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One Cycle Attack: Fool Sensor-Based Personal Gait
Authentication With Clustering

Tiantian Zhu™, Lei Fu™, Qiang Liu

Abstract— Gait authentication, especially sensor-based pat-
terns, has been studied by researchers for decades. Nowadays,
gait authentication has become an important facet of biometric
systems due to the so-called unique characteristics of each user.
With the development of various technologies (i.e., hardware,
data processing, features extraction, and learning algorithms),
the performance of sensor-based authentication methods is
gradually improving. But we have found that the vulnerability
of most existing methods can be compromised easily. In this
paper, we propose a novel attack model, called one cycle attack,
to bypass existing gait authentication methods. Firstly, the gait
sequence is divided into multiple gait cycles. By adopting the
K-mean algorithm, we get the average distance of each feature
sample (extracted from the gait cycle) to its closest cluster center,
and its result confirms that independent individuals may have
similar gait cycles. Secondly, using six state-of-the-art models it
was found that the adversarial gait cycle found with the clustering
method can bypass the victim’s model rapidly. Furthermore,
to improve the accuracy of sensor-based gait authentication
methods to fight against attacks, we present a WPD-LSTM
(Wavelet Packet Decomposition and Long Short-Term Memory)
multi-cycle defense model which considers the contextual contents
of the neighboring gait cycles in the gait sequence. Experimental
results on two datasets (the largest public sensor-based gait data-
base OU-ISIR and new dataset from our laboratory) show that
our attack model can bypass most of the victims’ models within
a limited number of attempts. Specifically, we can compromise
20%-80% of users within 5 attempts by utilizing imitation. On the
contrary, the success rate of attackers has been greatly mitigated
by deploying our multi-cycle defense model.

Index Terms— Gait authentication, motion sensor, attack and
defense, adversarial gait cycle, deep learning.
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I. INTRODUCTION

HE development and popularization of mobile devices,

such as smartphones, smart tablets, and smartwatches
have generally benefited the public for decades. While these
mobile devices store masses of private information, security
was regarded as a risk by users. It is important to set up
effective authentication methods to protect the security of
mobile devices. A wide variety of authentication technolo-
gies are embedded in these mobile devices to protect the
devices from illicit use. One well-known countermeasure is
knowledge-based authentication in which PINs, passwords,
and patterns were first proposed, and they also play an impor-
tant role in the recent mobile device authentication scenarios.
Another type of countermeasures is biometric-based authenti-
cation. The existing approaches exploit biometrics including
but not limited to face [1], fingerprint [2], iris [3], voice [4]
and keystroke dynamics [5] to help authenticate the real
users explicitly. Although these methods can achieve higher
accuracy, users are required to explicitly enter authentication
information. The user’s comfort is undoubtedly reduced as
a side effect of improving security. To balance the accuracy
and usability, dynamic biometric authentication, such as gait
dynamics [6], implicitly authenticates the user based on his/her
walking patterns.

Motion sensors, especially acceleration sensors and gyro-
scope sensors, have been widely accepted by the industry
community due to their low-power requirement [7], their
low impact, and for their capacity to provide data directly
related to the state of motion [8]. During the sensor-based
gait authentication, the mobile devices record the relevant
sensor data while the user is walking and uses it for user
differentiation. The device can be hung on the waist [9],
ankle [10], hip [11], [12], or in the pocket [13], [14]. Most
of the studies show that placing the device in these different
positions will all achieve a high level of accuracy. Unlike
other biometric authentication methods (face, fingerprint, etc.),
sensor-based gait authentication does not require the user to
follow an explicit behavior, such as placing a finger on the
fingerprint sensor or aligning the face in the front camera.
In daily life, users can complete authentication as long as
they walk normally. Early work has shown that sensor-based
gait authentication has great potential in medical [15], [16],
financial [17], and military applications [18], etc. The famous
product, Unifyld [19], which is the first implicit authenti-
cation platform designed for online and physical world use,
authenticates different people utilizing their unique walking
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patterns as one of the behavioral biometrics. The recent report
by FedTech [18] also shows that gait authentication is an
indispensable factor for the authentication of a soldier in the
field.

The safety of sensor-based gait authentication has
always been a concern of the academic community. Some
researches [20]-[23] have analyzed its ability to resist attacks,
in which the majority of foresaid attacks employed mimicry.
These studies show that even in imitation, it is difficult for
attackers to reproduce the victim’s complete gait. In other
words, to match the sequences produced by the act of walking
from person to person is difficult.

Given the proposed weaknesses regarding the above attack
theory, since the complete gait sequence is difficult to be
bypassed or even imitated, we propose a novel attack model
which is based on the authentication mechanism of existing
gait authentication methods. In our attack model, attackers aim
to split a gait sequence into several independent gait cycles
and then pick up adversarial gait cycles (i.e., gait cycles of
others that can bypass the user’s authentication model) to
bypass the victim’s model. Our inspiration comes from [24],
in which the author assumes that there must be a significant
overlap between the behavioral samples of many users. We
hypothesize that the set of walk patterns of all users can be
clustered into a limited and small number of cluster data,
where users with similar gait behaviors belong to the same
cluster. One gait cycle similar to that of a victim can be
easily found by attackers using some clustering algorithms,
e.g., kmeans++ [25], and then the relevant gait cycle will be
exploited to bypass the victim’s black-box model.

In our attack model, the attacker has no other information
about the victim besides the position of the mobile device
where the victim will usually carry the device in order to help
with authentication. The attacker tries to bypass the black-box
model by finding a gait cycle similar to that of a victim from
the gait database with a minimum number of attempts. Attacks
can be divided into two categories. In the first category,
the attacker does not observe the victim’s gait and picks up
cycles directly from an existing gait database. In the second
category, the attacker has the ability to observe the victim’s
gait and then asks other people to imitate the victim’s gait to
produce a large amount of suspicious data which is used to
get a more elaborate gait database. The hypothesis theorizes
that adversarial gait cycles similar to those of the victim
are incremental in the mimicry scenario (by imitating the
victim, it is easier for the attacker to find an adversarial gait
cycle which can bypass the victim’s black-box model within a
limited number of trials). In our defense model, the contextual
contents of the neighboring gait cycles in the gait sequence
are considered by the defender using a WPD-LSTM network
architecture with multi-cycle training. Unlike the previous
works [16], [26]-[28], the single gait cycle is no longer
extracted for model training. Experiments on a public dataset
of 744 participants from the research community and a dataset
of 20 participants collected in our laboratory have proven that
ordinary attackers can compromise 15%-60% of the users
within 10 attempts; likewise, mimic attackers can compro-
mise 35%-100% of the users within 10 attempts. However,

by deploying our WPD-LSTM multi-cycle defense model,
the robustness of the gait authentication system improves
significantly. In general, the contribution of our article is as
follows:

o We present an effective sensor-based gait authentication
attack and verify that the vulnerability in the state-of-
the-art black-box models can be easily exploited by
attackers on the largest gait authentication dataset through
clustering. By deploying our heuristic adversarial gait
cycle matching algorithm, the attack can compromise the
victim’s black-box model rapidly.

« Unlike the scope of previous work which was concerned
only with the characteristics of a single gait. We propose
a WPD-LSTM multi-cycle defense model which is able
to consider the contextual contents of the neighboring gait
cycles and inherent inter-relationships between different
sub-series in the gait sequence. Our defense method
observes the user’s gait characteristics from a global
perspective and improves the robustness of the model.

