

YOU ARE WHAT YOU LIKE INFORMATION LEAKAGE THROUGH USERS' INTERESTS

Abdelberi (Beri) Chaabane, Gergely Acs, Mohamed Ali Kaafar

Internet = Online Social Networks ?

□ Most visited websites:

Facebook (2sd), YouTube (3rd), Twitter (10th)

□ Facebook¹:

- > 800M users
- > 350M users access through their mobile
- > 250M photos are uploaded per day
- > 20M application installation per day

And privacy ??

1: https://www.facebook.com/press/info.php?statistics

Identifying the threat

Goal

Inferring Missing/Hidden information from a public user profile

□ Using Friendship or links information^[2,3]

Only using user's revealed data

What people reveals ?

Homophily or not homophily

Age = 20

Quiz

Who is this guy ? Who likes his music ?

Music? Why would that work ?

 In real life, an individual interest (or lifestyle) might reveal many aspects of his personal information
 demographics or geopolitical aspects.

Availability
 Seemingly harmless ;-)
 by default settings?

Not that easy

Heterogeneity
 Too general "I like Jazz Music"
 Too specific "Angus Young"

- Difficult to semantically link interests
 - What is the link between Angus Young, Brian Johnson and High Voltage ?

likes

10

- One of the MOST available data
- Describe users' tastes
- Can be used to derive user information
 - Gender, Location, Age, Marital status, Religion, etc.
- x Very sparse (millions of likes)
- x User-generated (No defined pattern)
- x No "standard" granularity

A toy example

- Mohammad-Reza Shajarian, Nazeri, Gogosh
- What does it mean (lack of semantics)
- □ What can we infer ?

Semantics: a naïve example

- Shajarian: 1940 births; Living people; Iranian classical; vocalists Iranian; humanitarians Iranian; male singers; Iranian musicians
- Nazei: Grammy Award winners; Iranian Kurdish people; Living people; Iranian classical vocalists; Iranian humanitarians; Iranian Légion d'honneur recipients; Iranian male singers
- □ Gogosh: people of Azerbaijani; descent Iranian female; Persian-language singers; Iranian pop singers; Iranian Shi'a; Muslims People from Tehran

Btw it belongs to http://facebook.com/kave.salamatian

Semantics: a naïve example II

- Shajarian: 1940 births; Living people; Iranian classical; vocalists Iranian; humanitarians Iranian; male singers; Iranian musicians
- Nazei: Grammy Award winners; Iranian Kurdish people; Living people; Iranian classical vocalists; Iranian humanitarians; Iranian Légion d'honneur recipients; Iranian male singers
- □ Gogosh: people of Azerbaijani; descent Iranian female; Persian-language singers; Iranian pop singers; Iranian Shi'a; Muslims People from Tehran

Iranian classical Vocalist Iranian humanitarians Iranian Iranian Kurdish people people of Azerbaijani Persian-language 	Iranian <mark>Shi'a</mark> Muslims People	vocalists Iranian Iranian classical vocalists
Topic about Iran	Topic about Islam	Topic about classical
	(Religion)	music

The Algorithm

Infer Attributes

15

Step1

Tree of wikipedia

Extract semantic (Description)

Ontologized' version of wikipedia
 Using the "structured knowledge" of Wikipedia

- Extract keywords from a certain 'granularity'
- Each like is an article
- Extract Parent Categories of the 'like' article
 Using the same granularity

Extract semantic (Description)

Using the same granularity allows us to semantically 'link' similar concepts

AC/DC: Australian heavy metal musical groups; Australian hard rock musical groups; Blues rock groups; Musical groups established in 1973;

Angus Young: AC/DC members; Australian blues guitarists; Australian rock guitarists; Australian heavy metal guitarists

High Voltage: AC/DC songs ; Songs written by Angus Young; 1970s rock song stubs

The Algorithm

20

Step 2

LDA Intuition

I1: Interest1
T1: Topic 1

LDA as a Probabilistic model

- Treat data as observations that arise from a generative probabilistic process that includes hidden variables
 - For documents, the hidden variables reflect the thematic structure of the collection.
- 2. Infer the hidden structure using posterior inference
 What are the topics that describe this collection?
- 3. Situate new data into the estimated model.

How does this new document fit into the estimated topic structure ?

LDA

Words collected into documents

- Each document is a mixture of a small number of topics
- Each word's creation is attributable to one of the document's topics
- Topics are not nominative
- Input:
 - Documents (words Frequency)
 - Number of Topics (K)
- Output
 - Word distribution per topic
 - Probability for each documents to belong to each topic

Topic example

The Algorithm

Augmented interests (Interest descriptions)

User

User1

User2

User3

Interests

I1

I1, I2

I6 User4 I1, I2, I6

Users

Interests I1 : Michael Jackson I2 : Lady Gaga 13 : Lil Wayne Wikipedia I4 : Bob Marley (Step 1) 15 : Sai Sai Kham Leng I6 : Fadl Shaker 17 : Charlene Choi

