AppsPlayground: Automatic Security
Analysis of Smartphone Applications

Vaibhav Rastogi, Yan Chen, and
William Enck’

Lab for Internet and Security Technology,
Northwestern University

"North Carolina State University

Android Threats

* Privacy leakage

— Users often have no way to know if there are
privacy leaks

— Even legitimate apps may leak private information
without informing user

e Malware
— Number increasing consistently
— Need to analyze new kinds

flickr.com/photos/panda_security_france/

Requirements

Large number of apps in online app stores
— Google Play has over 700,000 apps
— This number is constantly increasing

Offline analysis is important to protect users

Need a scalable and automatic approach to
tackle threats

Possible techniques: dynamic analysis and
static analysis

Dynamic vs. Static

_ Dynamic Analysis |Static Analysis

Coverage Some code not Mostly sound
executed
Accuracy False negatives False positives

Dynamic Aspects Handled without Possibly unsound
(reflection, additional effort for these
dynamic loading)

Execution context Easily handled Difficult to handle
Performance Usually slower Usually faster

AppsPlayground

e A system for offline dynamic analysis

— Includes multiple detection techniques for
dynamic analysis

 Challenges
— Techniques must be light-weight
— Automation requires good exploration techniques

Outline

e Architecture

e Applications and Results

e Related Work

e Conclusion and Future Work

Outline

e Architecture

Exploration Techniques

Event
triggering

N\

6) A
Intelligent
input

Fuzzing

Architecture

AppsPlayground

Virtualized Dynamic
Analysis Environment

[

Kernel-level Taint API
monitoring tracking monitoring

).

[

Disguise
techniques

J

Y
Detection Techniques

Event
triggering

N\

Exploration Techniques
| |

Contributions —

Fuzzing

S

~

Architecture

/ AppsPlayground

4 :)
Intelligent
input

Virtualized Dynamic
5 Analysis Environment

Kernel-level
monitoring

Taint API
tracking monitoring

).

[

Disguise
techniques

J

Y
Detection Techniques

3
E%{‘:‘ﬁ Kernel-level Monitoring

e Useful for malware detection

 Most root-capable malware can be logged for
vulnerability conditions
* Rage-against-the-cage

— Number of live processes for a user reaches a
threshold

e Exploid / Gingerbreak
— Netlink packets sent to
system daemons

S R A\ b psPlayground
i iz nami

Exploration Techniques
i
&

10

Intelligent Input

* Fuzzing is good but has limitations
 Another black-box GUI exploration technique
e Capable of filling meaningful text by inferring

surrounding context

— Automatically fill out zip codes, phone numbers

and even login credentials
— Sometimes increases coverage

Exploration Techmiques
A

greatly

_{rlggering | AppsPlaygrounc

Virtualized Dynamic
—— Analysis Environment

Fuzzing

v r—

H\
o

o "

2

3 =

D

w

Kernel-level Taint Pl
monitoring tracking o
L

Detecti:nﬁ'echriques

Disguise Techniques

 Make the virtualized environment look like a
real phone
— Phone identifiers and properties
— Data on phone, such as contacts, SMS, files
— Data from sensors like GPS
— Cannot be perfect

Outline

e Applications and Results

13

_
E‘{‘i‘q}ﬁ Privacy Leakage Results

* AppsPlayground automates TaintDroid

e Large scale measurements - 3,968 apps from
Android Market (Google Play)

— 946 leak some info
— 844 leak phone identifiers

— 212 leak geographic location
— Leaks to a number of ad and analytics domains

Malware Detection

e Case studies on DroidDream, FakePlayer, and
DroidKungfu

* AppsPlayground’s detection techniques are
effective at detecting malicious functionality

* Exploration techniques can help discover
more sophisticated malware

_
E‘{‘%“‘q}ﬁ Exploration Effectiveness

e Measured in terms of code coverage

— 33% mean code coverage
 More than double than trivial
e Black box technique
e Some code may be dead code
e Use symbolic execution in the future

 Fuzzing and intelligent input both important
— Fuzzing helps when intelligent input can’t model GUI

— Intelligent input could sign up automatically for 34
different services in large scale experiments

Outline

e Related Work

e Conclusion and Future Work

17

Related Work

 Google Bouncer
— Similar aims; closed system
e DroidScope, Usenix Security’12

— Malware forensics
— Mostly manual

e SmartDroid, SPSM’12

— Uses static analysis to guide dynamic exploration
— Complementary to our approach

_
E\é‘:}ﬁ Conclusions and Future Work

* AppsPlayground is a system for large-scale,
automatic dynamic analysis of Android apps

— Multiple detection, exploration, and disguise
techniques

e Future work

— Symbolic execution

— Improve disguise techniques
 Release

— Check back soon at
http://list.northwestern.edu/mobile.html

