fitness website and which has the domain johnshollywoodwork-
out.com. At the time of detection, the landing URL was flagged
by three URL blacklists, not including Google Safebrowsing, on
VirusTotal. Unfortunately, by the time we attempted to manually
analyze the case, the website was down and would show only a
blank page. Apart from being detected by some URL blacklists,
going down in a short period is another indicator that the
website could be malicious. The advertisement would land
on this website after being redirected from another website
fitness.rasqal.com. This site hosts coupons for several stores
and is considered clean by URL blacklists. It just appears that
Google was not aware of the malicious landing site, or, more
unlikely, the three URL blacklists had false positives.

In our Chinese deployment also, we found some cases where
we saw content originating from Google ads that could be
considered questionable. The most prominent case, consisting
of 67 downloaded files, is that of advertisements from a game
app market (called Migu Game) which is run in cooperation
with China Mobile, a telecommunication operator in China.
The ad is run through Doubleclick. The app market website
hosts several Android applications for download, all of which
are considered by several antiviruses on VirusTotal as adware
and or as an instance of SMSReg (these kind of applications
are usually not malware but are potentially unwanted). Inside
the app, the users are charged by China Mobile even for simple
functions or asking for help. This is perhaps the reason why
antiviruses give such a classification.

VII. DISCUSSION

This section discusses limitations, possible improvements,
and other questions regarding our research. Our methodology
is based on dynamic analysis and may not be able to reveal all
links and ads in applications, thus leading to false negatives. A
partial mitigation of this issue may be possible by incorporating
other GUI exploration techniques as described in Section VIII
to improve coverage. We also inherit the limitations that are
generally applicable to GUI exploration techniques such as
getting past through login screens. We however believe that
such limitations do not affect the representativeness of our
study. Furthermore, we could bypass much of GUI exploration
by reading embedded links from applications statically and by
generating ad links directly by simulating interactions with ad
networks (this would require us to understand the protocols
between ad libraries and ad servers and is challenging to do).
This is part of our future work. Another source of possible
inaccuracies is the fact that we rely on external oracles such
as VirusTotal antiviruses and blacklists. It is likely that we
are missing scams and malware that these oracles missed.
Nonetheless, our research shows the benefit of doing analysis
at the app-web interfaces and any detection techniques may
complement our methodology.

Another important question is related to ethics. Since
advertisers pay for the ads by impressions or clicks, our
analysis, which involves loading and clicking ads, may cause

economical disturbances. Nonetheless, we argue that such
analysis is for the greater good of enhancing security in
the ecosystem. Furthermore, our study comes after earlier
precedents of malvertising research [4], [5], which have faced
similar ethical challenges. It is possible to minimize the analysis
impact if ad networks collaborate and provide their ad inventory
to parties running such analysis services.

VIII. RELATED WORK

A. Automatic UI exploration

Dynamic analysis of applications to understand their runtime
properties requires that we be able to run them in some
way with adequate code coverage. Android Applications
are primarily GUI based and so recent work has taken
the approach of automatically exercising the application’s
graphic user interface in black-box or white-box manner.
AppsPlayground [6] implemented a general framework for
exercising Android applications to check privacy leakages
in applications as well as the presence of certain malicious
behaviors. We have followed AppsPlayground’s approach to
UI exploration in this paper. Azim et al. proposed A3E [21]
with targeted and depth-first exploration as the high points
of their solution while Choi et al. [22] developed an active-
learning based solution that minimizes application restarts.
Numerous other application-oriented works have also used
automated UI exploration. Liu et al. [23] automatically explore
the application UI of Windows applications to identify cases of
ad fraud. Sounthiraraj et al. [24] use automatic UI exploration
as part of their methodology to verify the presence SSL/TLS
certificate validation vulnerabilities in Android applications.
Ravindranath et al. [25] automatically explore applications to
detect faults and crashes in them. Bhoraskar et al. [26] perform
a preliminary static analysis to prune away irrelevant code and
instrument the applications so that automatic exploration can
easily reach the right parts in the instrumented applications. Hao
et al. [27] propose a one-stop UI exploration framework that is
customizable to meet the requirements of different applications.

