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ABSTRACT
Internet fault diagnosis is extremely important for end users,
overlay network service providers (like Akamai [1]) and even
Internet service providers (ISPs). However, because link-level
properties cannot be uniquely determined from end-to-end
measurements, the accuracy of existing statistical diagnosis
approaches is subject to uncertainty from statistical assump-
tions about the network. In this paper, we propose a novel
Least-biased End-to-end Network Diagnosis (in short, LEND)
system for inferring link-level properties like loss rate. We
define a minimal identifiable link sequence (MILS) as a link
sequence of minimal length whose properties can be uniquely
identified from end-to-end measurements. We also design effi-
cient algorithms to find all the MILSes and infer their loss rates
for diagnosis. Our LEND system works for any network topol-
ogy and for both directed and undirected properties, and in-
crementally adapts to network topology and property changes.
It gives highly accurate estimates of the loss rates of MILSes,
as indicated by both extensive simulations and Internet exper-
iments. Furthermore, we demonstrate that such diagnosis can
be achieved with fine granularity and in near real-time even
for reasonably large overlay networks. Finally, LEND can sup-
plement existing statistical inference approaches and provide
smooth tradeoff between diagnosis accuracy and granularity.

Categories & Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions - Network monitoring

General Terms
Measurement, Experimentation

Keywords
Internet diagnosis, Network measurement, Linear algebra

1. INTRODUCTION

“When something breaks in the Internet, the In-
ternet’s very decentralized structure makes it hard
to figure out what went wrong and even harder to
assign responsibility.”
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– “Looking Over the Fence at Networks: A Neigh-
bor’s View of Networking Research”, by Commit-
tees on Research Horizons in Networking, National
Research Council, 2001.

Internet fault diagnosis is important to end users, overlay
network service providers (like Akamai [1]), and Internet ser-
vice providers (ISPs). For example, with Internet fault diagno-
sis tools, users can choose more reliable ISPs. Overlay service
providers can use such tools to locate faults in order to fix them
or bypass them; information about faults can also guide deci-
sions about service provisioning, deployment, and redirection.
For ISPs, diagnosis tools can be used to verify services from
provider/peering ISPs, and to troubleshoot problems with the
physical network.

The modern Internet is heterogeneous and largely unregu-
lated, which renders Internet fault diagnosis an increasingly
challenging problem. The servers and routers in the network
core are usually operated by businesses, and those businesses
may be unwilling or unable to cooperate in collecting the net-
work traffic measurements vital for Internet fault diagnosis.

Though several router-based Internet diagnosis tools have
been proposed [2, 3], these tools generally need special support
from routers. For example, Tulip [2] requires the routers to
support continuous IP-ID for generated ICMP packets. Also
these ICMP-based tools are subject to ICMP rate limiting, are
sensitive to cross-traffic, and are un-scalable (see Section 2).

In contrast, many recently-developed tools for Internet To-
mography use signal processing and statistical approaches to
infer link level properties [4–7] or shared congestion [8] based
on end-to-end measurements of IP routing paths. Here we
define that the paths are composed of links, which are IP con-
nections between routers. The relation between path and link
properties can be written as a large linear system; however, as
we observed in [9, 10], the linear system is fundamentally un-
derconstrained : there exist unidentifiable links with properties
that cannot be uniquely determined from path measurements.

To overcome this challenge to infer the property of each
physical link or virtual link (a consecutive subpath of an IP
path with no branches [7]), existing tomography approach
have to make ceratin assumptions. These assumptions may
not always hold in the Internet, which will cause systematic
inference errors with non-zero expected value. In other words,
such errors cannot converge to zero even with infinite amount
of measurements. We call such error bias and those statistical
assumptions biased assumptions.

In this paper, we advocate a different paradigm for network
diagnosis: unbiased diagnosis (i.e., with zero bias). Note that
there are two fundamental statistical assumptions for any end-
to-end network diagnosis approaches as follows.

• End-to-end measurement can infer the end-to-end
properties accurately.
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Figure 1: The spectrum of network diagnosis methods.

• The linear system between path- and link- level properties
assumes independence between link-level properties.

Although these two assumptions have been proved to work
extremely well in practice (see Section 3.1), they may still in-
troduce some bias. However, these are the minimal amount
of bias for any end-to-end diagnosis scheme. We call these as-
sumptions basic assumptions. In this paper, we aim to only use
the basic assumptions to achieve the least biased and hence,
the most accurate, diagnosis. We call it Least-biased End-to-
End Network Diagnosis (in short, LEND) system.

When combined with statistical inference, this paradigm
gives a full spectrum of network diagnosis methods with smooth
tradeoff between accuracy and diagnosis granularity as shown
in Figure 1. Here, we define the diagnosis granularity as the
length of the smallest consecutive link sequences whose prop-
erties are inferred. Given Internet being an underconstrained
system, LEND cannot infer properties for each link. How-
ever, with more and stronger statistical assumptions, we can
reduce the diagnosis granularity while introducing more bias
and sacrificing diagnosis accuracy.

Moreover, the LEND system desires the following proper-
ties:

• Scalability : Both the measurement and the inference
computation impose low overhead even for large networks.

• No special router support needed.

In LEND system, we define a minimal identifiable link se-
quence (MILS) as a link sequence of minimal length whose
properties can be uniquely identified from end-to-end mea-
surements. Then we apply an algebraic approach to separate
the identifiable and unidentifiable components of each path to
find the MILSes. For networks modeled as undirected graphs,
this is relatively easy. We can use routing information to get
the MILSes which are uniquely defined by the inherent path
sharing of the Internet; and we propose efficient algorithms to
find all such MILSes. However, the real Internet has asymmet-
ric link properties (e.g., loss rate), and so must be modeled as
a directed graph. But to find the MILSes in a directed graph
is significantly more challenging. In this paper, we make the
following contributions.

• We advocate the unbiased end-to-end diagnosis paradigm
and introduce the concept of MILS.

• Taking a network as a directed graph, when only topology
information is used, we prove that each path is a MILS:
no path segment smaller than an end-to-end path has
properties which can be uniquely determined by
end-to-end measurements.

• To address the problem above, we observe that in
practice, there are many good paths with zero loss rates.
Then as a fact rather than a statistical assumption, we
know all the links on such paths must also have no losses.
Based on such observation, we propose a “good path”
algorithm, which uses both topology and measurement
snapshots to find MILSes with the finest granularity.

• We design efficient algorithms to incrementally update the
MILSes and their loss rate estimates when the network
topology or overlay measurement nodes change.

• We show that our approach complements other
tomography techniques – it helps significantly reduce their
complexity and improves their inference accuracy.

• To validate our estimates, we propose a novel method of
link-level loss rate inference based on IP spoofing which
enables a limited form of source routing.

We evaluate the LEND system through extensive simula-
tions and Internet experiments. Both give promising results.
We define the diagnosis granularity of a path as the average of
the lengths of all the lossy MILSes contained in the path. For
the experiments with 135 PlanetLab hosts (each from a dif-
ferent organization), the average diagnosis granularity is only
four hops for all the lossy paths. This can be further improved
with larger overlay networks, as shown through our simulation
with a real router-level topology from [11]. This suggests we
can do very fine-level accurate diagnosis with reasonably large
overlay networks.