« Experiments on the largest public dataset and a laboratory
dataset show that in a very small number of attempts,
the attacker can bypass the victim’s existing black-box
model easily, and imitation will dramatically increase the
probability of a victim’s black-box model being bypassed.
On the contrary, the WPD-LSTM multi-cycle defense
model can hardly be evaded by attackers compared to
the state-of-the-art LSTM-related methods.

The remainder of this paper is organized as follows.
Section II surveys the relevant work, including sensor-based
gait authentication and adversarial biometrics. In Section III,
we introduce the preliminary background and motivation for
our work. Methodology is discussed in Section IV. Section V
describes the experiments and results of our attack model
and defense model. We discuss and conclude our work in
Section VI.

II. RELATED WORK

A. Sensor-Based Gait Authentication

Gait authentication has been widely discussed for dozens
of years [6], [29], [30]. There are multiple ways to realize
gait authentication, and sensor-based gait authentication is one
of the most popular approaches. Méntyjirvi et al. [31] used
embedded MEMS (Micro-Electro-Mechanical System) which
were attached to the back belts of the test subjects. Using
a signal correlation method, the authors reached their best
EER of 7%. Gafurov et al. [32] used a 3-D accelerometer
attached to the leg right above the ankle, and in two proposed
methods (histogram similarity and cycle length) achieved an
EER of 5% and 9% respectively. With the development of
MEMS technology and mobile devices, smaller sensors are
embedded into smart devices, which makes it possible to con-
duct and conclude authentication in the pocket. Ren et al. [16]
deployed their framework on both the user-end (with Pearson
Correlation Coefficient) and server-end (with support vector
machine) with experimental results from 26 subjects with
smartphones placed in a hip pouch, waist pouch or pant pocket
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showing that their framework can effectively cope with differ-
ent phone placements. Furthermore, while Ahmad ez al. [33]
allowed test subjects to place their smartphones freely in their
pocket, the trained artificial neural networks (ANN) model
reached an average accuracy of 95%. LSTM is mixed with
other machine learning methods [28] to improve the accuracy
of the gait authentication model, but such a complex network
structure would introduce a huge computational overhead load,
rendering it inapplicable in lightweight gait authentication.
Moreover, the inherent inter-relationships between different
sub-series of the gait sequence has never been considered
by the existing deep learning models [27], [28]. Vision-based
authentication is another important way to identify the indi-
viduals in image sequences by the way they walk [34], which
is not considered by this work.

In this paper, we rebuild some state-of-the-art methods
which are used for sensor-based gait authentication, and then
we try to launch the attack to bypass the target model with
the least tries. Moreover, we present a WPD-LSTM defense
model which is able to consider the contextual contents of the
neighboring gait cycles in the gait sequence, as well as the
inherent inter-relationships between sub-series.

B. Adversarial Biometrics

The security of biometric systems is always a hot topic, and
there have been several adversarial methods on behavioral bio-
metrics. On the one hand, Connor and Ross ef al. [30] noticed
that when the users intentionally avoided being detected during
the training phases this would result in a disaster for the
biometric system. By manipulating the training data, imposters
can easily bypass the weak profiles or models [35]. On the
other hand, imposters can find out adversarial samples to
fool the profiles or models during the testing phases. As for
keystroke dynamics, Serwadda and Phoha [36] performed
rigorous statistical analysis on the large scale dataset (about
3000 users for 2 years) and launched synthetic attacks to
mimic target users, they found the attack can increase the
mean Equal Error Rates (EERs) partly. Negi et al. [24] have
studied how to bypass the authentication system utilizing
the fake data of other users. Later, Khan er al. [37] put the
adversarial samples into smart devices by augmented reality
and audiovisual techniques. This method enables an attacker
to precisely mimic multiple behavioral features at a millisec-
ond’s resolution. Touch input biometric is another popular
biometric and several attacks have been proposed that have
been omitted too. Serwadda and Phoha [38] showed that a
robot driven by input gleaned from general population swiping
statistics can significantly degrade classification performance.
Khan et al. [39] demonstrated that shoulder surfing attacks
had a high bypass success rate by observing the victim’s touch
behavior for less than two minutes.

As for gait biometrics, there also have been several studies
done about how to hack gait authentication. Gafurov et al. [21]
asked attackers to walk as the victim did without any feedback.
Subsequently, Mjaaland et al. [22] trained the attackers with
some feedback. Unfortunately, both of the above two types of
mimicry attack failed due to the lack of sample size and the

limited ability to accurately imitate by the attackers. Mimicry
attacks scarcely compromised the gait authentication system,
which was also verified by Ren et al. [16] on a dataset con-
taining walking traces of long term patterns. With the help of a
treadmill and a feedback-based mechanism, Kumar et al. [40]
designed an attack for sensor-based gait authentication system
and evaluated its impact by employing two random imitators,
finally, the mean false alarm rate increased by 6 times. But in
the real-world scenario, victims’ samples are difficult to obtain
and the feedback of the training is not viable in most cases,
which makes the treadmill attack unpractical.

Unlike previous works, our method is able to compromise
the gait authentication system without using the victims’
samples or additional feedback. Moreover, compared to [40]
which uses a small dataset (18 participants), we evaluate
our method on the largest gait dataset available to show the
reliability of our attack method.

Zhao et al. [41] showed that in machine learning-based bio-
metric authentication systems, the acceptance region, defined
as the region in feature space where the feature vectors are
accepted by the classifier, is significantly larger than the true
positive region. The attacker with only the knowledge of the
length of the feature space can impersonate the user with
less than 2 attempts on average. To mitigate it, they tried to
add beta-distributed noise or feature vectors extracted from
a sample of raw inputs to the training data. Different from
Zhao’s work [41], we also use random attack (details in
Section V-B) as the baseline method and try to randomly select
the gait cycle from the existing datasets instead of regenerating
the gait that falls in the victim’s feature space.

II1. PRELIMINARY AND MOTIVATION

In this section, we first introduce the threat model and
datasets of our work. After that, we propose our motivation
by explaining the gait cycle extraction algorithm, listing the
popular cluster features, and analyzing the intrinsic connection
amongst different human beings.

A. Threat Model

In our threat model, each mobile device has a unique owner,
and attackers attempt to access the device illegally. Our system
assumes that several widely used motion sensors (i.e., accel-
eration sensors and gyroscope sensors) are available on the
device. The attacker has no other information about the victim
besides the position where the mobile device is usually carried
in order to help with authentication (i.e., the attacker is with
little knowledge of the feature space of machine learning-based
methods [41]). To compromise the device owner’s black-box
model, the attacker first needs to submit his/her candidate data,
we consider the following three scenarios:

1) Manipulate Motion Sensors: The attacker can use
SMASheD [42] to directly manipulate motion sensors on
unrooted Android devices via Android debug bridge function-
ality. We assume that by installing an application with only the
INTERNET permission (refer the threat model section in [42]),
the attacker can feed false data to target sensors (i.e., three-axis
data of acceleration sensors and gyroscope sensors) via the
remote control without the victim’s knowledge.
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TABLE I

OVERVIEW OF OUR DATASETS; OU-ISIR, GREDO AND GREDI
REPRESENT THE LARGEST SENSOR-BASED GAIT DATABASE [26],
GAIT RECOGNITION EXPERIMENTAL DATASET OF OWNERS,
AND GAIT RECOGNITION EXPERIMENTAL DATASET OF
IMITATORS, RESPECTIVELY. ALL THESE THREE
DATASETS CONTAIN LEVEL-WALK SEQUENCES
FOR WALKING BACK AND FORTH

Dataset | Participants | Gender /M | Imitation

OU-ISIR 744 355/389 No

GREDO 20 10/10 No
GREDI 20 10/10 Yes

2) Imitation Based on Human Training: The attacker use a
feedback-based training mechanism [40] to train imitators for
imitating selected gait pattern (i.e., when the imitator is fully
trained, the imitator will carry the victim’s device to bypass
the target black-box model).

