A Server and Browser-Transparent
CSRF Defense for Web 2.0
Applications

Slides by Connor Schnaith

Cross-Site Request Forgery

® One-click attack, session riding
® Recorded since 2001

® Fourth out of top 25 most dangerous software errors
o CWE/SANS

® Takes advantage of cookies

o can send malicious requests under user credentials
o potential to steal user money, etc.

® Relies on tricking the user into clicking a malicious link,

often embedded into an image

CSRF Example

Attacker Victim

———Please visit evil.com-—

)
Malicious
Server

Browser

Click on link————m

GET evil.com——»

-4——Send response

$(‘'invisible form’).submit()

POST bank.com — data + cookies—————————#

Bank
Server

Figure 1: Illustration of a CSRF attack

Valid session ID

Bank
Database

Why does CSRF work?

e User's browser automatically sends credential
information on login

e Browsers enforce no restrictions on outgoing requests

o SOP does not allow cookies to be viewed or written
by any source other than originator
o CSRF does not rely on tampering with cookies

Current CSRF Defenses: browsers

e Goal: ensure that every sensitive request originates
from own pages

e Referrer header in http requests
o scripts cannot alter it
o details the originator of a request
o too many browsers suppress it (privacy concerns)

e Origin header
o same idea as referrer header
o not supported by most browsers

e Browsers can't do it... up to the developers

Current CSRF Defenses: nonce

® Associating a nonce with each web page

O ensure that all requests from this page provide the
nonce

O SOP prevents one domain from reading the source of
another domain, so nonce cannot easily be stolen

® Adding a nonce to each page is a manual process
O developer might miss a page

O may omit because mistaken belief that a particular
request is not vulnerable

Current CSRF Defenses: Products

® NoForge
o Uses nonce approach
o On server side, intercepts every page sent to a
client
o Re-writes URLs found found on the page so that
they supply the nonce when requested

e stRodeo
o Similar, but deployed on client-side

e Neither protects dynamic construction of web pages on
the browser (web 2.0 applications) since depend on
static rewriting of link names

Current CSRF Defenses: Drawbacks

® Need for programmer effort and/or server side
modifications

® |ncompatibility with current browsers
® [nability to protect dynamically generated results

® Lack of support for legitimate cross-origin requests

o no natural way to extend products like noForge into the
cross-origin domain

jCSRF: an introduction

e Transparently interposes communication between
client and server

e Proxy jCSRF
o avoids need for server-side changes
o needs to deal with HTTPS compatibility, i.e.
encrypted data

e Server plug-in jCSRF
o server must support plug-in architecture (Apache)
o less overhead than proxy

e Intercept POST but not GET requests

jCSRF: approach overview

® Step One:
An authentication token is issued to pages served
by the protected server

® Step Two:

A request is submitted to jCSRF together with the
authentication token

® Step Three:

jCSRF uses authentication token to verify that the
originator is an authorized page.

o Validated: request is forwarded to the server
o Not validated: request forwarded with all cookies
stripped

jCSRF: javascript injection

® When page is served by protected server, javascript is
automatically injected

® Also includes a new cookie in the HTTP response that

can be used by the script to authenticate same-origin
requests

® |t is the job of the javascript to determine if the
request is cross-origin or same origin

< script type="text/javascript" src=... > </script>

jCSRF: javascript injection

® Two ways in which browser may issue POST requests,
which will be intercepted by jCSRF-script

® Submission of HTML forms

O form may be dynamically generated by javascript

O not necessary for user to submit the form, the form
may be submitted automatically by javascript

® XmlHttpRequest

O the response to a XmlHttpRequest can be read by
the script making the request

HTML Form Submission

e jCSRF-script registers a submit handler for each POST-
based form, determines if same or cross origin

e Same-origin
o adds authentication token as additional parameter

e (Cross-origin
o first obtain a token for the target domain
o adds token as additional parameter

e If the application already has its own event handler, there
could be possible confusion from extra parameter
o wraps existing handler with function that removes
parameter before handler is called, and then adds the
parameter after