In addition, the loss rate inference on the MILSes is highly
accurate, as verified through the cross-validation and IP spoof-
based validation schemes. The LEND system is also highly
efficient. For the PlanetLab experiments with 135 hosts, the
average setup (monitoring path selection) time is 109.3 sec-
onds, and the online diagnosis of 18,090 paths, 3,714 of which
are lossy, takes only 4.2 seconds.

For the rest of the paper, we first survey related work in the
next section. Then we define MILS in Section 3, present its
discovery algorithms in Section 4, and validate in Section 5.
Evaluations are described in Sections 6 and 7. Finally, we
conclude in Section 8.

2. RELATED WORK
The algebraic approach was also used recently for scalable

overlay network monitoring to infer the end-to-end path prop-
erties [10]. By computing the loss rates of some “virtual links”
from a subset of the O(n2) paths, the loss rates of the remain-
ing paths can be inferred. However, a “virtual link” defined
in [10] is not a physical link or a subpath (different definition
to this paper and other tomography papers). It is much more
challenging to infer the properties on the link level, as we show
in this paper. Nevertheless, for overlay diagnosis, we naturally
inherit the scalability and load balancing from [10]. That is,
to diagnose an overlay network of n nodes, we only need to
measure O(n log n) paths instead of all the O(n2) paths. This
load is evenly distributed across the end hosts.

Ping and traceroute are the earliest Internet diagnosis tools,
and they are still widely used. However, the asymmetry of
Internet routing and of link properties makes it difficult to use
these tools to infer properties of individual links. The latest
work on network diagnosis can be put into two categories:
pure end-to-end approaches [4–7, 9, 12, 13] and router response
based approaches [2, 3, 14].

2.1 Pure End-to-end Approach
Most end-to-end tomography tools fall in one of two classes:

tools which are based on temporal correlations among multi-
ple receivers in a multicast-like environment [4–6, 12, 13], and
tools which impose additional statistical assumptions beyond
the linear loss model described in Section 3.1. As we discuss
below, none of these tools provide unbiased diagnosis as de-
fined in Section 1. As evidence of the utility of least-unbiased
diagnosis, we show in Section 6 that our inference is much
more accurate than the inference of one statistical tool based
on Gibbs sampling.

Under certain assumptions, tools in the first class infer a loss



rate for each virtual link (i.e., sequence of consecutive links
without a branching point) with high probability. Thus, these
tools diagnose failures at the granularity of individual virtual
links; obviously, this is a bound on the granularity obtainable
by the end-to-end tomography system. Typically these sys-
tems assume an ideal multicast environment; but since true
multicast does not exist in the Internet, they use unicast for
approximation. Thus the accuracy of the probe measurements
heavily depends on the cross traffic in the network, and there
is no guarantee of their accuracy.

As for the second class of tools, the statistically-based tools
introduced in [7] and [9] use only uncorrelated end-to-end mea-
surements to identify lossy network links. To see why these
tools are insufficient, we consider a simple tree topology, Fig-
ure 2. In this tree, we can only measure the loss rates of two
paths: A → B and A → C. In the figure, (a) and (b) show
two possible link loss rates that lead to the same end-to-end
path measurements. The linear programming approach in [7]
and SCFS [9] will always obtain the result of (a) because they
are biased toward minimizing the number of lossy link predic-
tions; but such results may not be correct. As for the random
sampling and Gibbs sampling approaches in [7], either (a) or
(b) may be predicted. In fact, none of the loss rates for these
three links are identifiable from end-to-end measurements, and
the LEND system will determine that none of the individual
links are identifiable, and will get MILSes A → N → B and
A → N → C.
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Figure 2: Example of an underconstrained system.

Gurewitz et al. use linear algebra to estimate one-way delay
with the measurement of delay of cyclic paths which are hard
to obtain in the real Internet [15].

2.2 Router Response Based Approach
All the router-based approaches to network diagnosis are

based on response packets sent by interior routers. Unfortu-
nately, interior routers may be unwilling to respond, or may
respond in an insufficiently informative manner. For example,
because many routers implement ICMP filtering or ICMP rate
limiting, some ICMP-based tools [2, 3] cannot measure the loss
rate on each link. These systems also do not scale well to the
task of simultaneously measuring many paths in a large over-
lay network; furthermore, the accuracy of measurements may
be affected by ICMP cross traffic [2]. Tulip, the latest repre-
sentative of this router-based approach [2], cannot accurately
infer the loss rates of links or link sequences because of the
following two problems.

First, a Tulip probe involves two small ICMP packets and
one large UDP data packet. To identify whether the loss hap-
pens on the forwarding path or not, Tulip only takes into
account the case when only UDP packets are lost. About 40%
of the time, a loss involves one of the ICMP packets as well.
Tulip simply ignores these cases, and consequently underesti-
mates about 40% overall loss rates [2].

Second, Tulip is sensitive to other simultaneous measure-

ment probes. Tulip requires continuous IP-IDs of replies from
the probed router and it may fail to get accurate loss rate if
other measurements (e.g. another instance of Tulip) probe the
router at the same time.

3. ALGEBRAIC MODEL AND MILS
In this section, we briefly describe the system architecture

and the algebraic model of the LEND system. The algebraic
model is widely used in Internet tomography. But the tech-
niques for diagnosis require significant amount of extra design
over this framework, as we will describe in the paper, e.g., the
MILSes introduced in Section 3.2.

3.1 Algebraic Model
Here we briefly introduce the algebraic model that is widely

used in network diagnosis. Suppose an overlay network spans
s IP links. We represent a path by a column vector v ∈ {0, 1}s,
where the jth entry vj is one if link j is part of the path, and
zero otherwise. Suppose link j drops packets with probability
lj ; then the loss rate p of a path represented by v is given by

1 − p =
s

Y

j=1

(1 − lj)
vj (1)

In the equation above, we assume that packet loss is inde-
pendent among links. We believe that such an assumption is
supported by the findings of Caceres et al. They find that
the diversity of traffic and links makes large and long-lasting
spatial link loss dependence unlikely in a real network such
as the Internet [16]. In addition to [16], formula (1) has also
proven useful in many other link/path loss inference works,
such as [6, 7, 17, 18]. Our Internet experiments also show that
the link loss dependence has little effect on the accuracy of
(1).

We take logarithms on both sides of (1). Then by defining
a column vector x ∈ R

s with elements xj = log (1 − lj), and
writing vT as the transpose of the row vector v, we can rewrite
(1) as follows:

log (1 − p) =
s

X

j=1

vj log (1 − lj) =
s

X

j=1

vjxj = vT x (2)

There are r = O(n2) paths in the overlay network, thus
r linear equations of the form (2). Putting them together,
we form a rectangular matrix G ∈ {0, 1}r×s that represents
these paths. Each row of G represents a path in the network:
Gij = 1 when path i contains link j, and Gij = 0 otherwise.
Let pi be the end-to-end loss rate of the ith path, and let
b ∈ R

r be a column vector with elements bi = log (1 − pi).
Then we write the r equations in form (2) as

Gx = b (3)

Normally, the number of paths r is much larger than the
number of links s. However, in general, G is rank deficient:
i.e., k = rank(G) and k < s [10]. In this case, we will be
unable to infer the loss rate of some links from (3). These
links are also called unidentifiable in the network tomography
literature [9]. Figure 2 shows an example in which no link is
identifiable.

