

A Server and Browser-Transparent
CSRF Defense for Web 2.0
Applications

Slides by Connor Schnaith

Cross-Site Request Forgery

● One-click attack, session riding

● Recorded since 2001

● Fourth out of top 25 most dangerous software errors
○ CWE/SANS

● Takes advantage of cookies
○ can send malicious requests under user credentials
○ potential to steal user money, etc.

● Relies on tricking the user into clicking a malicious link,

often embedded into an image

CSRF Example

Why does CSRF work?

● User's browser automatically sends credential
information on login

● Browsers enforce no restrictions on outgoing requests

○ SOP does not allow cookies to be viewed or written
by any source other than originator

○ CSRF does not rely on tampering with cookies

Current CSRF Defenses: browsers

● Goal: ensure that every sensitive request originates
from own pages

● Referrer header in http requests
○ scripts cannot alter it
○ details the originator of a request
○ too many browsers suppress it (privacy concerns)

● Origin header
○ same idea as referrer header
○ not supported by most browsers

● Browsers can't do it... up to the developers

Current CSRF Defenses: nonce

● Associating a nonce with each web page
○ ensure that all requests from this page provide the

nonce
○ SOP prevents one domain from reading the source of

another domain, so nonce cannot easily be stolen

● Adding a nonce to each page is a manual process
○ developer might miss a page
○ may omit because mistaken belief that a particular

request is not vulnerable

Current CSRF Defenses: Products

● NoForge
○ Uses nonce approach
○ On server side, intercepts every page sent to a

client
○ Re-writes URLs found found on the page so that

they supply the nonce when requested

● stRodeo
○ Similar, but deployed on client-side

● Neither protects dynamic construction of web pages on
the browser (web 2.0 applications) since depend on
static rewriting of link names

Current CSRF Defenses: Drawbacks

● Need for programmer effort and/or server side
modifications

● Incompatibility with current browsers
● Inability to protect dynamically generated results
● Lack of support for legitimate cross-origin requests

○ no natural way to extend products like noForge into the
cross-origin domain

jCSRF: an introduction

● Transparently interposes communication between
client and server

● Proxy jCSRF
○ avoids need for server-side changes
○ needs to deal with HTTPS compatibility, i.e.

encrypted data

● Server plug-in jCSRF
○ server must support plug-in architecture (Apache)
○ less overhead than proxy

● Intercept POST but not GET requests

jCSRF: approach overview
● Step One:

An authentication token is issued to pages served
by the protected server

● Step Two:
A request is submitted to jCSRF together with the

 authentication token

● Step Three:
jCSRF uses authentication token to verify that the
originator is an authorized page.

○ Validated: request is forwarded to the server
○ Not validated: request forwarded with all cookies

stripped

jCSRF: javascript injection

● When page is served by protected server, javascript is
automatically injected

● Also includes a new cookie in the HTTP response that
can be used by the script to authenticate same-origin
requests

● It is the job of the javascript to determine if the
request is cross-origin or same origin

< script type="text/javascript" src=... > </script>

jCSRF: javascript injection

● Two ways in which browser may issue POST requests,
which will be intercepted by jCSRF-script

● Submission of HTML forms
○ form may be dynamically generated by javascript
○ not necessary for user to submit the form, the form

may be submitted automatically by javascript

● XmlHttpRequest
○ the response to a XmlHttpRequest can be read by

the script making the request

HTML Form Submission

● jCSRF-script registers a submit handler for each POST-
based form, determines if same or cross origin

● Same-origin
○ adds authentication token as additional parameter

● Cross-origin
○ first obtain a token for the target domain
○ adds token as additional parameter

● If the application already has its own event handler, there
could be possible confusion from extra parameter
○ wraps existing handler with function that removes

parameter before handler is called, and then adds the
parameter after

XmlHttpRequest

● jCSRF-script modifies the send method of the class

● If browser supports DOM prototypes, the send function
can simply be replaced

● Older browsers the XmlHttpRequest must be wrapped in a
proxy object that hides the original class and redirects all
requests made by the application to the proxy class

● Adding special header X-No-CSRF, which XmlHttpRequests
allow, proves that request is same-origin

jCSRF: same origin protocol

● First, the user must send a GET request

● Sets cookie, injects javascript into response

● When browser receives response, javascript executes
○ this ensures that that the value in the cookie is

copied into a new parameter

● When POST is made, checks to see if cookie, Cat, and
parameter, Pat, are the same