μ

0.8

0.96

0

0.96

User1

User2

User3

User3

Step3: Classify Users Infer Attributes

26

Step3

Inferring Hidden Attribute

IFV 'uniquely' quantifies the interest of each user along topics

- Classify users based on IFV
 - Simple approach
 - Using the nearest neighbors (K-NN)
- □ Similar users grouped together.
 - User sharing the 'same' taste should share the same attributes

Nearest Friend Neighbor

We define an appropriate distance measure in this space: chi-squared distance metric

$$d_{V,W} = \sum_{i=1}^{k} \frac{(V_i - W_i)^2}{(V_i + W_i)}$$

□ Using Kd-tree to reduce the computation from $\frac{M^2/2}{2}$ to $O(M \log_2 M)$)

Example

The **n** nearest users to user1 are: S={user3, user*m*, ...} The attribute is equal the the majority of the attribute in S (Majority voting)

Datasets

Public Profiles

Crawled more than 400k profiles (Raw-Profiles)

- More than 100k Latin-written profiles with music interests (Pub-Profiles)
- Private Profiles
 - Using a Facebook App.
 - More than 4000 Private profiles (used 2.5 K, Volunteer-Profiles)

Attribute inference

□ We infer the following attributes:

Binary

- Gender {Male, Female}
- Relationship {Single, Married}

Multi-value

- Country {US,PH,IN,ID,GB,GR,FR,MX,IT,BR } (top10)
- Age group {13-17, 18-24, 25-34, 35-44, 44-54, >54}

Base-Line Inference

32

Rely on marginal distributions

Maximum Likelihood of attributes

$$P(u.x = val | U) = \frac{|\{v | u.v = val^{\wedge}v \in U\}|}{|U|}$$

Guess the attributes' x value from its most likely value for all users

Attribute	Value
Gender	51% (Male)
Relationship status	Unknown
Age	26.1% (26-34)
Country	23% (U.S)

Inference Accuracy of PubProfiles

Attribute	Baseline	Random guess	IFV Inference
Gender	51%	50%	69%
Relationship	50%	50%	71%
Country	41%	10%	60%
Age	26%	16.6%	49%

TABLE IV: Inference Accuracy of PubProfiles

□ More than 20% of gain in most cases

Deeper view: Gender

- It is clear from the results that music Interests predict Female with a high probability
- May be explained by the number of female profiles in our dataset (62%)

Attribute	Male	Female
Male	53%	47%
Female	14%	86%

TABLE V: Confusion Matrix of Gender

Deeper view: Relationship

- It is challenging since less than 17% of crawled users disclose this attributes
- □ Single users are more distinguishable
 - \odot Single users share on average 9 music Interests whereas married share only 5.7

Attribute Inferred	Single	Married
Single	78%	22%
Married	36%	64%

TABLE VI: Confusion Matrix of Relationship

Deeper view: Country

- □ 80% of users belong to top 10 countries
- Country with specific (regional) music have better accuracy
 - → we clearly see the role of the semantic

Country	% of users
US	71.9%
PH	7.80%
IN	6.21%
ID	5.08%
GB	3.62%
GR	2.32%
FR	2.12%
MX	0.41%
IT	0.40%
BR	0.01%

TABLE VII: Top 10 countries distribution in PubProfiles

Accuracy for VolunteerProfile

- □ The results are slightly the same as for PubProfile
- Our method is independent from the source of information

Attribute	Baseline	Random guess	IFV Inference
Gender	51%	50%	72.5%
Relationship	50%	50%	70.5%
Age	26%	16.6%	42%

TABLE IX: Inference Accuracy for VolunteerProfiles

- No need for frequent model updates
- The approach is 'rather' General
 - OSN Independent: Many other sources of Information (deezer, lastfm, blogs, forums) etc.
- Use a free, open and updated encyclopedia

- Augment the model by analyzing more interest' category
 - Movies
 - Books
 - **D** Sport ...
- Multilanguage Wikipedia to handle foreign language
- □ More aggressive stemming

Conclusion

- 40
- Wikipedia Ontology to extract Semantics
- LDA to extract Topics
 - Socio, demographics, geo political aspects
 - "virtual" Communities
- K-NN to infer attributes
- The approach is general
 Using seemingly harmless information
 Efficient, inconspicuous profiling

If someday we all go to prison for downloading music, I just hope they split us by the music genre.

THE BEST FUN SITE = 9GAG.COM

Crawling Facebook

- Crawling Facebook was challenging
 - Protection using JavaScript rendering:
 - Using a homemade lightweight browser
 - Protection using a threshold for a maximum number of request
 - Using multiple machines
- Avoiding Biased Sampling
 - Crawling Facebook public directory (100 millions users)
 - Randomly choose a user and crawl his/her profile
- Parsing HTML pages
 - It is just a mess

Availability of attributes

Attributes	Raw (%)	Pub(%)	Volunteer (%)
Gender	79	84	96
Interests	57	100	62
Current City	23	29	48
Looking For	22	34	-
Home Town	22	31	48
Relationship	17	24	43
Interested In	16	26	-
Birth Date	6	11	72
Religion	1	2	0