3.2 Minimal Identifiable Link Sequence
As mentioned before, we know that not all the links (or the

corresponding variables in the algebraic model) are uniquely
identifiable. Thus our purpose is to find the smallest path seg-
ments with loss rates that can be uniquely identified through



Symbols Meanings
n number of end hosts on the overlay
r = O(n2) number of end-to-end paths
s # of IP links that the overlay spans on
G ∈ {0, 1}r×s original path matrix

Ḡ ∈ {0, 1}k×s a basis of G

k ≤ s rank of G

li loss rate on ith link
pi loss rate on ith measurement path
xi log(1 − li)
bi log(1 − pi)
v vector in {0, 1}s (represents path)
p loss rate along a path

R(GT ) row(path) space of G (= range(GT ))

G′ ∈ {0, 1}r′
×s′ reduced G after removing good paths & links

s′ # of links remaining in G′

r′ # of bad paths remaining in G′

k′ ≤ s′ rank of G′

G
′′

reduced Ḡ after removing good paths & links

Ḡ
′

a basis of G′′, also a basis of G′

Q′, R′ QR decomposition of Ḡ′
T

. Ḡ′
T

= Q′R′

Table 1: Table of notation
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Figure 3: Sample topologies and MILSes.

end-to-end path measurements. We introduce minimal iden-
tifiable link sequence or MILS to define such path sequences.
These path sequences can be as short as a single physical link,
or as long as an end-to-end path. Our methods are unbiased,
and work with any network topology. This provides the first
lower bound on the granularity at which properties of path
segments can be uniquely determined. With this information,
we can accurately locate what link (or set of links) causes any
congestion or failures.

Figure 3 illustrates some examples for undirected graphs. In
the top figure, we cannot determine the loss rates of the two
physical links separately from one path measurement. There-
fore we combine the two links together to form one MILS.
In the middle figure, three independent paths traverse three
links. Thus each link is identifiable, and thus each link is
a MILS. In the bottom figure, there are five links and four
paths. Each path is a MILS, since no path can be written
as a sum of shorter MILSes. But link 3 can be presented as
(2′ + 3′ − 1′ − 4′)/2, which means link 3 is identifiable, and
there are five MILSes. These examples show three features of
the MILS set:

• The MILSes may be linearly dependent, as in the bottom
example. We can shrink our MILS set to a basis for the
path space by removing such linear dependence, e.g., by
removing the MILS c in the bottom example in Figure 3.
But it is helpful to keep such links for diagnosis.

• Some MILSes may contain other MILSes. For instance,
MILS e is contained in MILSes b and c in the bottom
example.

• The MILS is a consecutive sequence of links, because for
diagnosis purposes we often want to limit the range within
the network where congestion/failure happens.

The problem of decomposing a network topology into MILSes
is similar to the sparse basis problem in numerical linear alge-
bra. The sparse basis problem is to find a basis for the range
of a matrix with as few nonzeros as possible. However, find-
ing MILSes differs from the usual problem of finding a sparse
basis for the following reasons:

• The sparse basis problem is an NP-hard problem, and
nearly all the heuristic algorithms for this problem are
based on a nondegeneracy assumption. In particular,
these heuristics require that every submatrix of G with
the order of rank(G) is nonsingular [19], an assumption
does not hold for typical network path matrices.

• For Internet diagnosis, we want to locate the possible
lossy links in a networking region which is as small as
possible. Thus, we want to have vectors which correspond
to consecutive link sequences. If we did not make this
assumption, there could exist an exponentially large
number of MILSes.

A MILS is a path segment and, like a path, it can be repre-
sented by a vector in {0, 1}s whose nonzero entries denote the
physical links used. Our requirement that the properties of
MILSes must be determined by the end-to-end measurements
is equivalent to the requirement that the vector v of the MILS
is in the path space R(GT ). Compared to related work [10], of
which the goal is to find a basis of R(GT ) made of end-to-end
paths, identifying MILSes is a more challenging task.

4. IDENTIFYING MILSES
The LEND system consists of two stages, shown in Figure 4.

In the first stage, we infer the loss rates of all end-to-end paths;
this can be done with O(n log n) path measurements, as de-
scribed in [10]. In this paper, we focus on the second stage:
finding MILSes and inferring their loss rates. For simplicity,
we first study link property inference for undirected graphs.
We then turn to the more realistic problem of inferring link
properties in directed graphs.

4.1 MILSes in Undirected Graphs
As we have defined them, MILSes satisfy two properties:

they are minimal, i.e. they cannot be decomposed into shorter
MILSes; and they are identifiable, i.e. they can be expressed
as linear combinations of end-to-end paths. Algorithm 1 finds
all possible MILSes by exhaustively enumerating the link se-
quences and checking each for minimality and identifiability.
An identifiable link sequence on a path will be minimal if and
only if it does not share an endpoint with a MILS on the
same path. Thus as we enumerate the link sequences on a
given path in increasing order of size, we can track whether
each link is the starting link in some already-discovered MILS,
which allows us to check for minimality in constant time. To
test whether a link sequence is identifiable, we need only to
make sure that the corresponding path vector v lies in the path
space. Since Q is an orthonormal basis for the path space, v
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flowchart

will lie in the path space if and only if ‖v‖ = ‖QT v‖. If the
link sequence contains i links, then v will contain only i nonze-
ros, and it will cost O(i × k) time to compute ‖QT v‖. This
cost dominates the cost of checking for minimality, and so the
overall cost to check whether one link subsequence is a MILS
will be at worst O(i × k).

procedure Seek MILS
1 Let Q be an orthonormal basis of R(GT ) which is pre-

computed as in [10] ;
2 foreach path p in G do

3 start mils := logical array of length(p) ;
4 Clear start mils to all false ;
5 for i := 1 to length(p) do

6 foreach segment S = pk . . . pl of length i do

7 if start mils(k) then

8 continue ;
else

9 Let v be the corresponding vector of S ;
10 if ‖QT v‖ = ‖v‖ then

11 start mils(k) := true ;
12 S is a MILS ;

else

13 S is not a MILS ;
end

end
end

end
end

Algorithm 1: Seeking all MILSes in an undirected graph

On a path of length l, there are O(l2) link subsequences,
each of which costs at most O(l × k) time to check, so the
total time to find all the MILSes on one end-to-end path is at
most O(k×l3). However, we can further reduce the complexity
from O(k×l3) to O(k×l2) using dynamic programming (detail
omitted). If we check every end-to-end path in the network,
the overall complexity of Algorithm 1 will then be O(r×k×l2).
However, our simulations and Internet experiments show that
only a few more MILSes are obtained from scanning all r end-
to-end paths than from scanning only the k end-to-end paths
which are directly monitored. Furthermore, each physical link
used by the network will be used by one of the k monitored
paths, so the MILSes obtained from this smaller set of paths
do cover every physical link. Therefore in practice, we scan
only the k monitored paths, which costs O(k2 × l2) time, and
we accept a slight loss of diagnosis granularity.

Once we have identified all the MILSes, we need to compute
their loss rates. We do this by finding a solution to the under-
determined linear system ḠxG = b̄. system (see [10]). For ex-
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Figure 6: MILSes in undirected graph.
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ample in Figure 6, xG = ( 2x1+x2+x3

3
, x1+2x2−x3

3
, x1−x2+2x3

3
)T .

