
The Multi-Principal OS Construction of the
Gazelle Web Browser

by Helen J. Wang, et al.
(USENIX Security Symposium, 2009)

presented by
Jedidiah R. McClurg

Northwestern University

April 16, 2012

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Background

The nature of the web is changing

Originally, web pages featured static content
Increasingly, web pages are dynamic applications

Since the browser is the environment which loads/executes
web pages, it needs to acommodate these changes

This new browser structure should look familiar...

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Motivation

An operating system!
Multitasking
Inter-process communication
Window management

A browser OS structure has several major advantages
Site (process) memory isolation
Error recovery
Centralized policy enforcement (in the browser kernel)

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Motivation (Cont.)

The Gazelle web browser [1] is based on this browser OS
approach.

The browser kernel is the sole entity in charge of...

Fair sharing of system resources
Cross-site resource protection (addressed in this paper)

This main concern regarding resource protection is the SOP
(same-origin policy)

An origin or (principal) is defined as
<protocol, domain-name, port>

Different origins should be in different browser OS “processes”
Note that news.google.com is a different origin than
google.com

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Related Work

Unfortunately, the popular browsers don’t quite work this way

Example: the Google Chrome browser

Its origin policy is more lax, i.e. an origin is defined in terms of
the top-level domain
It has a per-site-instance process model, i.e. each site being
browsed corresponds to exactly one process, regardless of
embedded cross-site iframes
All plugins (regardless of origin) are in a single process
The rendering process (rather than a centralized kernel) is
responsible for some of the origin policy enforcement

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Related Work (Cont.)

Example: the Internet Explorer (IE 8) browser

Each tab corresponds to a different process, even if different
sites are browsed in that tab
The goal here is not so much security as error recovery

Example: the experimental OP browser

Uses a process for each browser component
Kernel delegates some of its protection responsibility
This doesn’t really address the cross-site protection issue

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Security Model

Security models of popular browsers
The SOP is usually enforced in regards to scripts

XMLHttpRequest can only communicate with origin
Scripts in an iframe cannot access the DOM for cross-origin
iframes
Descendant navigation is a potentially problematic exception
(more about this later)

Cookies have a path-based security policy, but scripts can
supersede this and access all cookies for a given domain
Plugins are not usually regulated by any browser security
policies

Gazelle security model

Enforce the SOP in all cases (scripts, cookies, plugins)
A more flexible definition of “origin” could be adopted (e.g. to
include paths), but this could cause compatibility problems
with existing websites

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Gazelle System Architecture

Web applications communicate with each other (and/or the
system) only through “system calls” to the browser kernel

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Gazelle System Architecture (Cont.)

This architecture provides a good combination of features...

Efficiency – a dedicated runtime instance (with parsing,
rendering, etc.) is spawned for each web application, which is
faster than approaches having separate modules for these
functions (such as the OP browser)
Security – since the web applications exist in separate
processes owned by the browser kernel, they are prohibited (via
the OS kernel’s process management) from communicating
with each other, except through the browser kernel
Robustness – if one web application (or runtime instance)
encounters an error, that process can be safely terminated
without effecting the rest of the browser

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Gazelle System Architecture (Cont.)

One slight modification, for the sake of legacy script
protection...

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Cross-Origin Protection

The web application’s runtime is responsible for rendering of
content, but the browser kernel is responsible for the content
positioning

A landlord web application can “rent out” space to a
cross-origin tenant

Display protection then becomes an important issue

Tenant should not be able to interfere with the landlord’s
display
Only the tenant can draw within its rented space
Landlord and tenant can write each other’s URL location, but
only tenant can read

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Cross-Origin Protection (Cont.)

The browser kernel is responsible for intercepting events,
processing them, and dispatching them to the correct web
application.

Event protection becomes important here, since things like
stacked transparent windows can be used to trick the user
into interacting with the wrong site

Instead of arbitrary z-position for windows, Gazelle only allows
for two-dimensional placement (landlords can rent out a part
of their space to a tenant)
One exception is opaque overlays, which are allowed

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Security Analysis

Gazelle addresses cross-origin and memory vulnerabilities

This is done via isolation of web applications (via processes)
The cited vulnerability study found 6 origin-related errors in IE,
and 11 in Firefox
It also found 38 memory-related errors in IE, and 25 in Firefox
Total of 80 security issues potentially addressed by Gazelle

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Security Analysis (Cont.)