3) Imitation Based on Robotic Body Design: The attacker
can build a robotic body, and control the movement of the
robotic body to generate corresponding motion sensor signals
(i.e., three-axis data of acceleration sensors and gyroscope
sensors) to carry out the attack.

Note that the focus of our work is to explain the vulnera-
bility of the existing black-box models for gait authentication.
When launching the attack in the real world, the attacker will
comprehensively take into account the cost and the price.

B. Datasets

In total, we obtained three datasets for the attack and
defense purpose, the details of our datasets are shown
in Table L.

1) OU-ISIR: The first one is the largest sensor-based gait
database OU-ISIR provided by Ngo et al. [26]. In OU-ISIR,
level-walk data of 744 subjects (389 males and 355 females)
with ages ranging from 2 to 78 years was captured, and
two level-walk sequences for each subject were extracted
automatically by using acceleration and gyroscope sensors
with a sample rate of 100HZ.

To verify the universality of our attack algorithm, we split
OU-ISIR into two randomly balanced parts: OU-ISIR-A and
OU-ISIR-B; each part has the same male to female ratio. OU-
ISIR-A is used for learning and OU-ISIR-B is used for attack.

2) GREDO and GREDI: 1t was noticed that in OU-ISIR
all the participants received the experiment independently and
they could not observe others’ walking patterns. In order
to get the performance data of our attack model under a
manner of mimicry, we developed an Android application
which can record the data of motion sensors (especially,
acceleration sensors and gyroscope sensors) at a stable sample
rate of 100HZ. Then we asked 20 participants (10 female
participants and 10 male participants, all of them in their
twenties and of a similar figure) to help collect walking data on
a level surface. All participants are full-time graduate students
(graduate students familiar with the authors) in our laboratory.
All participants are between 165cm and 170cm tall and weigh
between 55kg and 60kg. The data collection procedure lasts
for one day (from 8 a.m. to 4 p.m.). The same smartphone

was used (Huawei Honor 9) in all trials and tied to the center
of the back waist of each participant with the same device
placement.

In the data collection phase, all participants were made
to walk on a flat road 80 meters in length (walk back and
forth for once). We collected the normal walking data of
each participant as OU-ISIR [26] did and recorded it as
GREDO (Gait Recognition Experimental Dataset of Owners).
During the data collection process, one cannot observe the
gait pattern of others. For each participant, we got sensor data
in 2*80 meters, and 40*80 presents the complete volume of
the GREDO data. Similar to OU-ISIR [26], we split GREDO
into two parts. Finally, we got two normal datasets (GREDO-A
with 5 females and 5 males, GREDO-B with 5 females and
5 males). To get the mimicry dataset for the 20 participants we
selected the victims in turn: we first selected one participant
as the victim and recorded his/her walk pattern (2*80 meters),
then we asked the remaining 19 people to imitate the victim’s
pattern one by one (2*80 meters for each person). During
the imitation process, the imitator can observe the gait pattern
of the victim throughout the data collection session (see this
victim in person without practice in advance). Also, we have
informed all the participants in advance that we will use
multiple cycles (C cycles, C > 1) for authentication, and let
them learn the victim’s gait behavior as much as possible.
Finally, we got the dataset for GREDI (Gait Recognition
Experimental Dataset of Imitators). In GREDI, for each person
there exist 40*80 meters data and out of which 2*80 belong
to the victim and the remaining 38*80 belong to the imitators.

C. Motivation

Considering the sensor-based user authentication, previous
work is always based on the hypothesis that each person has
a unique gait pattern. Thus, the researchers build multiple
classifiers or rules to distinguish a real user from an impostor.
However, we hypothesize that there must be a distinct overlap
among the gait cycles of some users. The gait sequence of
one person can be divided into multiple gait cycles. One can
imagine that there exists a big cluster in which all the gait
cycles within similar user patterns will belong to. But these
clustered gait cycles may come from different users. In our
opinion, we can generate all such clusters and find the gait
cycle which can bypass the victim’s model by exploiting the
data collected from the general population with the scenario
similar to the victim.

To verify the feasibility of the above hypothesis, we ana-
lyze the dataset including OU-ISIR, GREDO, and GREDI.
Firstly, we follow the state-of-the-art method of picking up
gait cycles from the gait sequence. Secondly, we give the
popular clustering features which are used for sensor-based
gait authentication. Finally, we conduct clustering to verify
our hypothesis.

1) Gait Cycle Extraction: Cycle extraction is the prerequi-
site for all the existing gait authentication methods (we will
introduce these methods in Section IV-A.1) and our attack.
We choose the cycle extraction algorithm (CEA) presented
by [12]. CEA is automated, accurate and widely referred to
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by other works [16], [43]. To verify that existing gait behavior
schemes are easy to be compromised, we re-implemented the
CEA algorithm. Note that acceleration sensors and gyroscope
sensors are useful in gait authentication. Without loss of
generality, we select accelerometer data as a basis for the
partitioning task. From the data (OU-ISIR, GREDO, and
GREDI) we found that one gait cycle length varies between
50 to 100 samples depending on the speed of the person.
Moreover, the range for the male is 50 to 85 and that for the
female is 55 to 100. To maintain consistency, all the cycles
are normalized to a length of 100 observations as [12] did.

2) Clustering Features: Both acceleration and magnitude
vector are key attributes in sensor-based gait authentication.
Magnitude vector is usually calculated as a more invariant
combination of resulting acceleration [21], [44]:

r) = X200 + 2 () + 20, k=1, K

where x(k), y(k), z(k) are the accelerations measured in the
corresponding directions at time k. Finally, for each gait cycle,
the following features in the time domain are used to create
the adversarial clusters.

(1) Magnitude vector. The magnitude vector in one gait
cycle. It has been explained previously.

(2) Mean. Mean value in one gait cycle.

(3) Standard deviation. Mean of the deviations in one gait
cycle.

(4) Highest value. Maximum value in one gait cycle.

(5) Lowest value. Minimum value in one gait cycle.

We chose the above features due to the following reasons:
Firstly, these features are typical and proposed by recent
studies [44]-[47]. Secondly, a large number of features will
increase the overhead of our clustering algorithm. A small
set of representative features have been proven necessary for
classification tasks in [45]. Moreover, the existing work has
demonstrated that there is a value after which the performance
does not significantly increase since the last features only
correspond to noise [48], [49].

3) Feasibility Analysis: Under the different values of K
(number of clusters), we utilize the K-mean algorithm to get

number of clusters.

Analysis results of our hypothesis on three datasets: gait cycles from different person may belong to the same cluster.

the average distance of each feature sample (extracted from the
gait cycle) to its closest cluster center. Fig. 1(a) represents the
average distance of each feature sample to the closest cluster
center. Fig. 1(b) shows the first derivative of the average
distance represented by Fig. 1(a).