Obviously, xG shows some identifiable vectors in R(G), how-
ever, they may not be MILSes. Then for each MILS with
vector v, the loss rate is vT xG. The elements of xG need not
be the real link loss rates: only the inner products vT xG are
guaranteed to be unique and to correspond to real losses. We
also note that because loss rates in the Internet remain sta-
ble over time scales on the order of an hour [20], the path
measurements in b̄ need not be taken simultaneously.

It is worth mentioning that the same problem for undirected
graph was solved in [21] with the same order of computa-
tional complexity. However, focus of this paper is on the di-
rected graph which is ignored in [21]. Furthermore, compared
to [21], our approach inherits the key feature of measurement
efficiency of [10] (i.e. requiring only O(n log n) measurements
of end-to-end paths instead of n2 paths), and reuses the com-
putational output of [10] such as xG and Q.

4.2 MILSes in Directed Graphs

4.2.1 Special Properties for Directed Graphs
Surprisingly, our MILS algorithm cannot be extended to

directed graphs directly. We found that no path can be de-
composed into more than one MILS, i.e., each path itself is a
MILS. Figure 7 shows a simple star topology as both an undi-
rected graph and a directed graph. In the undirected graph
on the left, the loss rate of each link is identifiable from the



loss rate of the three paths. In contrast, in the directed graph
on the right, rank(G) = 5, and none of the six links are iden-
tifiable from measurements of the six end-to-end paths. Only
the end-to-end paths are identifiable in this case. This is typ-
ical of directed networks. In the case illustrated in Figure 7,
we can explain the lack of identifiable links as follows. We
can split G into two sub-matrices, one containing only incom-
ing links and the other only containing outgoing links of the
router N . Thus any vector v = [v1, v2, v3, v4, v5, v6]

T ∈ R
6 in

R(GT ) satisfies v1 +v2 +v3 = v4 +v5 +v6 because any path in
G has one incoming link and one outgoing link. Vectors like
[1 0 0 0 0 0]T do not belong to R(GT ), as they do not satisfy
that condition. This example illustrates the intuition of The-
orem 1 below which shows that in a directed graph, each path
itself is a MILS, i.e., it is the minimal identifiable consecutive
path segment.

Theorem 1: In a directed graph, no end-to-end path con-
tains an identifiable subpath except loops.

Proof : For any interior node N in the network, define vec-
tors uN ∈ {0, 1}s and wN ∈ {0, 1}s such that uN

i = 1 if link
i is an incoming link for node i, and wN

i = 1 if link i is an
outgoing link for node i. For any path with vector v, vT uN is
the count of the number of links going into N which appear
on the path, and vT wN is the count of the links exiting N .
If v corresponds to an end-to-end routing path, either N is
traversed exactly once and vT uN = vT wN = 1, or N is not
traversed at all and vT uN = vT wN = 0. Since every row in G
represents an end-to-end path, we have GuN = GwN .

Any identifiable link sequence in the network can be repre-
sented by a vector x such that x = GT z for some z; for such
a link sequence,

xT uN = zT GuN = zT GwN = xT wN

Therefore, if the link sequence includes an incoming link for
node N , it must also include an outgoing link. Thus, no
identifiable link sequence may have an endpoint at an inte-
rior network node. This means that the only identifiable link
sequences are loops and end-to-end paths. �

Routing loops are rare in the Internet, thus given Theo-
rem 1, each path is a MILS and there are no others. This
means that there are no individual links or subpaths whose
loss rates can be exactly determined from end-to-end mea-
surements. Next, we will discuss some practical methods to
get finer level unbiased inference on directed graphs, such as
the Internet.

4.2.2 Practical Inference Methods for Directed Graphs
Considering the simple directed graph in Figure 7, the prob-

lem of determining link loss rates is similar to the problem of
breaking a deadlock: if any of the individual links can be
somehow measured, then loss rates of all other links can be
determined through end-to-end measurements. Since link
loss rates cannot be negative, for a path with zero loss rate,
all the links on that path must also have zero loss rates. This
can break the deadlock and help solve the link loss rate of
other paths. We call this inference approach the good path
algorithm. Note that this is a fact instead of an extra assump-
tion. Our PlanetLab experiments as well as [20], show that
more than 50% of paths in the Internet have no loss.

In addition, we call relax the definition of “good path” and
allow a negligible loss rate of at most σ (e.g., σ = 0.5%, which
is the threshold for “no loss” in [20]). Then again it becomes
a tradeoff between accuracy and diagnosis granularity, as de-
picted in our framework. Note that although the strict good
path algorithm cannot be applied to other metrics such as

latency, such bounded inference is generally applicable.
As illustrated in the second stage of Figure 4, there are two

steps for identifying MILSes under directed graphs. First, we
find all the good paths in G and thus establish some good
links. We remove these good links and good paths from G to
get a submatrix G′. Then we apply Algorithm 1 to G′ to find
all lossy MILSes and their loss rates in G. For the good links
which are in the middle of lossy MILSes identified, we add
them back so that MILSes are consecutive. In addition, we
apply the following optimization procedures to get Q quickly
for the identifiability test (step 10 of Algorithm 1).

We remove all the good links from Ḡ and get a smaller
submatrix G′′ than G′. By necessity, G′′ contains a basis of G′.
We can then use the small matrix G′′ to do QR decomposition
and thus get Q′. Since G′′ is usually quite small even for G
from a reasonably large overlay network, such optimization
approach makes the LEND very efficient for online diagnosis.
In Figure 5, we use a simple topology to show the matrices
computed in the whole process. The path from C to B is a
good path and thus links 2 and 6 are good links.

4.3 Dynamic Update for Topology and Link
Property Changes

During monitoring, good links may become lossy and vice-
versa, routing paths between end hosts may change, and hosts
may enter or exit the overlay network. These changes may
result in changes to the reduced matrix G′, forcing us to re-
compute the MILSes and their loss rates. We perform this
re-computation in two steps: we first incrementally update
the decomposition of the G′ matrix, and then compute the
MILSes and their properties using the algorithm described in
Section 4.1.

We express changes to G and G′ in terms of four kinds of
primitive updates: adding a bad path, deleting a bad path,
adding a good path, and deleting a good path. Any more
complicated change can be expressed in terms of these four
operations. For example, if the routing tables changes so that
some bad paths are rerouted, we would delete the original bad
paths from the system, and add the routes for the new good
paths. When a bad path is added or deleted, there may be
one row which is added to or removed from G′; similarly, when
a good path is added or deleted, the set of links identified as
good by the good path algorithm may change, so that a few
columns are added to or removed from G′. To update a QR
decomposition of G′ after one column or row update costs time
proportional to the size of the matrix, or O(k′ × s′) time (see
the discussion in [22, Section 4.3]); and since at most l rows
or columns are affected by one of our primitive updates, the
total cost of such updates is at most O(l × k′ × s′). This cost
is much less expensive than the initial QR factorization of G′,
which costs O(r′ × k′ × s′).

In Section 7.2.4, we show that it takes only a few seconds to
complete an incremental update to Q′ and R′ and re-identify
the MILSes. Given that end-to-end Internet paths tend to
be stable on the time scale of a day [23] and link loss rates
remain operationally stable on the time scale of an hour [20],
our algorithm should suffice for online updates and diagnosis.

