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ABSTRACT

Traffic anomalies and attacks are commonplace in today’s networks
and identifying them rapidly and accurately is critical for large net-
work operators. For a statistical intrusion detection system (IDS), it
is crucial to detect at the flow-level for accurate detection and mit-
igation. However, existing IDS systems offer only limited support
for 1) interactively examining detected intrusions and anomalies,
2) analyzing worm propagation patterns, 3) and discovering corre-
lated attacks. These problems are becoming even more acute as the
traffic on today’s high-speed routers continues to grow.

IDGraphs is an interactive visualization system for intrusion de-
tection that addresses these challenges. The central visualization
in the system is a flow-level trace plotted with time on the hori-
zontal axis and aggregated number of unsuccessful connections on
the vertical axis. We then summarize a stack of tens or hundreds
of thousands of these traces using the Histographs[23] technique,
which maps data frequency at each pixel to brightness. Users may
then interactively query the summary view, performing analysis by
highlighting subsets of the traces. For example, brushing a linked
correlation matrix view highlights traces with similar patterns, re-
vealing distributed attacks that are difficult to detect using standard
statistical analysis.

We apply IDGraphs system to a real network router data-set with
179M flow-level records representing a total traffic of 1.16TB. The
system successfully detects and analyzes a variety of attacks and
anomalies, including port scanning, worm outbreaks, stealthy TCP
SYN floodings, and some distributed attacks.

CR Categories: C.2.0 [Computer-Communication Networks]:
General—security and protection;H.5.2 [Information Systems]:
Information Interfaces and Presentation—User Interfaces;K.6.5
[Management of Computing and Information Systems]: Security
and Protection—invasive software;

Keywords: Intrusion Detection, Visualization, Interactive System,
Brushing and Linking, Correlation Matrix, Dynamic Query

1 INTRODUCTION

Traffic anomalies and attacks are commonplace in today’s net-
works. It is estimated that malicious code (viruses, worms and
Trojan horses) caused over $28 billion in economic losses in 2003,
and will grow to over $75 billion by 2007 [18]. For these reasons,
large network operators place great importance on rapid and accu-
rate identification of traffic anomalies and attacks.

Most existing intrusion detection systems (IDSs) identify attacks
using specific patterns in the attack traffic called signatures. But
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such IDSs cannot detect unknown network attacks, and attackers
can easily foil detection by garbling their signatures. Other statisti-
cal IDSs [4, 20, 28, 29] use overall traffic to detect attacks, but suf-
fer from inaccuracies and difficulties in finding attack flows, even
when anomalies are correctly identified. There are also a few flow-
level detection schemes [14, 21, 24], which keep status for specific
flows, but the following questions remain open.

• Do intrusions such as TCP SYN flooding and port scans have
characteristic time series patterns, when observed from edge
network routers? For instance, are there any common patterns
for spread of a specific worm that might indicate its propa-
gation strategy? Answering these questions will be difficult
to obtain without visualization, especially with today’s huge
network flows.

• How can we identify correlated attacks, especially when they
are new? This is a difficult challenge for the intrusion detec-
tion (ID) community. To the best of our knowledge, almost
all systems have to treat attacks independently, even after de-
tecting the attacks.

• How can discovered intrusions and anomalies be analyzed in-
teractively? One of the key challenges for statistical detection
is the threshold for attacks. How will the attacks and their
distributions/patterns change when we change the detection
threshold?

IDGraphs is an interactive visualization system designed to ad-
dress these challenges, supporting intrusion detection over massive
network traffic streams. It has the following features:

• A novel data-to-space mapping for discovery of attack pat-
terns. We plot the number of unsuccessful connections (SYN-
SYN/ACK) vs. time in our graphs. We are suspicious of any
connections that fail too frequently. For detection of TCP
SYN flooding, we use time series corresponding to unique
destination IP (DIP) and port (Dport) pairs. For detection of
horizontal scans, series correspond to source IP (SIP)/Dport
keys, and for vertical scan detection, to SIP/DIP keys. Other
series keys are also possible.