Gazelle addresses display vulnerabilities

This is done via allocating exclusive control of window layout
to the browser kernel
The vulnerability study found 3 display-related errors in IE, and
13 in Firefox

Gazelle addresses plugin vulnerabilities

This is done by placing plugins in the same type of sandbox
configuration as the web applications themselves

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Implementation

Gazelle prototype runs on Windows Vista with the .NET
Framework

Browser kernel

Approximately 5K lines of C# code
Communicates with web application instances via XML-based
messaging over pipes
Web application instance provides rendered bitmaps for each
window (generated with the .NET graphics libraries), and the
browser kernel composes them with respect to the proper
layout

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Implementation (Cont.)

Web application instance

Rendering is done via Internet Explorer’s Trident renderer
component
Site events such as frame creation and user events such as
mouse clicks are captured and re-routed to the browser kernel
Network requests are captured by connecting through a local
(virtual) proxy server, which re-routes the requests to the
browser kernel

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Evaluation

The prototype Gazelle browser was able to successfully browse
19 of the top 20 Alexa web sites

Typical page load latency was found to be comparable to that
of other browsers

Task Gazelle IE 7 Chrome
1 Browser startup (no page) 668 ms 635 ms 500 ms
2 New tab (blank page) 602 ms 115 ms 230 ms
3 New tab (google.com) 939 ms 499 ms 480 ms
4 Navigate from google.com 955 ms 1139 ms 1020 ms

to google.com/ads
5 Navigate to nytimes.com 5773 ms 3213 ms 3520 ms

(with a cross-origin frame)

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Evaluation (Cont.)

Gazelle’s baseline memory footprint is around 9 MB

Typical memory usage was found to be comparable to that of
other browsers

Task Gazelle IE 7 Chrome
1 Browser startup (no page) 9 MB 14 MB 25 MB
2 New tab (blank page) 14 MB 0.7 MB 1.8 MB
3 New tab (google.com) 16 MB 1.4 MB 7.6 MB
4 Navigate from google.com 6 MB 3.1 MB 1.4 MB

to google.com/ads
5 Navigate to nytimes.com 88 MB 53 MB 19.4 MB

(with a cross-origin frame)

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Evaluation (Cont.)

Responsiveness is acceptible

A user event (e.g. mouse click) has a delay of
upcall time to web application +
Trident delay +
display update if necessary =
(2 ms + 1 ms + 77 ms) = 80 ms

Process creation is acceptible

The top 100 Alexa sites were visited with Gazelle to obtain
statistics regarding process creation
The median number of processes was 4, the minimum was 1,
and the maximum was 28

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Compatibility Issues

As we have said, many browsers do not implement the strong
security policies implemented in Gazelle

Thus, it is important to see how these strong policies affect
everyday browsing

Again, the top 100 Alexa sites were browsed using Gazelle

Subdomain behavior

Gazelle does not allow pages to change their domain at all, but
some sites use subdomain changes (e.g. news.google.com to
google.com) to accomplish cross-origin communication
It was found that 6 out of 100 of the sites try to do this

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Compatibility Issues (Cont.)

Mixed HTTPS and HTTP content

Allowing HTTP content to be embedded in an HTTPS page is
potentially dangerous, so Gazelle doesn’t allow it
Several popular account-based sites (e.g. Amazon, Blogger,
etc.) were accessed and browsed, showing no use of HTTP
content within HTTPS
A log of 5500 unique SSL URLs were obtained from a user’s
browsing history, and less than 2% were found to have
included non-secure (HTTP) content

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Compatibility Issues (Cont.)

Layout policies

Allowing transparent overlays is potentially dangerous, so
Gazelle does not allow this behavior
Only 2 out of the 100 top Alexa sites were found to attempt
this behavior
This behavior can be easily avoided by simply making
transparent windows opaque

Plugins

In order to work properly with Gazelle, plugins must be
changed to use browser kernel system calls
Flash is the only plugin used in the top 100 Alexa sites,
appearing in 34 of them

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Future Work

What things are important in regards to future browser research?

Straightforward methods for converting plugins to work with
the browser system call interface

Browser implementation which does not rely on expensive
Trident/proxy hooks

Fair resource sharing in the browser OS

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Conclusion

Many security issues can arise from cross-site interactions

Gazelle is an experimental web browser designed to address
these issues

Gazelle is structured as an OS whose “applications” are the
web sites being browsed

Separating the web applications in this way provides powerful
benefits in terms of security and robustness

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.



Thanks!

Helen J. Wang, Chris Grier, Alexander Moshchuk, Samuel T.
King, Piali Choudhury, and Herman Venter.
The multi-principal os construction of the gazelle web browser.
In Proceedings of the 18th conference on USENIX security
symposium, SSYM’09, pages 417–432, Berkeley, CA, USA,
2009. USENIX Association.

presented by Jedidiah McClurg Gazelle Web Browser by Helen Wang, et al.