4.4 Combining with Statistical Diagnosis
As discussed before, the linear system is under-constrained,

and so there exist some unidentifiable links. With MILSes,
we attempt to discover the smallest path segments for which
properties can be uniquely identified. However, there are vari-
ous statistical methods which produce estimates of properties
at a finer granularity, e.g. at the virtual link level (see Sec-



tion 2.1 for definition). Essentially, these methods try to use
statistical assumptions to resolve the likely behavior in the un-
measured space discussed in Section 3.1, and therefore provide
only possible estimates as shown in Figure 2 [7].

Because of this, our LEND approach and other statistical
methods can complement each other nicely. For example, we
can discover some links or link segments that are lossy by the
least-unbiased approach. If the user wants to make predic-
tions at a finer level of granularity with potential degradation
of accuracy, we can further apply the statistical algorithms on
the lossy MILSes. In comparison with the traditional statis-
tical tomography which has to consider the whole path, our
scheme can help significantly reduce complexity without losing
inference accuracy by considering a subset of the links. Our
MILSes are vectors in R(GT ), and the MILS set contains a
basis of R(GT ). Thus, inference with MILSes is equivalent to
inference with the whole end-to-end paths.

Take the linear optimization and Bayesian inference using
Gibbs sampling introduced in [7], for example; these algo-
rithms can be used without modification on our MILS set
rather than on the original end-to-end paths. Section 6.3.6
shows that combined with our least-unbiased approach, Gibbs
sampling inference improves its accuracy. In addition, the
computational complexity of Gibbs sampling inference based
on the MILS set is dramatically reduced because the input
“paths” is much shorter than the whole end-to-end paths.

5. DIAGNOSIS VALIDATION THROUGH IP
SPOOFING

Internet diagnosis systems are difficult to evaluate because
of the general lack of ground truth – it is very hard, if not virtu-
ally impossible, to obtain the link level performance from the
ISPs. We will first evaluate the system through simulations
in Section 6. Then we test LEND on the real Internet in Sec-
tion 7. For validation on the real Internet, in addition to the
classical cross validation, we need a more powerful approach.
As shown in Section 2, existing router-based diagnosis tools
like Tulip are neither very accurate nor scalable, and so do
not suit our needs. In this section, we propose an IP spoofing
based mechanism for link-level diagnosis validation.

Though IP spoofing is usually used by malicious hackers to
hide their identities, it also is a useful tool to cope with the
rigid routers. For example, IP spoofing is used to help measure
ICMP generation time in routers [24]. We use IP spoofing
to obtain a limited source routing, which helps validate the
accuracy of MILSes. With this technique, we can measure the
properties of new paths which we could not normally probe.
These additional measurements are then used to validate the
inferred loss rates of MILSes.

S

RA B

x3

x1 x2

Figure 8: IP spoofing ex-

ample.

Figure 8 shows an example of
how to use IP spoofing to “cre-
ate” a new path. Each line in
the figure can be a single link or
a sequence of links. For simplic-
ity, we just call it a link in this
section. Assuming router R is
on the path from the node A to
node B, and the path from S to
B does not go via R. To create a
new path S → R → B, S sends
an ICMP ECHO request packet to R with spoofed source IP
as B. When the packet reaches router R, R will generate an
ICMP ECHO reply packet and send it to B. Thus we get a
path from S to B via router R. Assume xi is the logarithm

of the success rate of link i as defined before and bB is the
logarithm of the success rate of path S → R → B. Thus
we have x2 + x3 = bB. Since x3 ≤ 0, we get a lower bound
of x2, i.e., x2 ≥ bB. For validation, we use the source rout-
ing capability we have created to measure some new paths
and check whether they are consistent with the MILSes and
their inferred loss rates obtained from normal non-IP-spoofed
measurements. For example, normal measurements on path
A → B reveal that there is a single lossy MILS l on R → B,
then the logarithm of l’s success rate should be bounded by
bB as discussed before. See details in Section 7.2.2 where the
consistency checking idea is also used in cross-validation.

The principle of IP spoofing based source routing is simple.
However, many practical problems need to be addressed.

• First, most edge routers check outgoing packets and
disable IP spoofing from the internal networks. In
addition, all PlanetLab hosts are disabled from IP
spoofing. We managed to get one host in our institute
exempted from such filtering.

• Second, as with other router-based diagnosis
approaches [2], our scheme is subject to ICMP
rate-limiting on routers for measuring the loss rates. We
filter those routers with strict ICMP rate-limiting.

6. EVALUATION WITH SIMULATION
In this section, we present our evaluation metrics, simulation

methodology and simulation results.

6.1 Metrics
The metrics we have used to evaluate our algorithms in-

clude the granularity of diagnosis, MILS loss rate estimation
accuracy, and the speed of setup and online diagnosis.

Of these metrics, the first one, diagnosis granularity, is par-
ticularly important. For diagnosis, we focus on the lossy paths,
and examine to what range we can locate the cause of network
congestion/failures. We define the diagnosis granularity of a
path as the average of the lengths of all the lossy MILSes
contained in the path. The diagnosis granularity of an over-
lay network is defined as the average diagnosis granularity of
all the lossy paths in the overlay. For example, if an over-
lay network has only two lossy paths: one path has two lossy
MILSes of length 2 and 4 separately, and the other lossy path
consists of only one lossy MILS of length 3. Then the di-
agnosis granularity for the overlay is ((2 + 4) /2 + 3) /2 = 3.
The granularity indicates the range of congestion/failure lo-
cations when they occur. We represent the granularity with
both physical link and virtual link 1 as the length unit. In
this paper, we use physical link as the default unit, and use
the virtual link as unit only when specifically comparing with
the optimal lower bound of end-to-end approaches which have
the diagnosis granularity as each virtual link.

Throughout this paper, we classify a MILS as lossy (or bad)
if its loss rate exceeds 3%, which is the threshold between
“minor loss” and “perceivable loss” (like “tolerable loss” and
“serious loss”) as defined in [20]. As we mentioned in Sec-
tion 6.2a good path has less than 0.5% loss rate, the threshold
for “no loss” in [20], and thus the good path algorithm intro-
duces certain errors (or bias). The question is whether the
error introduced by the good path algorithm will be accumu-
lative or not in the matrix computations. If the error is not
accumulative, we can simply adjust the threshold of the good
path for desirable accuracy and best diagnosis granularity.

1As defined before, a network is composed of virtual links after
merging consecutive links without branching point.
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Figure 9: Accuracy of MILSes on lossy paths: cumulative distribution of absolute

errors (top) and error factors (bottom) under Gilbert model for various topologies.

Figure 10: Granularity of MILSes with differ-

ent network sizes (top) and different percent-

age of links as lossy links (bottom).

To compare the inferred loss rate p̂ with the real loss rate p
of MILSes, we analyze both the absolute error and the error
factor. The absolute error is |p− p̂|. We adopt the error factor
Fε(p, p̂) defined in [6] as follows:

Fε(p, p̂) = max



p(ε)

p̂(ε)
,
p̂(ε)

p(ε)

ff

(4)

where p(ε) = max(ε, p) and p̂(ε) = max(ε, p̂). Thus, p and
p̂ are treated as no less than ε, and thus the error factor is
the maximum ratio, upwards or downwards, by which they
differ. We use the default value ε = 0.003, as is consistent
with the link loss rate distribution selected in simulation (See
Section 6.2). If the estimation is perfectly on target, the error
factor is one.