• High visual scalability through the use of Histographs [23].
Tens or hundreds of thousands of time series can be viewed
at once, with frequency of network events indicated by pixel
brightness.

• A linked correlation matrix view that reveals correlated at-
tacks. Brushing reveals correlated time series patterns. To the
best of our knowledge, we are the first to use such views for
intrusion detection.

• A search and filter interface for ungraphed network data di-
mensions such as SIP and Dport.

We demonstrate IDGraphs on a single day of NetFlow network
traffic traces collected at edge routers at Northwestern University,
which has several OC-3 links. These traces totalled 179M records



and 1.16TB of traffic. IDGraphs reveals the port scanning of virus
and worm propagation, the pattern of stealthy TCP SYN flooding,
as well as the correlated action of distributed attacks.

The rest of paper is organized as follows. In Section 2, we
present the related work. In Section 3, we discuss the threat model
and data collection. The features and design of the IDGraphs sys-
tem is presented in Section 4, and case studies in Section 5. Finally,
we give the conclusions and future work in Section 6.

2 PREVIOUS WORK

2.1 Intrusion Detection

An IDS is a type of security management system for computers
and networks. It gathers and analyzes information from various
areas within a computer or a network to identify possible secu-
rity breaches, which include both intrusions and misuse. With the
rapid growth of network bandwidth and fast emergence of new at-
tacks/worms, network IDSs have drawn more attention from re-
searchers.

Many network IDSs like Bro [21] and Snort [24] check packet
payload for virus/worm signatures. However, such schemes do
not scale to high-speed network links. To delete large scale at-
tacks, many researchers have proposed techniques based on the
statistical characteristics of the intrusions. We classify these tech-
niques into two rough categories: 1) detection based on overall
traffic[4, 20, 28, 29] such as Change Point Monitor (CPM), which
tends to be inaccurate and cannot find real attack flows; and 2)
flow-level detection [14, 21, 24] such as Threshold Random Walk
(TRW), which is vulnerable to denial-of-service (DoS) attacks with
randomly spoofed IP addresses. Flow-level detection is especially
vulnerable on high-speed networks, since the sequential hypothe-
sis testing scheme it uses needs to maintain a per-SIP table for de-
tection. Gao et al. [11] recently addressed this problem using a
reversible sketch technique.

Most ID technologies perform detection on individual traffic
flows, rather than looking for the correlations between multiple
flows. These methods can only provide a small snapshot of glob-
ally distributed attacks. More recently developed correlation in-
formation analyses [2, 15] address this problem, reducing the high
volume of alerts and false positives [9, 8].

2.2 Visualization For Internet Security

In applying interactive visualization to Internet security research,
researchers exploit the innate and highly efficient human ability to
process visual information, enabling the complex tasks of network
security monitoring and intrusion detection to be performed in an
accurate and timely manner. Many systems [6, 16, 17, 19, 22, 27,
31] have addressed this problem. All of them provide interactive
visual support for anomaly detection.

SeeNet[6] displays network traffic on a colored grid. Each point
on the grid represents the level of traffic between a traffic source
and a traffic destination.

PortVis [19] produces visualizations of network traffic using 2D
plots with time and port number as axes, and summarizing the net-
work activity at each location in the plot (a time/port pair) using
color. Users can drill down to display traffic information at finer
temporal and port resolutions.

VisFlowConnect [31] uses a simple application of parallel coor-
dinates [12] to display incoming and outgoing network flow data as
links between two machines or domains. (Parallel coordinates are
a widely used technique for plotting high-dimensional data). It also
employs a variety of visual cues to help detect attacks.

The Spinning Cube [17] maps SIP, DIP and Dport to the axes in a
3D plot. The amount of network activity is visualized interactively
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Figure 1: Visual representation for three types of scans.

the destination IP DIP

the source IP SIP
the destination port Dport

the source port Sport

Table 1: The fields in IP header that we may use in detection

in the plot using color, displaying certain attacks (especially port
scans) very clearly.