XmlHttpRequest

jCSRF-script modifies the send method of the class

If browser supports DOM prototypes, the send function
can simply be replaced

Older browsers the XmlHttpRequest must be wrapped in a

proxy object that hides the original class and redirects all
requests made by the application to the proxy class

Adding special header X-No-CSRF, which XmlHttpRequests
allow, proves that request is same-origin

jCSRF: same origin protocol

e First, the user must send a GET request
e Sets cookie, injects javascript into response

e When browser receives response, javascript executes
o this ensures that that the value in the cookie is
copied into a new parameter

e When POST is made, checks to see if cookie, Cat, and
parameter, Pat, are the same

o if attacker attempts a jCSRF, the cookie will be
sent but they will not have the correct parameter
in the data

jCSRF: same origin protocol

jCSRF
User Browser IGSR
Proxy Se
Visit safe.com—————————p,
v >
GET safe.com GET safe. .
< Set-Cookie: C,, _*—=<html>...</html>———
e ___ | <htmi><script srcjesrfjs>...<mtmi> |
Register Submit
handler for forms
-4——Display page
———————Submit form——————#
Copy C, from
: JCSRF | cookies into form as
Handler Py

POST post.php
Cookie: Cy
Data: form data + P

—>

- <html><script src=jcsrf.js>...</html>

Check if C,; and Py
match

POST post.php
Data: form data

rver

html>...</html>———

jCSRF: same-origin correctness

® Scripts running on an attacker-controlled page visited
by users browsers cannot obtain the authentication
token for the protected domain

Proof: Immediate from SOP. Since the
authentication token is stored as a cookie,
attackers code running on the user’s browser
runs on a different domain and has no access to it

jCSRF same-origin correctness

® Any token that may be obtained by the attacker

cannot be used to authenticate a request from the
user's to the protected domain

Proof: Again, due to SOP, the attacker cannot set a user
token. Any token obtained by the attacker and
embedded into forms sent by the user would not

match the cookie set by jCSRF

jCSRF: same-origin correctness

e The attacker should not be able to guess an
authentication token that is valid for the protected
domain

Proof: Token randomly chosen from large keyspace.
The encryption protocol is as follows:
1. A 128-bit random value IR is generated
2. A sequence of random numbers R1, R2, ... are generated
3. Nonces, N1, N2, ... , are generated using the following:
Ks = IR, Ni, = AESks(Ri) (the AES encryption algorithm)

4. Each new Cat it sets to Ni and increments i

jCSRF: cross-origin protocol

When POST action occurs, verifies that target domain
accepts requests from source domain

Injects iframe: hitp://T/jJCSRF-crossdomain.htmi2domain=3S
o Contains javascript that will set up token Pat

XmlHttpRequest made from iframe with X-No-CSRF header
o ensured that the request is made from same domain

Sets cookie if not set, and PostMessage from target to
source containing Pat

Pat is added to the form and submitted

jCSRF checks both source and token validity
o if either fails, page requested with stripped cookies

jCSRF: cross-origin protocol

o

Source Target
User Browser 9
Proxy (S) Proxy (T)
Visit safe.com—————————» GET safe.com 2
-#<htmli><script src=jesrf.js>... </html>—
Register submit
handler for form
4——Display page———
Submit form—————# i

- GET T iframe -
______________________ e e iframe

XmiHttpRequest

: T H X-No-Csrf: Yes >

g S jCSRF F B : Data‘l S PSTm =AES«(Cx|l S)

{ handier ; Set-Cookie: C:: i

i P

: ¢ | postMessage P*",; to S h

Insert P57, into form i

POST post.php
Cookie: Ca: - >
Data: form data + P™'a Decrypt P¥ .. to check for
C.,and S

- htmi><script src=]f:sd.]s>. ..</html

jCSRF: cross-origin correctness

® Scripts running on an attacker-controlled page visited
by users browsers cannot obtain the authentication
token for the protected domain