Operation of the LEND system requires two steps: setup,
and monitoring and diagnosis. In the first step we select
O(n log n) paths to measure, while in the second step we mon-
itor these paths and diagnose the congestion/failure locations
of all the O(n2) paths. The running time for the first step is
only a few minutes even for a reasonably large overlay network
of several hundred hosts, as shown in [10]. Thus in this paper,
we focus on evaluating the speed of the second step.

6.2 Simulation Methodology
We consider the following dimensions for simulation.

• Topology type: We experiment with three types of
BRITE [25] router-level topologies - Barabasi-Albert,
Waxman and hierarchical models - as well as with a real
router topology with 284,805 nodes [11].

• Topology size: the number of nodes ranges from 1000 to
20000. This node count includes both internal nodes (i.e.,
routers) and end hosts.

• Fraction of end hosts on the overlay network: we define
end hosts to be the nodes with the least degree. We then
randomly choose from 50 to 300 end hosts to be on the
overlay network. We prune the graphs to remove the

nodes and links that are not referenced by any path on
the overlay network.

• Link loss rate distribution: 95% of the links are classified
as “good” and the rest as “bad”. We focus on directed
graphs, thus the bidirectional links between a pair of
nodes are assigned separate loss rates. We use two
different models for assigning loss rate to links, as in [7].
In the first model (LLRD1), the loss rate for good links is
selected uniformly at random in the 0-0.3% range and the
rate for bad links is chosen in the 5-10% range. In the
second model (LLRD2), the loss rate ranges for good and
bad links are 0-0.3% and 0.3-100% respectively. Given
space limitations, most results discussed are under model
LLRD1 except for Section 6.3.4.

• Loss model: After assigning each directional link a loss
rate, we use either a Bernoulli or Gilbert model to
simulate the loss processes at each link in the same
manner as in [7, 10]. We found that the results for the
Bernoulli and the Gilbert models are similar. Since the
Gilbert loss model is more realistic, all results presented in
the paper are based on this model.

We repeated our experiments five times for each simulation
configuration unless noted otherwise, where each repetition
has a new topology and new loss rate assignments. The path
loss rate is simulated based on the transmission of 10000 pack-
ets. Using the loss rates of selected paths as input, we compute
xG, then the loss rates of all the MILSes.

6.3 Simulation Results
In this section, we discuss the evaluation results. Our ex-

periments show that the three synthetic topologies have sim-
ilar results for the accuracy. For the diagnosis granularity,
Barabasi-Albert topologies have the largest ratios of diagnosis
granularity vs. the average path length. Thus we only show
the Barabasi-Albert topology results because it gives the most
conservative results on fault localization.



A real-router topology of 284,805 nodes
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Rank 
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LP 
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Avg MILS 
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Avg diagnosis 

granularity 

50 2450 8.86 3798 2774 1921 1042 903 2.23(3.03) 2.24(3.07) 

100 9900 8.80 9802 7782 5879 3551 1993 1.71(2.27) 2.05(2.95) 

200 39800 8.80 22352 18545 14811 14706 4335 1.49(1.92) 1.77(2.38) 

 
Table 2: Simulation results for a real router topology. OL means the overlay network. PL means the path length. Number of links shows

the number of links after pruning (i.e., removing the nodes and links that are not on the overlay paths). Number of VLs (virtual links)

gives the number of links after merging consecutive links without branching point. LP stands for lossy paths. The rightmost four columns

are mainly computed using the virtual links after merging. The corresponding length values before merging are given in the parenthesis.

# of # of end hosts Avg # of # of links Avg MILS Avg diagnosis Speed (second)
nodes total overlay PL LP in LP length granularity setup update

1000 506
50 4.49 481 117 1.457(2.062) 1.476(1.656) 0.83 0.39
100 4.42 1815 191 1.266(1.818) 1.169(1.259) 2.91 0.69

5000 2489
100 5.19 2046 587 1.384(2.027) 1.247(1.402) 19.8 0.93
200 5.13 9028 1124 1.326(1.938) 1.187(1.271) 329 4.2

20000 10003
100 5.63 2232 1261 1.57(2.44) 1.491(1.688) 47.0 3.9
300 5.62 23337 3692 1.321(2.051) 1.147(1.256) 2626 48.2

Table 3: Simulation results with model LLRD2 using Barabasi-Albert topologies

6.3.1 Accuracy of MILSes
For all topologies in Section 6.2, we achieved high loss rate

estimation accuracy. Since our goal is to diagnose lossy paths,
we evaluate the accuracy of the estimates of loss rates only for
MILSes on the lossy paths. The results are even better when
we consider the MILSes on all paths.

We plot the cumulative distribution functions (CDFs) of
absolute errors and error factors with the Gilbert model in
Figure 9. The results on Waxman and hierarchical topologies
are similar to those on Barabasi-Albert topologies, and so we
omit them in the interest of space.

The errors come from the measurement noise and the ap-
proximation of the good path algorithm. The accumulated
error is a potential problem when computing large matrix.
However, our simulation results show it is not severe at all in
our system. For all the configurations, 90% of the absolute
errors are less than 0.006 and 90% of the error factors are less
than 1.6. This is due to the least-unbiased qualities of our
diagnosis algorithms.

6.3.2 Granularity of MILSes
Table 2 shows the granularity of MILSes and related statis-

tics under the real-world Mercator topology. The granularity
results from other BRITE topologies are similar, and we omit
the exact tables for the limited space of the paper. We first
prune the topology so that it only contains the links on the
paths among the random selected end hosts. Then we merge
the links without branching points into one virtual link. We se-
lect a basis set Ḡ for monitoring, which is again much smaller
than the total number of paths. After that, we remove the
good paths and good links inferred from these good paths
from G, and obtain G′. The number of lossy paths and the
number of links in the lossy paths gives the size of G′, as shown
in this table. The loss rate estimation of MILSes is actually
based on Ḡ′, of which the size is about 30% to 50% of the size
of G′ for the loss rate distribution of LLRD1.

The MILS identification and loss rate calculation are based
on virtual links to reduce the computational cost. Thus the
length of lossy paths and MILSes in the rightmost two columns
of Table 2 is computed based on virtual links. After that, we
recover each virtual link to its original link segments and give
the length value in parenthesis of the table. The average length

of MILSes is quite small, mostly less than 2 when considering
virtual links, and mostly less than 3 without such link merging.
The last column of Table 2 shows the diagnosis granularity in
length of both virtual links and links. Most diagnosis granu-
larity is less than 2 virtual links, which is quite close to the
diagnosis upper bound of pure end-to-end approaches (i.e.,
diagnosing every virtual link). This shows that the granular-
ity of MILSes is very small and we can effectively locate the
congestion/failure points.