NVisionIP [16] visualizes network flow data in a 2D matrix with
IP addresses on each axis. Each cell in the matrix represents the
interaction between the corresponding network hosts. Users can
reduce or increase detail in the current view.

3 THE THREAT MODEL AND DATA COLLECTION

3.1 Threat Model

Ultimately, we want to detect as many attacks as possible. As a
first step, we focus on arguably the two most popular intrusions
for detection: DoS TCP flooding attacks1 and port scans (mostly
for worm propagation). It is reported that more than 90% of DoS
attacks are TCP SYN flooding attacks [28, 29].

Scans are probably the most common and versatile type of intru-
sion. Based on source/dest IP and the port number involved in the
scans, there are three well known types of scans: horizontal scan,
vertical scan, and block scan [30, 26]. The classification is illus-
trated in Figure 1. Unlike DoS attacks, the attacker needs to use a
real source IP address, since he/she needs to see the result of the
scan in order to know what ports are actually open [26, 30]. Hori-
zontal scans are the most common type of scan, and scans certain
ports across an interesting range of IP addresses. The port number
is often unique because it reflects the vulnerability the virus/worm
or attackers try to exploit. A vertical scan is a scan of some or all
ports on a single host, with the rationale that the attacker is inter-
ested in this particular host, and wishes to characterize its active
services to find which exploits to attempt [26]. The third type of
scan, a block scan, is a combination of horizontal and vertical scans
over numerous services on numerous hosts [26].

3.2 Data Collection

Our system is based on preprocessed NetFlow data, but it is easy to
extend to other data sources. NetFlow data was originally derived
from Cisco routers caching recent flows for lookup efficiency, and it
has now become the de facto standard for router traffic monitoring,
accepted by all other major router vendors. NetFlow is identified as

1According to the CERT DoS threat model [7], DoS attacks may also
include corruption attacks, which are excluded here because they are often
application/protocol specific.



a unidirectional stream of packets between a given source and desti-
nation, both of which are defined by a network-layer IP address and
transport-layer source and destination port numbers. Here we only
consider the attacks in TCP protocol, in other words, the TCP SYN
Flooding attacks and TCP port scans. We analyze the attributes
in TCP/IP headers and select a small set of metrics for flow-level
traffic monitoring, the possible fields we can use are shown in Ta-
ble 1. Normally, attackers can choose TCP source ports arbitrarily,
so Sport may not be a good metric for attack detection. For the
other three fields, we could consider all the combinations of these
three fields, but the key ( SIP, DIP, Dport) can only find non-spoofed
SYN flooding, so we do not use it in detection. Table 2 shows
the other combinations and their selectivity to different types of at-
tacks. Here, we define the selectivity of a key as the capability of
differentiating between different types of attacks.

Types of Keys SYN flooding hscan vscan bscan
(SIP,Dport) Part (non-spoofed) Yes No Yes
(DIP,Dport) Yes No No No

(SIP,DIP) Part (non-spoofed) No Yes Yes
(SIP) Part (non-spoofed) Yes Yes Yes
(DIP) Yes No Yes Yes

(Dport) Yes Yes No Yes

Table 2: The selectivity of different types of keys. The bottom
three single-field keys are less selective. (hscan=horizontal scan; vs-
can=vertical scan; bscan=block scan.)

Table 2 shows that the combinations of two fields have more se-
lectivity than single fields, so we use the 3 combinations of two
fields as keys for detection. We organize our data into three corre-
sponding files:

File 1. We visualize data in the form ((DIP, Dport), time,
SYN-SYN/ACK) to detect SYN flooding attacks because they usu-
ally target a certain service as characterized by the Dport on a small
set of machines. SYN-SYN/ACK is a measure of unsuccessful net-
work connections, reflecting the difference between the number of
incoming SYN packets and outgoing SYN/ACK packets.

File 2. We visualize data in the form ((SIP, DIP), time,
SYN-SYN/ACK) to detect any intruder trying to attack a particular
IP address. Such attacks can be non-spoofed SYN flooding attacks
or vertical scans. To determine which sort of attack a DIP is expe-
riencing, we compare visualizations with this file to visualizations
with File 1. If the File 1 visualization does not show a flooding
attack for the same DIP, the attack is a vertical scan.