Proof: the postMessage API only allows the attacker to
receive an authentication token that includes its
true domain, or it may lie about its origin and not
receive a token at all

jCSRF: cross-origin correctness

® Any token that may be obtained by the attacker
cannot be used to authenticate a request from the
user's to the protected domain

Proof: Again, due to SOP, the attacker cannot set a user
token. Any token obtained by the attacker and
embedded into forms sent by the user would not
match the cookie set by jCSRF

jCSRF: cross-origin correctness

e The attacker should not be able to guess an
authentication token that is valid for the protected
domain

Proof: Cross-origin uses same encryption method as
same-origin.

0i2121< 1353 ‘;‘C. l 3o AMES
1ia0iges i Liis 305 4s £ Ol i OE Fia
01T i A c 0- ' ot bt

1 13p5 D% 30 3 0% 1183 ot nOEEoND
1ilegs D g 3018 00 5 Siaoiptiot L |

p LI RS 2218008 31 a1 i afk ze5a
0108155 D17 331305 31 8 qripanalsoei 200
.,}-’a'.-a'e--l.-.‘ 2 0:5005 05200 it wiian Doititn &
u ‘13;

.= D’»—A ()
Po o & 45 S
- w‘ﬁ =

jCSRF: compatability

Application Version | LOC Type Compatible
phpMyAdmin 3.3.7 196K | MySQL Administration Tool Yes
SquirrelMail 1.4.21 35K WebMail Yes
punBB 1.3 25K Bulletin Board Yes
WordPress 3.0.1 87K | Content-Management System Yes
Drupal 6.18 20K | Content-Management System Yes
MediaWiki 1.15.5 | 548K | Content-Management System Yes
phpBB 3.0.7 150K Bulletin Board Yes

e Used Firefox and Chrome

e Applications chosen for complexity and difficulty for
manual CSRF protection

e Did not test for cross-origin requests

jCSRF: protection

Application Version | LOC Type CVE Stopped
RoundCube 0.2.2 | 54K Webmail CVE-2009-4076 | Yes
Acc PHP eMail 1.1 3K | Mailing List Manager | CVE-2009-4906 Yes

e Two known CVE vulnerabilities were exploited

e First, a fake email was posted using using RoundCube,
which failed due to lack of authentication token

e Second, a message was posted to change the admin
password, but the attack was thwarted

e Same-origin CSRF attacks can be successful if a form is
injected into a server response

o jJCSRF will not know it is malicious and will supply it
with the correct authentication token

XSS: a side note

e Break the assumption that same-origin scripts are under
the control of the web developer
o issue token requests and leak results to the attacker

e jCSRF has no way to protect against this
o attacker can steal the cookies directly and pose as
the victim from his own machine

e No CSRF defense mechanism is known to protect against
XSS

XSS: a side note

Attacker sends URL Link via email or embedded in

D < another web page to the victim

T T
] — | O
T
T

1BM Compatible

Victim clicks link and requests page (with
malicious script as parameters) > D

—
|
j -

webserver returns the page embedded with

D the script the attacker chose

—

IBM Compatible

victims web browser then
executes the script

jCSRF: performance

e GET requests

o jCSRF only needs to generate a new token if the user
does not have one already

e Same-origin POST requests
o only needs to check if the authentication token is
correct, which is a very low-cost operation

e (Cross-origin POST requests
o requires three additional GET requests: one to detect
whether the target app is running jCSRF, one to fetch
the iframe that requests the token, and one for the
XmlHttpRequest that actually fetches the token

o network delay is not negligible

Conclusion/Discussion

e jCSRF protects two things others do not
o Dynamically created pages
o (Cross-origin requests

e Due to their use of javascript injection

e Small overhead except for cross-origin requests which
incur a lot of network traffic
o okay if list of authenticated domains is small and
requests are sparse

IF JAVASCRIPT IS DISABLED, jCSRF is FULLY INCOMPATIBLE
- problem?