From Fig. 1(a), we can find that on all three datasets,
the average distance is decreasing with the increment of K.
Especially, when K = 50, the average distances of GREDO,
GREDO-A and DREDO-B are all around 6. Also, our hypoth-
esis is intuitively supported by Fig. 1(b). Fig. 1(b) shows that
when K is around 5, higher values of K will not improve the
clustering by much. When K is larger than 15, the curve of
the first derivative will be flat. Note that the total number of
the individuals of our datasets are 744 and 20 (larger than 15),
respectively. It can satisfy our hypothesis that gait cycles from
the different people may belong to the same cluster.

IV. METHODOLOGY

In this section, we will present two key components in our
design: the attack model and the defense model. In the attack
model, we introduce how an attacker can bypass the existing
black-box gait authentication model easily by employing the
adversarial gait cycle matching. In the defense model, we offer
a WPD-LSTM multi-cycle defense model, which considers the
contextual contents of the neighboring gait cycles in the gait
sequence, and is thus hard to compromise.

A. Attack Model

The overview of our attack model is shown in Fig. 2.
Firstly, the gait sequences from different people are collected
by attackers. Secondly, adversarial gait cycles are extracted
based on clustering. Finally, attackers can easily bypass the
black-box model with adversarial gait cycles. It should be
noted that from a practical perspective, it is relatively difficult
to simulate an attack on the sensor-based gait authentication
system directly. But the attacker can use some additional tools
to launch an attack against the new victim in the real-world
scenario, such as feeding false information to the android sen-
sors (i.e., manipulating three-axis data of acceleration sensors
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model used by the victim. Cp| represents the first gait cycle in the gait sequence from subject A.

and gyroscope sensors via Android debug bridge functionality
as [42] did) or building a robotic body to carry out the
attack [24]. In the following section, we will explain in detail
how to build a black-box model and perform the adversarial
gait cycle matching.

1) Black-Box Model Design and Construction: In recent
years, lots of methods have been proposed for gait authen-
tication using gait cycles. We can divide them into two main
categories: One category is to construct profiles with motion
sensor data directly and then to calculate the similarity score
between the targeted profile and test samples. The other
category is to use feature engineering and machine learning
techniques to build a classifier to represent the user’s walk
pattern. In this article, we collectively refer to a profile or a
classifier used for gait authentication as a model.

Considering the validity and reliability, we chose diverse
methods from statistical classifiers to deep learning based
networks. Totally, six state-of-the-art algorithms in gait authen-
tication are chosen by us. To get an implementation as
close as possible to the previous works [16], [26]-[28].
We implemented these approaches as well as their optimiza-
tions. All methods are listed as follows.

a) PCC-based black-box model: PCC [50] is the
co-variance of the two variables divided by the product of their
standard deviations. It can measure linear similarity between
two gait cycles. As [16] did, we used a weighted PCC when
computing the similarity between the extracted gait cycles and
the user model. The final accuracy depends on the similarity
scores and the pre-defined threshold.

b) SVM-based black-box model: SVM [51] is a kind of
supervised learning classifier which can solve the non-linear
classification problem utilizing kernel tricks. We used
binary-class SVM as [16] did. Since standard classification
methods cannot be directly applied to raw cycle data, the gait
cycles will be first translated into feature vectors. In the
training phase, the ratio of the number of samples from

the owner (positive sample) to that of other users (negative
samples) is usually experiential. Here, we chose the ratio
as 13, since it was the best parameter defined in [16] via grid
search. In the testing phase, we will get the accuracy returned
from the SVM model for each gait cycle. The final accuracy
is the average of the accuracy of all cycles in a gait sequence.
Here, we utilize libsvm [52] with RBF kernel to train the
model for each user.

c) DTW-based black-box model: DTW [53] can measure
the similarity between two time sequences regardless of speed-
ing up or slowing down. DTW algorithm is used as a baseline
in paper [26] due to its low overhead and high accuracy.
Here, we use the cumulative distances in DTW to judge the
similarity between two gait cycles as [26] did.

d) CNN-based black-box model: CNN [54] is one kind
of feed-forward deep neural networks. Unlike the traditional
feature engineering, a number of kernels is defined to extract
potential features at each convolutional layer in CNN. CNN
is well designed by IDnet [27] to authenticate different users
by walk cycles. Here, we rebuild a CNN network with two
convolutional layers and two fully connection layers followed
by a One-class Support Vector Machine (OSVM) classifier
as IDNet did. One may concern that the training data is not
enough for deep network [27]. To address this issue, we use
wavelet decomposition for data augmentation, which will be
discussed in Section I'V-B.

e) LSTM-based black-box model: LSTM [55] is an
improvement to RNN [56] and still has the basic structure of
RNN, the basic unit of LSTM involves a cell, an input gate,
an output gate and a forget gate. The previous work [28] has
proposed a LSTM network to authenticate users. Furthermore,
LSTM network structures mixed with other machine learning
methods such as CNN are deployed in [28] to improve the
accuracy of the gait authentication model, but the complex
network structure will introduce huge computational overhead,
rendering it not applicable in lightweight gait authentication.
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In our black-box model design, we consider both the single
LSTM network structure and the CNN+LSTM network struc-
ture which have shown good performance in [28].

For black-box model design and construction, we firstly
reproduce these six benchmarks and try to achieve a good per-
formance on our datasets. We then regard them as black-boxes
with the assumption that we do not know anything about the
models except the input way of testing samples. The only
result we can get from these black-boxes is ‘yes’ or ‘no’. That
is to say, we just know whether we have passed the authen-
tication model, which completely simulates the real-world
scenario.

2) Adversarial Gait Cycle Matching: From the perspective
of attackers, they generally want to bypass the authentication
system within a limited number of attempts. Here, we assume
attackers don’t have gait data from the user they wish to
imitate and they also know nothing about the composition of
the black-box models used for authenticating. We consider the
following two scenarios:

a) Scenario I: widespread attack: The attacker does not
observe the victim’s walk patterns but he/she has access to
some public gait datasets (e.g., OU-ISIR is a public dataset
which contains gait data from many other people). We call
it a widespread attack. This scenario has never been studied
before in the area of gait authentication attack.

Recall that our hypothesis is that there must be a distinct
overlap among the gait cycles of some users. The aim of
the attacker is to explore the adversarial gait cycle from
various people in order to find candidates from the cluster
of the victim. We take Fig. 2 as an example: In the cluster
of subject A, Cp2, Cp3 and Cpgz can be considered as
adversarial gait cycles. What an attacker needs to do is find
these adversarial gait cycles and try to use them to bypass the
black-box model of subject A. Here, the most intuitive way is
that we can run the K-means algorithm under different values
of K and try different centroids to pick up the adversarial gait
cycles. However, it is time-consuming for attackers to choose
a suitable value of K. Moreover, the clusters in the K-means
algorithm may change considerably for different values of K,
rendering it inapplicable in real attack scenarios.