File 3. We visualize data in the form ((SIP, Dport), time,
SYN-SYN/ACK) to detect any source IP which causes a large num-
ber of uncompleted SYN connections to a particular destination
port. Such attacks can be non-spoofed SYN flooding or horizon-
tal scans. Once more we compare visualization results with this file
to visualization results with File 1 to distinguish between the two
possible types of attacks.

When File 2 and File 3 visualizations show vertical and horizon-
tal scanning attacks from the same SIP at the same time, we have
detected a block scan.

We use our visualization system for off-line analysis of a net-
flow log file. The netflow data visualized in this paper consists
of router-level network traffic traces from Northwestern University
(NU, which has several Class B networks). It consists of 179M net-
flow records captured in one day in March, 2005. The total traffic
is 1.16TB in size. The average packet rate is 37K/s and the peak
packet rate is 79K/s. The flows were constructed from packet sam-
pling at a 1:1 rate.

Figure 2: (SIP,Dport) netflow streams plotted in a Histograph to
detect horizontal scans over many destination IPs. Dark points in-
dicate high data density, and splatting (blurring) is used to increase
the visibility of isolated points. Such unusually isolated and dark
points attract attention, as do larger linear structures. Later query
(Figure 3) and correlation analysis (Figure 8) reveals that the dark
dots in hours 1 and 2 are block scans, while the linear structure in
hour 3 is the outbreak of a worm attack with horizontal scans.

4 THE DESIGN OF IDGRAPHS

IDGraphs is built on top of the Histographs visualization system
[23], with the enhancements designed specifically for visualizing
netflow datasets. The data input can be any one of the three aggre-
gated netflow data files we discussed above (Figure 2, 10 and 11).
In preprocessing we sequence records by key and then time to form
a time series for each key. We filter out streams with less than 5
unsuccessful connections over the whole time range.

IDGraphs is designed to help Internet security experts inspect
their netflow data visually and perform deep analysis. Users can
quickly identify possible anomalies or attacks using overviews
(Figure 2), then follow up with in-depth analyses by querying those
possible anomalies (Figure 3). One such analysis is identifying con-
sistent temporal patterns in anomalies, which users can perform
in two different ways. Dynamic querying selects and highlights
streams with the same or similar SIPs or DIPs (Figure 5). Linked
correlation views (Figure 8, 9) help the user select highly correlated
streams and highlight them in the main view.

IDGraphs can also be used for interactive visual tuning of auto-
mated intrusion detection techniques. Detection thresholds can be
investigated using a vertical slider that highlights all streams with
a minimum number of unsuccessful connections. Users can then
annotate (Figure 7) interesting data subsets for further analysis and
presentation by the users themselves, or their collaborators.

4.1 Visual Mapping

In visualizing data, we must define a mapping from the data space
to the screen space. Lau [17] maps SIP, DIP, and Dport to the three
axes of a cube. PortVis [19] treats the Dport as a 2 byte number,
and maps each byte to the axes of a 2D plot. VisFlowConnect [31]



Figure 3: The user clicks on one suspicious outlying and dark point
(at the red X) in the (SIP,Dport) data to reveal the streams un-
derneath it, in which a single IP scans multiple Dports – a vertical
scan.

VisFlowConnect shows incoming and outgoing links by mapping
source and destination to parallel axes, and connecting them with
edges.

Unlike previous systems, IDGraphs displays time series data, a
temporally ordered sequence of SYN-SYN/ACK values for each
file key. We therefore map time to the horizontal axis, and SYN-
SYN/ACK to the vertical axis of a 2D plot. Users can also
transform the data before this mapping, producing for example a
log(SYN-SYN/ACK) mapping to the vertical axis that compresses
the data and makes more efficient use of display space. We map
log(0) to -1 (Figure 2).

This time series mapping quickly reveals temporal patterns in
network flow. It also effectively maps importance to the vertical
axis, since higher SYN-SYN/ACK values are more suspicious, and
more likely to be intrusions. This highlights potential attacks for
users. The number of streams can be viewed at once is only limited
by available machine memory.