6.3.3 Influencing Factors of the MILS Granularity
In this subsection, we study two such influencing factors:

the size of overlay network and loss rate distributions of links.
Figure 10 (top) shows the granularity of MILSes with dif-

ferent sizes of overlay network under the Mercator topology
and LLRD1 loss rate distribution. Link merging in the fig-
ure means to merge consecutive link sequence without branch-
ing into virtual link. When the overlay network size is very
small, less than 50, there is not much path sharing, so the
MILS lengths are long. With more hosts and paths, sharing
becomes significant, and the MILS lengths are reduced dra-
matically. Such sharing growth becomes slower and slower
when the network size is bigger than 100.

Figure 10 (bottom) shows the granularity of MILSes for an
overlay of 100 end hosts under the Mercator topology with
different percentage of links to be lossy links. Again, the loss
rate distribution is LLRD1. The granularity of MILSes almost
grows linearly to the percentage of lossy links. Usually the
percentage of lossy links in the Internet is very small, like
2% of even smaller. So the granularity of the MILSes is very
small, which is also verified through the Internet experiment
described in Section 7.

The average length of lossy MILSes is always higher than
that of good MILSes. This is not surprising because the longer
the MILS is, the more likely it is to be lossy. Thus the diag-
nosis granularity may be larger than the average length of all
MILSes.

6.3.4 Results for Different Link Loss Rate Distribution
and Running Time

We have also run all the simulations above with model
LLRD2. The results are very similar to those of LLRD1 ex-



cept that with larger loss rates and the same percentage of
lossy links, the length of MILSes on the lossy paths has been
increased by a bit. Given space limitations, we only show the
lossy path inference with the Barabasi-Albert topology model
and the Gilbert loss model in Table 3.

The running time for LLRD1 and LLRD2 are similar, as
in Table 3. All speed results in this paper are based on a
3.2GHz Pentium 4 machine with 2GB memory. Note that
it takes about 45 minutes to setup (select the measurement
paths) for an overlay of 300 end hosts, but less than one minute
for an overlay of size 100. Note that the setup only needs
to run once, and there are efficient schemes to incrementally
update Ḡ when there are routing changes or adding/removing
links [10]. Meanwhile, the continuous monitoring, inference
and diagnosis are very fast, for all cases. Even for the large
overlay with 300 end hosts, 89,700 paths and more than 20,000
links, we can diagnose all trouble spots within one minute.
This shows that we can achieve near real-time diagnosis.

6.3.5 Results for Dynamic Changes
Because of the change of Internet and Overlay network, our

monitoring system has to dynamically update according to the
changes. In this section, we study two common scenarios: end
hosts joining as well as routing changes. In Section 4.3, we
analyze the computation complexity of four primitive updates
to our LEND system. We use the real topology [11] in sim-
ulation to show the efficiency of the dynamic update of our
LEND system.

Adding nodes: We start with an overlay network of 90 ran-
dom end hosts. Then we randomly add an end host to join
the overlay, and repeat the process until the size of the overlay
reaches 100. Averaged over three runs, the average running
time for adding a node is 0.21 second. Notice that we add a
block of paths together to speedup adding node.

Routing changes: Routing changes influence the link se-
quences in the paths, and as a result the loss rate of the paths
may also changes a lot. We first create an overlay network
with 100 random end hosts on the real router topology. Then
we simulate topology changes by randomly choosing a link
that is on some path of the overlay and removing of such a
link will not cause disconnection for any pair of overlay end
hosts. Then we assume that the link is broken, and re-route
the affected path(s). The changed paths may actually trigger
all the four basic changes we described in Section 4.3. Av-
erage over three runs, the average running time for changing
a routing path (delete the original and then add a new one)
is about 1.2 seconds. This time is comparable to the time of
re-computing all the matrixes from scratch, which is about 2.3
seconds. This is because the block algorithm of path adding
speedup much and the topology is not very large (only 100
end hosts).

6.3.6 Comparison with Gibbs Sampling
In [7], V. Padmanabhan et al. proposed three statistical ap-

proaches to infer the loss rate of links using end-to-end mea-
surement. We also implemented the Gibbs Sampling algo-
rithm, which was shown to be the most accurate approach
in [7]. Note that in [7], the object is only to find out which
virtual links are lossy, which does not give an inference on the
value of loss rate. By modifying the algorithm a little bit, we
use the average loss rate of all the samplings as the inferred
loss rate of virtual links.

Figure 11 shows the absolute and relative errors of the infer-
ence of virtual links or MILSes. Here we select the real Mer-
cator topology measured in [11] with Gilbert loss model and

US (77) # of hosts International (58) # of hosts
.edu 50 Europe 25
.org 14 Asia 25
.net 2 Canada 3
.com 10 South America 3
.us 1 Australia 2

Table 4: Distribution of selected PlanetLab hosts.

LLRD1 distribution. There are 50 end hosts, and thus 4950
paths in total. Figure 11 clearly shows that the accuracy of
MILSes is much better than that of Gibbs Sampling on virtual
links. It is worth mentioning that the false positives and false
negatives of Gibbs Sampling are relatively high (about 10%
in total), and thus for some virtual links the absolute error is
quite high (> 5%). Figure 11 also shows that Gibbs sampling
inference based on our MILSes has higher accuracy than that
based on end-to-end paths. This may be because MILSes have
finer granularity and reduce the interaction between identified
MILSes in the inference. The relative error factor results in
Figure 11 confirm the result of absolute errors. As for running
speed, Gibbs sampling based on the whole paths takes about
5 times more running time than that based on MILS set when
using the same running environment (i.e., the same machine
and Matlab tool).

7. INTERNET EXPERIMENTS
Shortest path routing is often violated in the Internet, a

phenomenon known as path inflation [26]. In addition, the
behavior of lossy links may be more complicated than those of
synthetic models. Therefore, we deployed and evaluated our
LEND system on the PlanetLab [27] and discuss the results
in this section.

7.1 Methodology
We deployed our monitoring system on 135 PlanetLab hosts

over the world (See Table 4). Each host is from a different
institute. About 60% of hosts are in US and others are dis-
tributed mostly in Europe and Asia. There are altogether
135 × 134 = 18, 090 end-to-end paths among these end hosts.
In our experiments, we measured all the paths for validation.
But in practice, we only need to measure the basis set of on
average 5,706 end-to-end paths. The measurement load can be
evenly distributed among the paths with the technique in [10]
so that each host only needs to measure about 42 paths.

First, we measured the topology among these sites by si-
multaneously running “traceroute” to find the paths from each
host to all others. Each host saves its destination IP addresses
for sending measurement packets later. Then we measured the
loss rates between each pair of hosts. Our measurement con-
sists of 300 trials, each of which lasts 300 msec. During a trial,
each host sends a 40-byte UDP packet to every other host. The
packet consists of 20-byte IP header, 8-byte UDP header, and
12-byte data on sequence number and sending time. For each
path, the receiver counts the number of packets received out of
300 to calculate the overall loss rate. We used the sensitivity
test similar to that of [10] to choose these parameters so that
measurement packets will not cause additional congestion.

To prevent any host from receiving too many packets simul-
taneously, each host sends packets to other hosts in a different
random order. Furthermore, any single host uses a different
permutation in each trial so that each destination has equal
opportunity to be sent later in each trial. This is because
when sending packets in a batch, the packets sent later are
more likely to be dropped than received. Such random per-
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mutations are pre-generated by each host. To ensure that all
hosts in the network take measurements at the same time, we
set up sender and receiver daemons, then use a well-connected
server to broadcast a “START” command.