Inspired by the K-means++ algorithm [24], [25],
we present a heuristic adversarial gait cycle matching algo-
rithm, as shown in Algorithm 1. In Algorithm 1, the first gait
cycle is selected as a center of the dataset, and then each
subsequent gait cycle (center of clustering) is selected with
a probability proportional to its contribution to the overall
distance given the previous selections. The core idea of our
heuristic algorithm is that if the previously found gait cycle
cannot bypass the black-box model, the newly found features
of the gait cycle will be located as far away as possible
from that of all previously found gait cycles to increase the
probability that it is in the victim’s cluster.

b) Scenario II: mimic attack: The attacker has the ability
to observe the victim’s walking patterns and then asks other
people to imitate the victim’s gait to produce a specific gait
database. We call it a mimic attack. This scenario has been
studied by previous work [16], [21], [22], [40], but the proba-
bilities of successfully bypassing the black-box authentication

Algorithm 1 Adversarial Gait Cycle Matching Algorithm
Input:

A large public or mimicry dataset X = {x; |i =1,2,..., M}
Output: Total number of attempts ¢

Initialize:

()The first cycle we selected is the center (mean) of the
dataset C1 = Xyean

(2)The number of attempts ¢t = 1

(3)Adversarial gait cycle AGC = false

1: while 'AGC do:

2: D(x;) = Distance(x;, nearest C; choszen so far)
3 C; = x; with the probability %
i= Xi
4: if C; can bypass the black-box model then
5 AGC = true
6: break
7 end if
8 t=t+1
9: end while

model are quite low. We re-apply our heuristic adversarial
gait cycle matching algorithm (Algorithm 1) on the GREDI
directly, the preliminary results in Fig. 1 has shown the
differences between gait cycles of different people become
smaller on a mimicry dataset (GREDI). More results will be
discussed in Section V.

B. Defense Model

To gain a robust model that can fight against our one
cycle attack, we propose a WPD-LSTM multi-cycle defense
model to consider the contextual contents of the neighboring
gait cycles in the gait sequence, as well as the inherent
inter-relationships between sub-series. In our defense model,
the single gait cycle is no longer extracted for model training,
we try to use C gait cycles to train the model for gait
authentication instead of one cycle. In this section, we will
introduce the key components in our multi-cycle defense
model.

1) Wavelet Packet Decomposition: WPD is an efficient tool
for analyzing time series signals for weak, unbalanced, instan-
taneous, and singular components [57], [58]. The wavelet
packet transform (WPT) is usually presented through a wavelet
packet complete binary tree [59], where each node is marked
by order (d,n), d (d = 0,1,2,...) represents the current
depth of the WPT tree, and n (n = 1,. ..,2d) represents
the node number at the corresponding depth d. Each node
in the decomposing level n contains a wavelet packet coef-
ficient PJ’.Z (k) (k =1,...,Ng, Ng is the length of the WPD
coefficient), which can be described as follows:

. o0 . *
PIk) =279 / A(w, 1)el™ " (t—2dk) dtdZ (o)
—00
1 o0 . ok .
A~ —J Jok = (0=J
Zj/z/_ooA(a),Z k)e w (2 cu)dZ(a))
2) Long Short-Term Memory Networks: LSTM network
is well-suited to learn from time series when contextual
dependencies are expected to be recorded [55]. This is
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Fig. 3. The framework of WPD-LSTM multi-cycle defense model. Cpja243 represents the first continuous 3 gait cycles in the gait sequence from subject A.
The continuous C gait cycles for each person always belong to one cluster (C = 3). By adopting WPD and LSTM, it is difficult for attackers to bypass the

presented model.

one of the main reasons why we chose LSTM for gait
authentication. LSTM has been combined with other machine
learning methods [28] to improve the accuracy of the gait
authentication model, but the complex network structure will
introduce huge computational overhead, rendering it not feasi-
ble in lightweight gait authentication. Moreover, the inherent
inter-relationships between different sub-series of the gait
sequence has never been considered by the existing LSTM
network. Next, we will introduce our hybrid VPD-LSTM
defense model.

3) WPD-LSTM Multi-Cycle Defense Model: In Fig. 3,
we present the framework of our WPD-LSTM multi-cycle
defense model. Ca1a243 represents the first continuous 3 gait
cycles in the gait sequence from subject A. The continuous
C gait cycles for each person always belong to one cluster
(C = 3). By adopting WPD and LSTM, it is difficult for
attackers to bypass our model, which will be evaluated in
Section V. We will introduce each module below.

WPD is employed to decompose the gait sequence data.
A frequently-used Dmeyer mother wavelet (dmey) is utilized
as the mother wavelet. Different frequency bands usually exist
simultaneously in the gait sequence, which will affect the
accuracy of the final model. After decomposition via WPD,
the gait sequence will be separated into several sub-series,
which contain low-frequency components and high-frequency
components. The key problem in WPD is how to choose the
depth d of the WPT tree. If the value of d is too small
(i.e., d = 3 in our experiment), the original time-series will
not be sufficiently decomposed and components of different
frequencies will be mixed together. Conversely, when the

value of d is too large (i.e., d = 5 in our experiment),
the gait sequence will be overly decomposed, rendering a
component of a particular frequency to appear at multiple
other decomposition products. When d is set to 4, all the
decomposed sub-series are approximate sinusoidal signal with
less noise. Finally, we choose d = 4.

Additionally, the proposed WPD-LSTM multi-cycle model
uses a gait sequence with C gait cycles and all the sub-series
from the gait sequence as the model input. In this way,
the inherent inter-relationships between sub-series and the
contextual contents of the neighboring gait cycles in the gait
sequence will be considered. For each user, we utilize binary
classification to distinguish authorized users from attackers
and label the data of the authorized user as 1 and that of
other users as 0. To construct the training set, we adopt the
stratified sampling to pick up positive samples and negative
samples heuristically [60]. Meanwhile, the ratio of the number
of samples by the owner to that of other users is 1:5, which
has been proven to be optimal in previous works [45]. Next,
a 2-layer LSTM structure is presented in our WPD-LSTM
model. Here, we follow the popular LSTM network for human
activity recognition [61] and reuse its network structure.
Finally, the output of the LSTM layer will enter into the fully
connected layer (dense) as an input, followed by a softmax
layer for classification.

Compared with the traditional gait authentication methods,
our defense model has the following advantages: (1) Our
defense model addresses the information dependence issue
between the neighboring gait cycles in the gait sequence since
LSTM is capable of learning long-term dependencies [55].
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It also requires less operational time than previous models
where feature engineering is badly needed. (2) Our defense
model considers the inherent inter-relationships between
sub-series generated via WPD. It also has the capability
to capture hidden non-linear relationships of original gait
sequences and sub-series. (3) The classification accuracy and
robustness of our defense method are noticeably improved by
decomposing the original gait sequence, and it can fight against
one cycle attack effectively.

V. EVALUATION

In this section, we present the experiments to evaluate the
effectiveness of our attack model. And we also evaluate the
robustness of our defense model against one cycle attack. Our
experimental results demonstrate that our attack algorithm is
effective across all different settings and our defense method
is effective to fight against this kind of attack.

A. Implementation Details

In our article, a number of black-box models have been
designed for attack validation. All these models are reproduced
from existing works, and all of these methods take the well
labeled gait cycles as training input.

For the SVM model, the kernel we chose is the radial
basis function (RBF). We set the cost value as 100 and y
as 0.01. For the CNN model, the kernels of convolutional
layers are 1*10, 4*10, respectively. In training the CNN,
the learning rate is 0.0025, and the number of epochs for
training is 200. The batch size is 128. For the LSTM model and
CNN-+LSTM model, the structure of LSTM has one hidden
layer with 64 hidden neurons and the proposed CNN network
is constructed with 4 convolution layers and 2 max-pooling
layers. The learning rate is set to 0.0025, and the number of
epochs for training is 300. The batch size is 128.

Unlike the above black-box models, our defense model uses
C gait cycles combined with all the sub-series decomposed via
WPD as input. Furthermore, we used a 2-layered LSTM struc-
ture with 32 hidden neurons in each layer. The learning rate,
the number of epochs, and the batch size are 0.0025, 300, 16,
respectively. All these parameters in our defense model are
well-tuned though grid search.