Since we visualize thousands of streams at once using this map-
ping, we face an occlusion problem: multiple data points can be
mapped to the same display pixel. The base Histographs [23]
system, designed for plotting dense and high-dimensional data by
stacking or compositing graphs, addresses this problem with a num-
ber of techniques. First, similar to the Information Mural system
[13], the number of data points at a pixel (frequency) is mapped
to pixel luminance, darkening those regions of the plot where
data is dense. This highlights the main data trends, but unfortu-
nately, it also makes it difficult to perceive outliers. Histographs
addresses this problem in two ways. First, it introduces a new,
contrast-weighted mapping between data and luminance that high-
lights changes in data frequency. Second, when data points are
isolated, it adds lower spatial frequencies to them to increase their
visibility (splatting) without adjusting the data-luminance mapping.
These measures are particularly important in IDGraphs, where out-
liers are precisely what users are seeking.

These visual mappings provide an effective overview of the
netflow data, while also revealing concurrent anomalous activity.
Events such as virus outbreaks or port scanning will quickly attract
attention from the user (Figure 2).

Figure 4: Selection of streams in the (SIP,Dport) dataset with
elements indicating more than 1000 unsuccessful connections
(ln(1000)≥6.9). Plots points in the same graph are connected with
line segments.

Figure 5: The IDGraphs query interface allows users to select and
highlight a subset of visualized streams by specifying SIP, DIP and/or
Dport. Wildcards can be used to broaden the selection.

4.2 Interactive Query

Interaction is the key to performing deep analysis with IDGraphs.
Our design is guided by Shneiderman’s visual information-seeking
Mantra [25], aiming to provide detailed information whenever the
user asks for it. The dynamic query techniques pioneered by
Ahlberg and Shneiderman [3] also heavily influenced our design.

The ability to click and query is central to interactive analysis
with IDGraphs. Users can click on any pixel to reveal a pop-up
menu (Figure 3, 5) showing textual information about the data from
different streams aggregated by this pixel. For the (SIP, Dport) file,
this reveals SIP, Dport, and the SYN-SYN/ACK difference. Cur-
rently selected streams in the query interface are shown by color
bars, which have the same color as the lines highlighting the streams
in the IDGraph itself.

Clicking for selection is tolerant of inaccuracy, allowing a one-
pixel mismatch between the location of nearby data and cursor lo-
cation. This is especially effective when the user wants to query an
isolated data pixel.

By selecting streams in the pop-up menu, users can highlight
only those streams with certain keys. A shortcut button quickly



Figure 6: Here the user has selected and highlighted all the streams
with destination port 3306, which services MySQL.

Figure 7: IDGraphs allows user to annotate any point in the visual-
ization. By default a red dot is left behind; clicking on it reveals the
annotation text.

selects and highlights all the streams in the list (Figure 5).
We highlight streams in the IDGraph by linking the data points

of each selected time series with lines. Different colors are applied
to each stream. Stream data may not be contiguous; in such sit-
uations the streams appear as several disconnected polylines, with
filled circles emphasizing the start and the end point of each trace
(Figures 4, 6).

Having found suspicious network activity, users will often try
to generalize the discovery by searching for other streams with the
similar features. To address this problem, we provide a more gen-
eral query interface that allows users to select streams with the same
or similar source and destination (Figure 5). Users need not click
on a displayed IDGraph feature to use this interface. In Figure 6,
we selected all the streams with destination port 3306.

To provide real-time intrusion detection, IDS systems often use
default detection thresholds to identify suspicious network activ-
ity. These thresholds are very important in both simulation and ac-
tual detection. Determining such thresholds is difficult. IDGraphs
allows users to examine the effectiveness and impact of different
thresholds with vertical slider brushing (Figure 4), which highlights
supra-threshold streams interactively. Users can adjust the possible
detection threshold interactively by moving the slider. As they do
so, all the streams with at least one data value over the threshold will
be selected and highlighted. This enables users to study the effect

on detection of different thresholds conveniently and interactively,
with immediate visual feedback.