○ if attacker attempts a jCSRF, the cookie will be
sent but they will not have the correct parameter
in the data

jCSRF: same origin protocol

jCSRF: same-origin correctness

● Scripts running on an attacker-controlled page visited
by users browsers cannot obtain the authentication
token for the protected domain

Proof: Immediate from SOP. Since the
authentication token is stored as a cookie,
attackers code running on the user's browser
runs on a different domain and has no access to it

jCSRF same-origin correctness

● Any token that may be obtained by the attacker
cannot be used to authenticate a request from the
user's to the protected domain

Proof: Again, due to SOP, the attacker cannot set a user
token. Any token obtained by the attacker and
embedded into forms sent by the user would not
 match the cookie set by jCSRF

jCSRF: same-origin correctness

● The attacker should not be able to guess an
authentication token that is valid for the protected
domain

Proof: Token randomly chosen from large keyspace.
 The encryption protocol is as follows:

1. A 128-bit random value IR is generated
2. A sequence of random numbers R1, R2, ... are generated
3. Nonces, N1, N2, ... , are generated using the following:
 Ks = IR, Ni, = AESks(Ri) (the AES encryption algorithm)

4. Each new Cat it sets to Ni and increments i

jCSRF: cross-origin protocol

● When POST action occurs, verifies that target domain
accepts requests from source domain

● Injects iframe: http://T/jCSRF-crossdomain.html?domain=S
○ Contains javascript that will set up token Pat

● XmlHttpRequest made from iframe with X-No-CSRF header
○ ensured that the request is made from same domain

● Sets cookie if not set, and PostMessage from target to
source containing Pat

● Pat is added to the form and submitted

● jCSRF checks both source and token validity
○ if either fails, page requested with stripped cookies

jCSRF: cross-origin protocol

jCSRF: cross-origin correctness

● Scripts running on an attacker-controlled page visited
by users browsers cannot obtain the authentication
token for the protected domain

Proof: the postMessage API only allows the attacker to
receive an authentication token that includes its
true domain, or it may lie about its origin and not

 receive a token at all

jCSRF: cross-origin correctness

● Any token that may be obtained by the attacker
cannot be used to authenticate a request from the
user's to the protected domain

Proof: Again, due to SOP, the attacker cannot set a user
token. Any token obtained by the attacker and
embedded into forms sent by the user would not
match the cookie set by jCSRF

jCSRF: cross-origin correctness

● The attacker should not be able to guess an
authentication token that is valid for the protected
domain

Proof: Cross-origin uses same encryption method as
 same-origin.

jCSRF: compatability

● Used Firefox and Chrome
● Applications chosen for complexity and difficulty for

manual CSRF protection
● Did not test for cross-origin requests

jCSRF: protection

● Two known CVE vulnerabilities were exploited

● First, a fake email was posted using using RoundCube,
which failed due to lack of authentication token

● Second, a message was posted to change the admin
password, but the attack was thwarted

● Same-origin CSRF attacks can be successful if a form is
injected into a server response
○ jCSRF will not know it is malicious and will supply it

with the correct authentication token

XSS: a side note

● Break the assumption that same-origin scripts are under
the control of the web developer
○ issue token requests and leak results to the attacker

● jCSRF has no way to protect against this
○ attacker can steal the cookies directly and pose as

the victim from his own machine

● No CSRF defense mechanism is known to protect against
XSS

XSS: a side note

jCSRF: performance

● GET requests
○ jCSRF only needs to generate a new token if the user

does not have one already

● Same-origin POST requests
○ only needs to check if the authentication token is

correct, which is a very low-cost operation

● Cross-origin POST requests
○ requires three additional GET requests: one to detect

whether the target app is running jCSRF, one to fetch
the iframe that requests the token, and one for the
XmlHttpRequest that actually fetches the token

○ network delay is not negligible

Conclusion/Discussion

● jCSRF protects two things others do not
○ Dynamically created pages
○ Cross-origin requests

● Due to their use of javascript injection

● Small overhead except for cross-origin requests which
incur a lot of network traffic
○ okay if list of authenticated domains is small and

requests are sparse

 IF JAVASCRIPT IS DISABLED, jCSRF is FULLY INCOMPATIBLE
- problem?