Recall that there are two attack scenarios in our attack
model: widespread attack and mimic attack. For all the datasets
introduced in Section III-B, OU-ISIR-A, GREDO-A and own-
ers’ data in GREDI (for each person, there are 2*80 meters
belong to the owner) are used for modeling, OU-ISIR-B and
GREDO-B are used for a widespread attack, and the imitators’
data in GREDI (for each person, there are 38*80 belong to
the imitators) is used for a mimic attack. In OU-ISIR, each
person has 10 to 15 cycles for model training. In GREDO and
GREDI, each person has 70 to 78 cycles for model training.

In all the above models, the ratio of the number of gait
sequences in the training set to that in the test set is 1:1 for
each user since the authentication task is usually modeled as
a binary-classification problem. In the training set of SVM,
LSTM and WPD-LSTM, we utilized stratified sampling tech-
niques to pick up positive and negative samples by the same

way described in Section IV-B.3; the ratios of the number of
gait sequences from the owner to that of other users are 1:13
(SVM) and 1:5 (LSTM and WPD-LSTM), respectively.

B. Performance Metrics and Terms Explanation

Our performance metrics are listed as follows:

o True positive (TP). The authorized owner is correctly
identified.

« False positive (FP). Other users are incorrectly identified
as the authorized owner.

« False negative (FN). The authorized owner is incorrectly
identified as other users.

o True negative (TN). Other users are correctly identified.

o True positive rate (TPR). TPR =TP/(TP + FN).

o False positive rate (FPR). FPR = FP/(FP + TN).

o True negative rate (TNR). TNR =TN/(T N + FP).

« False negative rate (FNR). FNR = FN/(FN + TP).

o Equal error rate (EER). EER represents the point where
FPR and FNR are equal. The lower EER is, the better of
the gait authentication system will be.

o Prob(k). Fraction of users in the dataset whose classifiers
were compromised after k attempts.

The explanation of our terms are listed as follows:

o Widespread attack. The attacker does not observe the
victim’s walk patterns but he/she has access to some pub-
lic gait datasets (OU-ISIR-B and GREDO-B). Then the
attacker utilizes adversarial gait cycle matching algorithm
(Algorithm 1) to pick up the adversarial gait cycle(s).

o« Mimic attack. The attacker has the ability to observe
the victim’s walking patterns and then asks other people
to imitate the victim’s gait to produce a specific gait
database (GREDI). Then the attacker utilizes adversarial
gait cycle matching algorithm (Algorithm 1) to pick up
the adversarial gait cycle(s).

o Random attack. The attacker will randomly pick up the
adversarial gait cycle from different datasets without
replacement. The datasets can be either some public gait
datasets (OU-ISIR-B and GREDO-B) or a special dataset
(GREDI).

e One cycle attack model. Most of the previous works
[16], [26]-[28] extracted single (one) gait cycle for model
training. In order to verify the vulnerability of the existing
methods, we propose a novel attack model which contains
two attacks (widespread attack and mimic attack). Also,
we use random attack as the baseline to illustrate the
effectiveness of our attack model.

o Multi-cycles defense model. Unlike the previous works
[16], [26]—[28], in our multi-cycle defense model, the sin-
gle gait cycle is no longer extracted for model training.
The contextual contents of the neighboring gait cycles in
the gait sequence are considered by the defender using
a WPD-LSTM network architecture with multi-cycle
training.

C. Performance on Attack Model

In this section, we firstly introduce the performance of all
the black-box models, then we conduct one cycle attack on

Authorized licensed use limited to: Northwestern University. Downloaded on October 10,2020 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.



562 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

CNN+LSTM | |

0 01 02 03 04 05 06 07 08 09 1
False positive rate

(a) ROC curve for OU-ISIR-A.

== - S

LSTM 1
CNN+LSTM

0 01 02 03 04 05 06 07 08 09 1
False positive rate

(b) ROC curve for GREDO-A.

Fig. 4. ROC curve on different black-box models for two datasets; the decision threshold & varies from O to 1 at step growth 0.01.

these models. In our experiment, OU-ISIR-B and GREDO-B
are used to evaluate the ability of a widespread attack. Accord-
ingly, GREDI is used to evaluate the rate of compromise in a
mimic attack.

1) Performance of Black-Box Models: In order to launch
a one cycle attack, the most important thing which should
be done is to ensure that our elaborate black-box models can
replicate the optimal results achieved in previous works. These
models will undoubtedly fail to fight against any attacks with
poor accuracy.

We first evaluate the accuracy of the black-box models.
Since different methods have different threshold ranges,
we utilize a ROC curve to display the overall performance
of different methods intuitively. ROC curve shows the true
positive rate against the false positive rate with various classifi-
cation thresholds is 8. The ROC curves on different black-box
models are shown in Fig. 4. Note that EER is the value
of the false positive rate at the intersection of the diagonal
and the ROC curve. In Fig. 4(a), we can see that the EERs
of all the methods are within 10% except DTW (EER =
15.39%) on dataset OU-ISIR-A, which is consistent with the
situation described in previous work [26]. Fig. 4(b) depicts
the relationship between the true positive rate and the false
positive rate at various thresholds 8 on dataset GREDO-A.
Results of overall performance on this dataset are similar to
that of OU-ISIR-A. In summary, all the black-box models
we reproduced have achieved a high level of accuracy as in
previous works [16], [26]-[28].

2) Black-Box Models v.s. One Cycle Attack: In the authen-
tication phase, each gait cycle extracted by our adversarial gait
cycle matching algorithm will be compared with the judgment
threshold 6 of the corresponding model to get the final result.
We recorded the EER and corresponding threshold of each
model on OU-ISIR-A and GREDO-A in Table II. For different
models, we can get an optimal threshold for distinguishing
the user owner from others, which is logical in the real-world
scenario.

After determining the evaluation criteria for each model,
we attempted to study the robustness of the proposed
black-box models against a one cycle attack. We summarize
the results of testing our adversaries on OU-ISIR-B, GREDO-
B, and DREDI in Table III. Table III shows the fraction

TABLE I

EER AND CORRESPONDING THRESHOLD OF EACH MODEL
ON OU-ISIR-A AND GREDO-A

Model name OU-ISIR-A GREDO-A
EER threshold EER threshold
PCC [16] 9.91% 0.75 8.87% 0.74
SVM [16] 8.93% 0.48 8.79% 0.50
DTW [26] 15.39% 0.14 9.98% 0.08
CNN [27] 8.69% 0.81 8.92% 0.78
LSTM [28] 8.09% 0.42 7.98% 0.49
CNN+LSTM [28] | 8.04% 0.51 7.95% 0.48

(i.e., Prob(k)) of users on OU-ISIR-B, GREDO-B and DREDI
whose models were compromised after 1, 5, 10, 20 and 50 tries
of launching a widespread attack, mimic attack and random
attack for each of the black-box models we used. In addition
to the widespread attacks and mimic attacks discussed in
Section IV-A.2, we use random attacks as our baseline method,
in which the attacker will randomly pick up the adversarial gait
cycle from the dataset without replacement. To be specific,
we implement it with the API (Application Programming
Interface) random. sample () in python [62]. We conclude
the content of Table III as follows:

a) The vulnerability in the state-of-the-art black-box
models can be easily exploited by attackers: For the wide-
spread attack, the average fractions of compromised users
on OU-ISIR-B after 50 tries are 0.87, 0.92, 1, 0.72, 0.58,
and 0.57 for each black-box model. The average fractions
of compromised users on GREDO-B after 50 tries are 0.95,
0.85, 1, 0.65, 0.40, and 0.40. As for mimic attacks, the values
are 1, 1, 1, 0.80, 0.55 and 0.55, respectively. Attackers can
compromise most of the users in gait authentication through
widespread/mimic attack with a limited number of tries.
Viewed from another perspective, it also means the same user
can belong to different clusters (i.e., the adversarial gait cycle
that can bypass the victim’s black-box model belongs to the
victim’s cluster, and the adversarial gait cycle that cannot
bypass the victim’s black-box model belongs to the other
cluster/clusters).