7.2 Experiment Results
In April 2005, we ran the experiments ten times, at different

times of night and day. Below we report the average results
from the ten experiments.

7.2.1 Granularity of MILSes and Diagnosis
For the total of 135 × 134 = 18, 090 end-to-end paths, af-

ter removing about 65.5% good paths containing about 70.5%
good links, there are only 6450 paths remaining. The average
length of lossy MILSes on bad paths is 3.9 links or 2.3 virtual
links.

The diagnosis granularity of lossy paths is a little high: 3.8.
But we believe it is reasonable and acceptable for the following
two reasons. First, it is well-known that many packet losses
happen at edge networks. In the edge networks, the paths
usually have a long link chain without branches. For example,
all paths starting from planetlab1.cs.northwestern.edu go
through the same five first hops. If we use virtual link as the
unit, we find the granularity is reduced to about 2.3 virtual
links. This shows our LEND approach can achieve good diag-
nosis granularity comparable to other more biased tomography
approaches, while achieving high accuracy.

Second, we find that there exist some very long lossy MILSes
as illustrated in Figure 12, which shows the distribution of the
length in physical links of lossy MILSes measured in differ-
ent time periods of a day (US Central Standard Time). For
example, some MILSes are longer than 10 hops. Such long
lossy MILSes occur in relatively small overlay networks be-
cause some paths do not overlap any other paths.

As shown in Section 6.3.6, we can further apply Gibbs sam-
pling approach [7] based on the MILSes found and obtain the
lower bound on the diagnosis granularity, which is 1.9 physi-
cal links and obviously one hop with respect to virtual links.
However, accuracy will be sacrificed to some extent as shown
in Section 6.3.6. Nevertheless, by combining both statistic ap-
proaches and our LEND system, we provide the full flexibility
to trade off between granularity and accuracy.

7.2.2 Accuracy Validation Results
We apply the two schemes in Section 5 to validate our re-

sults: cross-validation and consistency checking with IP spoof-
based source routing.

7.2.2.1 Cross Validation.
We split the paths in the basis Ḡ into two sets. The first set

serves as the input Ḡ to the LEND system to generate a MILS

End-to-end path 18,090
Avg path length 15.2

# of MILSes 1009
Avg length of MILSes 2.3(3.9)

Avg diagnosis granularity 2.3(3.8)

Table 5: Internet experiment results. The last two rows are com-

puted using the virtual links. The corresponding length value using

physical links are given in the parenthesis.

set and infer their loss rates. Then we use the measurements
of the second part to test the inferred link loss rates for cross
validation. The basic idea is that if a path p in the second
validation set contains some non-overlapped MILSes vi, i =
1, ..., n obtained by the inference on the first set, then the loss
rate of p should be no less than the total loss rate of these
MILSes, because p may have some additional lossy links that
are not covered by these MILSes. Assume the loss rate of p is
measured to be l, and the calculated loss rate of each MILS vi

is li, we check whether the following inequality holds:

(1 − l) <
n

Y

i=1

(1 − li) + ε (5)

ε shows the tolerable value of errors. In our experiments, ε is
chosen as 1%. Take one experiment for example, we have 5720
paths in Ḡ and we choose only 2860 of them to identify 571
MILSes and infer their loss rates. Then we validate the loss
rates by the other 2860 paths. 320 out of 571 MILSes are on
the paths of the second set, and thus verified by 2200 paths.
The result shows that more than 99.1% paths in the second
set are consistent with MILSes computed by the first set. This
shows that the loss rate inference of the MILSes is accurate.

7.2.2.2 IP Spoof based Consistency Checking.
For validation, we started the loss rate measurements and

sent IP spoof packets at the same time. To reduce the over-
head introduced by IP spoofing, we intentionally select the
spoofed IP addresses to only infer the path segments which are
more likely to be lossy based on some previous experiments.
We applied the method introduced in Section 5 to measure
1000 path segments. Then, similar to the cross validation, we
adopted Eq. (5) for matching validation. 361 lossy MILSes
out of a total of 1664 lossy MILSes are on the 1000 new paths,
and thus validated. When using the same parameter ε = 0.01,
94.1% of the loss rates of the new spoofed paths are consistent
with the loss rate of these MILSes. Note that Internet rout-
ing changes may affect the validation results because once the
path routing is changed, the reflecting router may no longer
be on the original path, making the validation inapplicable.
Fortunately, Internet routing is quite stable and thus the IP



spoof based consistency checking demonstrates that the MILS
loss rate inference is very accurate.

7.2.3 MILS to AS Mapping
After we identify the lossy MILSes, we can locate and study

the distribution of the lossy links. For example, are the lossy
links usually within an AS or between two ASes?

To study this problem, we first need to obtain an accurate
IP-to-AS mapping. A complete IP-to-AS mapping can be con-
structed from BGP routing tables by inspecting the last AS
(the origin AS) in the AS path for each prefix. Mao et al. show
that the IP-to-AS mapping extracted from BGP tables can
lead to accurate AS-level forwarding path identification by
changing about 3% assignment of the original IP-to-AS map-
ping [28]. However, their available IP-to-AS mapping result
was obtained from measurement in 2003 and it is incomplete
somehow – we found that 1/4 of routers on our measurement
paths are not mapped to any AS. Thus we derive the IP-to-AS
mapping from BGP tables directly, using the BGP tables pub-
lished in Route Views [29] on March 2nd, 2005. The mapping
is quite complete and only 1.6% IPs involved (end hosts and
internal routers) cannot be mapped to ASes.

Ignoring these unmapped nodes, we map MILSes to their
AS sequences, and then analyze the relationship between lossy
links and ASes. Table 6 shows the length of AS paths of the
lossy MILSes. Since it is impossible to infer which link or links
are lossy in a long MILS, we only consider the short MILSes
with length 1 or 2 which consist of about 44% of all lossy
MILSes. It is obvious that most lossy links are connecting
two different ASes. For example, most length 1 MILSes (27.5%
of all MILSes) are connecting two ASes. This observation is
consistent with common belief that the links connecting two
ASes are more likely to be congested than those within an AS.

1 AS 2 ASes 3 ASes > 3ASes
Len 1 MILSes (33.6%) 6.1% 27.5% 0 0
Len 2 MILSes (9.8%) 2.6% 5.8% 1.3% 0

Len > 2 MILSes (56.6%) 6.8% 17.8% 21.8% 10.2%

Table 6: MILS-to-AS path length

7.2.4 Speed Results
The LEND system is very fast in our Internet experiments.

After topology measurement, the average setup (monitoring
path selection, i.e., stage 1 in Figure 4) time is 109.3 seconds,
and the online diagnosis (stage 2 in Figure 4) of the 3714 lossy
paths for altogether 18,090 paths takes only 4.2 seconds.

8. CONCLUSIONS
In this paper, we advocate the non-biased end-to-end net-

work diagnosis paradigm which gives smooth tradeoff between
accuracy and diagnosis granularity when combined with vari-
ous statistical assumptions. We introduce the concept of min-
imal identifiable link sequence and propose the good path
algorithms to leverage measurement snapshots to effectively
diagnose for directed graphs. Both simulation and PlanetLab
experiments show that we can achieve fine level diagnosis with
high accuracy in near real time. We further design a novel IP
spoofing based scheme to validate Internet experiments.
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