4.3 Correlation Analysis

To help users form and test hypotheses about relationships between
two or more netflow streams, or simply to identify streams with
similar temporal netflow signatures, IDGraphs provides a linked
correlation matrix view (Figure 8 and Figure 9). In this matrix,
each row and column represents one stream, and displays correla-
tion values to all other streams. In each matrix cell, red indicates
negative correlation and green positive, while luminance increases
with the absolute magnitude of the correlation. When the number
of streams is greater than number of pixels of the designated display
area, we perform necessary screen-space scaling to display the ma-
trix and therefore each pixel may correspond to multiple streams.
Using two sliders, users can interactively specify a time range over
which to construct the matrix and examine correlations (Figure 9).

Using a standard information visualization technique: brushing
and linking[5] , the correlation view is linked to the main IDGraph,
with streams highlighted in one highlighted in the other. This pro-
vides two ways of visualizing and interacting with the same data.
By brushing or selecting interesting data in one view, users can
study the shape of the data in the linked view. In IDGraphs linked
correlation view, users can brush using a horizontal stroke or in-
stead use two precise sliders. The corresponding set of netflow
streams is highlighted in the main view for further attention (Fig-
ure 8 and Figure 9).

This brushing and linking is not particularly useful when the
correlated streams are distributed widely across the correlation
view. We increase effectiveness by reordering netflow streams in
the matrix into correlated clusters. To perform this reordering,
we apply the correlation matrix ordering technique described by
Friendly[10]. Each row (column) in the matrix is treated as a point
in a high-dimensional space, and principal component analysis is
applied. Each row (column) is then projected into the 2D space
described by the first two eigenvectors of the correlation matrix.
These projected 2D points are then ordered radially, and same or-
dering applied to the rows (columns) of the correlation matrix.

5 CASE STUDIES

In this section we describe several examples of the use of IDGraphs
for anomaly detection.

5.1 A Horizontal Scan Caused by a Coordinated Worm At-
tack

Figure 2 is a visualization of five hours of NetFlow data organized
into time series with (SIP,Dport) keys. In the middle of hour 3
there is a very suspicious vertical linear structure. By selecting the
streams that reach its SYN-SYN/ACK range (Figure 4), we reveal
many short streams with almost no unsuccessful connections out-
side of the time range spanned by this linear structure, yet with
a sudden increase in unsuccessful connections at the time of this
structure. Clicking on these streams reveals that they are from dif-
ferent hosts (SIPs), but communicate with 3 common destination
ports: 5554, 9898 and 1023. These are ports targeted by the Dab-
ber backdoor and Sasse worm. We discovered these coordinated
attacks without prior knowledge of this port information. Having
identified these suspicious ports, we can select the streams connect-
ing to those ports via the query interface shown in Figure 5, quickly
identifying all the possible attacks by this worm within our dataset,
even if they are smaller and stealthier. Because they are highly sim-
ilar, these streams are also salient in the correlation matrix view
(Figure 8), appearing as the large green block in the middle of the
matrix.



Figure 8: Brushing with a linked correlation matrix view. Each row and column corresponds to one netflow stream. Green in a matrix cell
indicates a positive correlation, red negative; brightness shows the magnitude of the correlation. We selected (brushed) one highly correlated
green block using the two horizontal sliders, the corresponding streams are then selected and highlighted in the main, linked IDGraph view.
These highly correlated attacks are from different source hosts, targeting primarily three destination ports (a horizontal scan resulting from a
worm virus attack).

Figure 9: Correlation brushing within a two hour time period. (Note the time slider in the main view to the right). Here we are visualizing a
(DIP,Dport) input file to detect SYN flooding attacks. The four highly correlated streams selected here have the same pattern. Such parallel,
coordinated attacks would be difficult to discover with traditional ID methods.



Figure 10: The seven most suspicious sync flooding attacks selected
and highlighted in a dataset key with (DIP,Dport).