b) The attack methods proposed in this paper are much
more effective than random attacks: Note that the performance
of our widespread attacks and mimic attacks were higher when
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TABLE III

FRACTION OF USERS ON OU-ISIR-B, GREDO-B AND DREDI WHOSE MODELS WERE COMPROMISED AFTER 1, 5, 10, 20 AND 50 TRIES OF
WIDESPREAD ATTACK, MIMIC ATTACK AND RANDOM ATTACK FOR EACH OF THE BLACK-BOX MODELS WE USED. ALL THE RESULTS ARE
THE AVERAGE BASED ON 10 EXPERIMENTS INDEPENDENTLY

The number Prob(k)
Model name of attempts Widespread attack Mimic attack Random attack
(k) OU-ISIR-B | GREDO-B GREDI OU-ISIR-B | GREDO-B | GREDI
1 0.07 0.05 0.05 0 0.05 0.05
5 0.23 0.20 0.35 0.01 0.05 0.05
PCC [16] 10 0.42 0.40 0.50 0.03 0.10 0.05
20 0.60 0.65 0.95 0.07 0.10 0.15
50 0.87 0.95 1 0.16 0.10 0.20
1 0.10 0.10 0.10 0 0 0
5 0.18 0.25 0.45 0 0.05 0
SVM [16] 10 0.35 0.30 0.60 0.01 0.05 0.10
20 0.61 0.55 0.80 0.04 0.05 0.10
50 0.92 0.85 1 0.12 0.10 0.15
1 0.16 0.10 0.10 0 0 0.05
5 0.34 0.45 0.80 0.02 0.05 0.10
DTW [26] 10 0.53 0.60 1 0.07 0.10 0.15
20 0.70 1 1 0.14 0.10 0.20
50 1 1 1 0.25 0.20 0.25
1 0.09 0.05 0.05 0 0 0
5 0.17 0.15 0.30 0.01 0 0.05
CNN [27] 10 0.32 0.30 0.45 0.02 0.05 0.05
20 0.44 0.45 0.70 0.04 0.05 0.10
50 0.72 0.65 0.80 0.06 0.10 0.15
1 0.08 0 0.05 0 0 0
5 0.18 0.05 0.20 0.01 0 0.05
LSTM [28] 10 0.28 0.15 0.35 0.02 0 0.10
20 0.37 0.25 0.45 0.02 0.05 0.15
50 0.58 0.40 0.55 0.03 0.05 0.15
1 0.07 0 0.05 0 0 0
5 0.18 0.05 0.20 0.01 0 0.05
CNN+LSTM [28] 10 0.26 0.10 0.30 0.01 0 0.10
20 0.36 0.25 0.45 0.02 0.05 0.15
50 0.57 0.40 0.55 0.03 0.05 0.15

bounded by the performance of the baseline method, which
verifies the effectiveness of our adversarial gait cycle matching
algorithm.

c¢) Imitation will dramatically increase the probability of
a victim’s black-box model being bypassed: After comparing
the Prob(k) on various datasets in the experiment, a significant
difference between the adversaries is that the performance of
mimic attacks improves much more quickly when compared
to a widespread attack. The main reason is that the sample
error of possible walking patterns will be closer by imitation,
and it allows our adversarial gait cycle matching algorithm to
locate attack points more efficiently.

D. Performance on Multi-Cycle Defense Model

In this section, we first evaluate the performance of our
WPD-LSTM multi-cycle defense model. Then we evaluate the
ability of our proposed model to defend against two different
types of attacks which are extended from a one cycle attack.
Finally, we compare our solution with state-of-the-art work to
show its superiority.

1) Performance of WPD-LSTM Multi-Cycle Model: In our
WPD-LSTM multi-cycle defense model, it is important to
determine the number of gait cycles in each training sample
(gait sequence). That is to say, how many gait cycles C need to
be included in a gait sequence. We conducted the experiment
on OU-ISIR-A and GREDO-A. In the experiment, the data

samples of the training set and the testing set were both
sequences containing C gait cycles. In order to make full use
of the data and ensure the coverage of the model, we also use
the sliding window [45] to build defense model. There are
C — 1 continuous gait cycles between adjacent samples. The
performance of the WPD-LSTM model under different values
of C is shown in Fig. 5. Fig. 5(a) depicts the change of the
true positive rate and the false negative rate under different
values of C when threshold & = 0.5 and Fig. 5(b) depicts the
EER under different values of C. When C = 1, the situation
of training and testing is the same as that in the black-box
model design. Therefore, when C = 1, we can find that the
EER of the WPD-LSTM-based model is 8.12% and 7.39%
on OU-ISIR-A and GREDO-A, which is similar to the results
of the LSTM-based black-box model in Table II. When C is
larger than 1, one gait sample for training and testing will
contain C continuous gait cycles.

An interesting phenomenon occurs in Fig. 5(b) when C
is smaller than 3, the final EER increases as C increases.
While when C is larger than 3, the final EER decreases as
C increases. We can see the reason for this from Fig. 5(a)
which is as follows: In most of the authentication tasks,
we should take care of the tradeoff between TPR and TNR.
A high TNR means that the model has higher security, but
the corresponding TPR will be reduced, making the usability
of the system worse. In Fig. 5(a), we can find that C has a
great impact on TPR and TNR. When C increases, the TPR
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Fig. 6. Fraction of compromised users over the first 50 attempts under different number of cycles C. For each attempt, the input is a gait sequence consisting

of C repeated gait cycles.

will decrease but the TNR will increase. Here, C is a potential
threshold as well as . Finally, we choose C = 3 as our cycle
collection and design the WPD-LSTM-based 3-cycle model.

2) WPD-LSTM Model v.s. Various Attacks: Given the best
value of C, we try to study the robustness of our proposed
model against two different types of attacks. Since the number
of gait cycles for training and testing has been changed (from
1 to C), we propose two similar attacks extended from one
cycle attack.

a) Extension I of one cycle attack: In each attempt,
the attacker picks up one gait cycle using Algorithm 1, he/she
repeats the adversarial gait cycle for C times and structures a
new gait sequence for authenticating.

b) Extension II of one cycle attack: In each attempt,
the attacker picks up C continuous gait cycles (here, we regard
C cycles as a big “cycle”) using Algorithm 1, and then
puts the new sequence (C continuous gait cycles) into the
authentication model. It is the same as the multi-cycle model
design where the data samples of the training set and the
testing set are both sequences containing C gait cycles.

We summarize the results of the above two attacks on
OU-ISIR-B, GREDO-B and DREDI in Fig. 6 and Fig. 7,
respectively. The performance between repeated gait cycles
and continuous gait cycles does not deviate much, this is con-
sistent with our expectations because the proposed multi-cycle

defense model can effectively defend against these two attacks.
When C = 1, the fractions of compromised users of these
two attacks are the same because the gait sequences for
authenticating are the same (one gait sequence only contains
one gait cycle). We can see that when C is set to 3, 4, and 5,
the fractions of compromised users on all the three datasets
after 50 tries are still less than 0.1 using the WPD-LSTM
model. It’s worth noting that when C is 4 or 5, although the
model has strong anti-attack capabilities, it can be seen from
Fig. 5(a) that the model has a very low TPR.