The above techniques are mostly black box when it comes
to exploring the UI (not considering the preliminary static
analysis involved in some works above). Other works have
also used white-box approaches to improve application code
coverage. AppIntent [28] develops techniques to effectively
use symbolic execution on Android applications for analyzing
privacy leakages. Xia et al. [29] also use a whitebox dynamic
analysis to accurately identify privacy leakages in Android ap-
plications. Our work uses automatic exploration as a technique
to accomplish triggering of app-web interfaces and thus use
any of the above works or any future advancements in this
area to improve the triggering of app-web interfaces.

B. Advertisement Security and Privacy

Mobile advertisements have been studied in the past from
multiple security and privacy perspectives such as ad fraud
and security and privacy implications of using ad-supported
applications. Liu et al. [23] study a kind of ad fraud in which the
developer places ads and the main application widgets in such a
way that it becomes easy for the user to mistakenly click on ads.
Crussell et al. [30] study ad fraud in mobile applications from
a network perspective. They identify repackaged applications
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with the purpose to direct ad revenue away from the original
developers and to the persons who repackaged the applications
and study the prevalence and implications of this kind of ad
fraud. Our main concern in this paper is not ad fraud but the
propagation of malicious content through advertisements and
web links embedded in applications.

Several researchers have also studied privacy leakages
through ad libraries. TaintDroid [31] and some follow-up
works [6], [32] present results in which a large majority of
privacy leakages happen through ad libraries included in the
applications. While the previous list of works uses dynamic
analysis, researchers have also used static analysis to identify
privacy leaks in applications, and through ad libraries in
particular [33], [34]. Privacy leakages in ad libraries are not in
the scope of this paper. However, we do study scams that extract
personal information of the users, even with their consent.
Grace et al. [35] perform static analysis of ad libraries to
discover a number of implications such as private data leakage
and execution of untrusted advertisement code in applications.
Industry researchers also detected vulnerabilities in ad libraries
that can provide escalated privileges to the advertisement code
that these libraries execute [36]. AdSplit [37] discusses that
ad libraries should be separated from the main application,
running in a different sandbox, so that they can have different
permissions from the applications, and vulnerabilities and
privacy leakages in them do not affect the main application.
Quire [38] also proposed techniques that can achieve a similar
effect. The goal of this paper is not to identify vulnerabilities
due to the inclusion of ad libraries or to fix such problems.
The web links or advertisements embedded in applications may
themselves not be malicious but their end result is.

A more related aspect of advertising security research is
the so-called web malvertising. An important part of our study
is malicious advertising in mobile applications. The analogous
problem of malicious advertising on the Web, dubbed as
malvertising, has been studied in the past. Li et al. [5] use a
systematic methodology to crawl websites and load ad content
in them. They then analyze the redirection chains and landing
pages for malicious activity. Zarras et al. [4] have also studied
web malvertising. Our work is different from these works in
several aspects. First, our focus is on mobile applications;
a similar study on mobile apps has not been done earlier.
Moreover, we broadly study all app-web interaction and not just
advertisements. Second, a study on mobile applications needs an
additional triggering component in the methodology. Triggering
for web malvertising is trivial as the entire web page is loaded
at once with all the advertisements simultaneously visible.
Triggering increases the complexity of the methodology and we
have also made an important contribution to enhance it. Finally,
the malware propagation vectors through web malvertising are
different from what we see on mobile. Drive-by-downloads are
virtually non-existent on mobile platforms such as Android due
to sandboxing at the process level. Similarly link hijacking, i.e.,
advertisement or other malicious code embedded in a web page
automatically redirecting users to a page they did not intend
without any user interaction, is also not possible on mobile
apps. Rather the main propagation vector for malware is trojans.
Collecting trojans again complicates our methodology as we
need to automatically download content from the landing pages.