5.2 A Block Scan and Temporal Similarities in Horizontal
Scans

Those streams with a high number of unsuccessful connections in
the (SIP,Dport) data set shown in Figure 3 are possible horizon-
tal scans. Such streams can be detected automatically using good
thresholding. However, IDGraphs allows an immediate deeper
analysis. The suspect streams appear as several dark, splatted dots
(see Section 4.1). By clicking on them, the user can reveal detailed
textual information. In this case, we learn that all these streams are
from the same SIP, and target different Dports: a vertical port scan.
Since it is unlikely that the SYN-SYN/ACK failure count would
be high for each of these streams if they each only addressed one
DIP, the attack is likely also a horizontal scan, and therefore also
probably a block scan.

Figure 4 highlights several suspicious streams. In particular, no-
tice the two similarly shaped streams at the beginning of hour 0
(light green) and the beginning of hour 3 (light blue). Clicking on
them, we find that they both communicate with Dport 3306, which
is used by MySQL. These two possible attacks share the same tem-
poral pattern; note especially the almost constant connection failure
rate to the MySQL database for a time period of 15 to 20 minutes.
We suspect this pattern may indicate a consistent hacking technique
– perhaps password guessing. By querying and selecting all the
streams with this Dport, users can further examine all suspicious
communication with MySQL in the dataset.(Figure 6)

5.3 SYN Flooding Pattern Discovery

Theoretically speaking, any streams with high SYN-SYN/ACK val-
ues in the (DIP,Dport) data set are potential TCP SYN flooding
attacks. But IDGraphs allows users to pursue this initial hypoth-
esis more deeply. Figure 10 reveals the temporal patterns of the
most suspicious NetFlow streams, and shows that they had SYN-
SYN/ACK values that peaked during hours 2 and 3. Brushing on a
linked correlation matrix view (Figure 9) reveals four streams with
very similar temporal patterns. Even though the DIPs and Dports
for these streams are totally different, it is highly probable that these
flooding attacks emanate from the same source. We tested this hy-

Figure 11: The top suspicious potential attacks selected and high-
lighted in a dataset key with (SIP,DIP).

pothesis by visualizing the same traffic keyed and aggregated by
(SIP,DIP) (Figure 11). Querying for and highlighting streams with
these four DIPs, we find that at any given time the the attacks indeed
emanated from the same SIP. While SIPs did change over time,
they were always from the same subnet. It seems the attacker was
flooding destination hosts on a list, and trying to hide his attack by
switching the SIP from time to time.

5.4 Worm Propagation Pattern Discovery and Strategy Infer-
ence

Using IDGraphs time series based visualization, patterns in anoma-
lous activity patterns are simple to spot. This offers clues about
the propagation strategy of the associated attacks. For instance, we
found a very regular series of periodic scans to TCP port 25 (servic-
ing SMTP) as illustrated in Figure 12. It appears to result from the
RTM Sendmail Worm [1]. The infected host sends out a burst of
scan packets periodically, likely to avoid overloading the attacking
machine and its network bandwidth.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an interactive visualization system:
IDGraphs for visualizing NetFlow data streams. We have demon-
strated that IDGraphs can not only detect network anomalies and at-
tacks, such as port scans, worm attacks, and SYN flooding, but can
also lead to useful insights concerning propagation and intrusion
patterns, attack strategy, and even distributed attacks. Evaluation
based on real router traffic data gives promising results.

While IDGraphs uses a time vs. SYN-SYN/ACK plot, most
other ID visualization systems use plots based on IP address and/or
port. Such address-based mappings are very useful, and the ID-
Graphs mapping between data and display space should comple-
ment them well. In future work, we plan to introduce views with
more mappings. With linking and brushing, they should greatly in-
crease the utility of IDGraphs. We are also working to turn this
system into a real-time data gathering and visualization tool.



Figure 12: Horizontal scanning revealed in the (SIP,Dport) data set.
The highlighted stream shows a very obvious semi-periodic visual
pattern over the graphed 25-hour period, with almost the same min-
imum (0) and maximum (≈800) SYN-SYN/ACK values for each
burst.
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