3) Comparison Results of Multi-Cycle Classification: Sim-
ilar to Table III, we attempted to study the robustness of our
defense model and each of the proposed black-box models
against a C-cycle attack (C = 3). We summarize the results
of testing our adversaries on OU-ISIR-B, GREDO-B, and
DREDI in Table IV. From Table IV, we can find that our
WPD-LSTM model has the best performance, the average
fractions of compromised users for the WPD-LSTM model
on OU-ISIR-B, GREDO-B and GREDI after 50 tries are
0.05, 0.10, and 0.15, respectively. By using 3 gait cycles
for model training, the robustness of some black-box mod-
els (SVM, CNN, LSTM, and CNN+LSTM) has increased,
but the robustness of PCC and DTW has dropped. The
main reason is that PCC and DTW will construct profiles
with motion sensor data directly and then to calculate the
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TABLE IV

FRACTION OF USERS ON OU-ISIR-B, GREDO-B AND DREDI WHOSE MODELS WERE COMPROMISED AFTER 1, 5, 10, 20 AND 50 TRIES
OF WIDESPREAD ATTACK, MIMIC ATTACK AND RANDOM ATTACK FOR OUR DEFENSE MODEL AND EACH OF THE BLACK-BOX MODELS
WE USED. IN EACH ATTEMPT, THE ATTACKER PICKS UP 3 CONTINUOUS GAIT CYCLES. ALL THE RESULTS ARE THE
AVERAGE BASED ON 10 EXPERIMENTS INDEPENDENTLY

The number Prob(k)
Model name of attempts Widespread attack Mimic attack Random attack
(k) OU-ISIR-B | GREDO-B GREDI OU-ISIR-B | GREDO-B | GREDI

1 0.01 0 0 0 0 0

5 0.01 0 0 0 0 0

WPD+LSTM 10 0.03 0 0 0 0 0

20 0.04 0.05 0.05 0.01 0 0
50 0.05 0.10 0.15 0.02 0 0.05
1 0.09 0.10 0.10 0.01 0.05 0.05
5 0.29 0.20 0.40 0.02 0.05 0.05
PCC [16] 10 0.47 0.45 0.60 0.04 0.10 0.05
20 0.68 0.70 1 0.08 0.10 0.15
50 0.93 1 1 0.17 0.15 0.20

1 0.09 0.10 0.10 0 0 0

5 0.17 0.25 0.30 0 0.05 0
SVM [16] 10 0.37 0.30 0.50 0.01 0.05 0.05
20 0.63 0.50 0.85 0.05 0.05 0.10
50 0.92 0.80 1 0.11 0.10 0.15
1 0.17 0.10 0.10 0 0.05 0.05
5 0.37 0.55 0.80 0.03 0.05 0.10
DTW [26] 10 0.56 0.75 1 0.09 0.10 0.15
20 0.77 1 1 0.15 0.15 0.25
50 1 1 1 0.27 0.25 0.30

1 0.03 0.05 0.05 0 0 0

5 0.08 0.10 0.10 0.01 0 0
CNN [27] 10 0.17 0.15 0.20 0.02 0 0.05
20 0.32 0.25 0.30 0.03 0.05 0.10
50 041 0.40 0.45 0.06 0.10 0.15

1 0.01 0 0 0 0 0
5 0.03 0.05 0.05 0 0 0.05
LSTM [28] 10 0.05 0.05 0.15 0.01 0 0.05
20 0.08 0.10 0.20 0.01 0.05 0.10
50 0.10 0.15 0.25 0.02 0.05 0.10

1 0 0 0 0 0 0
5 0.02 0.05 0.05 0 0 0.05
CNN+LSTM [28] 10 0.04 0.05 0.10 0 0 0.05
20 0.06 0.10 0.15 0.01 0 0.05
50 0.09 0.15 0.20 0.02 0.05 0.10

similarity score between the targeted profile and test sam-
ples without machine learning methods. More gait cycles
may introduce new noise to the model of PCC and DTW.
For the SVM model, the average fractions of compromised
users have little change compared to the previous method
in Table III since the length of the time series has little effect

on the extraction of statistical features. For other black-box
models, the average fractions of compromised users have
dropped significantly, especially LSTM and CNN+LSTM.
The main reason is the contextual contents of the neigh-
boring gait cycles can be considered by the LSTM network
structure.
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TABLE V

COMPARISON WITH OTHER SOLUTIONS ON OU-ISIR-A AND GREDO-A.
ALL THE SAMPLES FOR TRAINING AND TESTING ARE GAIT
SEQUENCES WITH 3 CONTINUOUS GAIT CYCLES. THERE
ARE 2 CONTINUOUS GAIT CYCLES BETWEEN
ADJACENT SAMPLES

Model name EER on OU-ISIR-A | EER on GREDO-A
WPD-LSTM 7.27% 6.99%
PCC [16] 11.42% 10.51%
SVM [16] 8.81% 8.65%
DTW [26] 19.37% 12.20%
CNN [27] 8.54% 8.70%
LSTM [28] 7.92% 7.80%
CNN+LSTM [28] 7.89% 7.73%

We also compared with the state-of-the-art black-box
models and computed the corresponding EER using the
WPD-LSTM 3-cycle model as shown in Table V. An obser-
vation is that PCC and DTW in our new training setting
performed worse than the original black-box models, thus
indicating that statistical-based methods may not be applica-
ble in the multi-cycle scenario. Another observation is that
our WPD-LSTM method performs better than LSTM and
CNN+LSTM methods in the 3-cycle training scenario (EERs
of WPD-LSTM are 7.27% and 6.99%, EERs of LSTM are
7.92% and 7.80%, EERs of CNN+LSTM are 7.89% and
7.73%). While in the one cycle training scenario, they are
evenly matched (EERs of WPD-LSTM are 8.12% and 7.39%,
EERs of LSTM are 8.09% and 7.98%, EERs of CNN-+LSTM
are 8.04% and 7.95%). The main reason is that the inherent
inter-relationships between different sub-series of the gait
sequence has been considered by our WPD-LSTM network,
but this effect cannot be reflected during the one cycle training.
In summary, our approach performs better than all the other
solutions on OU-ISIR-A and GREDO-A, which indicates that
our proposed model can better represent the gait patterns of
users.

VI. CONCLUSION

In this paper, we propose a novel attack model, the one cycle
attack, to compromise sensor-based gait authentication from
the perspective of an attacker. With the help of an improved
cycle extraction algorithm and an adversarial gait cycle match-
ing algorithm, we have demonstrated that the vulnerability in
the state-of-the-art black-box models can be easily exploited
by attackers using the largest gait authentication dataset.
Furthermore, to improve the robustness of sensor-based gait
authentication methods to fight against attacks, we present a
WPD-LSTM-based multi-cycle defense model which is able to
consider the contextual contents of the neighboring gait cycles
in the gait sequence.

Experimental results show that our attack model can com-
promise most of the victims within a limited number of
attempts. In addition, we have demonstrated that with imitation
our attack will be more effective. Moreover, the experiment
indicates that our WPD-LSTM model can better represent the
gait/walk patterns of users and greatly mitigates the success
rate of attackers under two different attack scenarios.
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