C. Malware Analysis and Detection

Both the industry and the academia are interested in
analyzing potentially malicious or malicious applications to
understand their behavior. We discuss here works related to
mobile platforms only. Google has a service called Bouncer
in place to analyze any applications that get uploaded to
Google Play for malicious activity [39]. More recently, Google
also introduced the VerifyApps service that collects all the
applications from the Web, including those not from Google
Play, and curates analysis results on those applications. The
details of analysis are not public but it is likely to be a mix
of both static and dynamic analysis. The results are used to
warn the users whenever they install an application of which
the VerifyApps is suspicious [40].

Mobile Sandbox [41] and Andrubis [42] are some of the
dynamic analysis sandboxes proposed by the academia. They
incorporate several different analyses and produce a report for
the analyzed application, such as the permissions, the servers
contacted while running, and so on. We are not aware of
any analysis system that incorporates the kind of analysis
we do: understanding the app-web interfaces and following
the web links from applications and analyzing if they host
any malicious content. If such analysis is supported by the
industry or the government, it will be very helpful in curbing
down instances of malicious content reachable from mobile
applications. Moreover, by using their results, it may be possible
for us as well to enhance our detection.

Another avenue of related work is honeypots. Honeypots
interact with attackers allowing them to exploit the honeypots.
This way, valuable information, such as malicious servers and
websites as well as previously unknown vulnerabilities, can
be identified. HoneyMonkey [43] is an active honeypot, i.e., it
actively crawls and seeks out websites to connect. It analyzes
the differences in the system state before and after visiting
to determine if it was exploited. Such systems also need to
perform triggering and detection; however triggering in case of
mobile UI is more complicated. Moreover, our detection also
does not seek to identify exploits but to recognize scams and
download trojans.

Researchers have also proposed several techniques to
perform Android malware detection. Zhou et al. [44] analyzed
mobile applications from Play and third-party application
stores and detected several instances of malware. Grace et
al. [45] perform static analysis on Android applications to
systematically detect malware. Arp et al. [46] introduce a
machine-learning based system to detect and classify Android
malware of previously known families. Zhang et al. [47] propose
a dynamic analysis based on permission use to detect malicious
applications. Feng et al. [48] and Zhang et al. [49] propose
semantics-aware static analyses of applications so as to defeat
malware obfuscation attacks such as those proposed by Rastogi
et al. [50]. All these malware detection and analysis approaches
are complementary to our methodology and can be incorporated
in it to enhance our detection capabilities.

IX. CONCLUSION

In order to curb malware and scam attacks on mobile
platforms it is important to understand how they reach the
user. In this paper, we explored the app-web interface, wherein
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a user may go from an application to a Web destination via
advertisements or web links embedded in the application. We
used our implemented system for a period of two months to
study over 600,000 applications in two continents and identified
several malware and scam campaigns propagating through
both advertisements and web links in applications. With the
provenance gathered, it was possible to identify the responsible
parties (such as ad networks and application developers). Our
study shows that should such as system be deployed, the users
can be offered better protection on the Android ecosystem by
screening out offending applications that embed links leading
to malicious content as well as by making ad networks more
accountable for their ad content.
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[46] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin:
Effective and explainable detection of android malware in your pocket,”
in Proceedings of the Annual Symposium on Network and Distributed
System Security (NDSS), 2014.

[47] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, “Vetting undesirable behaviors in android apps with permission
use analysis,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013, pp. 611–622.

[48] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-based
detection of android malware through static analysis,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2014, pp. 576–587.

[49] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android
malware classification using weighted contextual api dependency graphs,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1105–1116.

[50] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: evaluating android
anti-malware against transformation attacks,” in Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications
security. ACM, 2013, pp. 329–334.

15


