Comparing Javascript
Engines

Xiang Pan, Shaker Islam, Connor Schnaith

Background: Drive-by Downloads

1. Visiting a malicious website

2. Executing malicious javascript
3. Spraying the heap

4. Exploiting a certain vulnerability
5. Downloading malware

6. Executing malware

Background: Drive-by Downloads

1. Visiting a malicious website

@ting malicious j@

3. Spraying the heap

4. Exploiting a certain vulnerabilit
5. Dow '

6. Executing malware

Background: Drive-by Downloads

var obj = new Object();

obj.__proto__.__defineGetter__("a", function () {

this.__proto__ = null;
gc();

return O;

1}

obj.a;

Figure 2: CVE-2009-1833: Malicious JavaScript Codes
that can Trigger a Mozilla Firefox JavaScript Engine Vul-
nerability

Background: Drive-by Downloads

var obj = new Object();

obj.__proto__.__defineGetter__("a", function () {
—— this.__proto__ = null;
gc();
return 0;
s
obj.a;

Setup: Making the prototype null while in the
prototype creates a pointer to something
random in the heap.

Background: Drive-by Downloads

var obj = new Object();
obj.__proto__.__defineGetter__("a", function () {

this.__proto__ = null;

—+ gc();
return 0;

3
obj.a;

Environment: gc() is a function call specific to Firefox,
so the attacker would want to spray the
heap with an exploit specific to firefox.

Background: Drive-by Downloads

var obj = new Object();

obj.__proto__.__defineGetter__("a", function () {
this.__proto__ = null;
gc();
— > return O;
s
obj.a;

Obfuscation: If the browser executing the javascript it
firefox,the code will proceed to the return
statement. Any other browser will exit with an
error due to an unrecognized call to gc().

Background: Drive-by Downloads

var obj = new Object();

obj.__proto__.__defineGetter__("a", function () {
this.__proto__ = null;
gc();
return O;
s

obj.a;

Download: The return will be to a random location in the
heap and due to heap-spraying it will cause
shell code to be executed.

Background: Goal of Our Project

e The goal is to decode obfuscated scripts by triggering
javascript events

e The problem is when triggering events, some errors,
resulting from disparity of different engines or some
other reasons, may occur and terminate the progress

e We need to find ways to eliminate the errors and

rx therefore generate more de-obfuscated scripts

<script>
function f(){
//some codes
gc();
var x=unescape(‘%u4149%u1982%u9o [...]));
eval(x);

}

< /script>

Project Overview - Part One

e Modify WebKit engine so that it can generate error

informations.

e Modify WebKit engine so that it can pre-define any
functions or pre-include any libraries.

e Analyze the errors resulting from executing more than

140,000 malicious scripts.

Project Overview - Part Two

e C(Create Spidermonkey (Firefox javascript engine) and V8
(Chrome javscript engine) test suites and run them in
Webkit

e Determine the cross-compatibility of Spidermonkey, V8
and Webkit

e Compare the results to the javascript in the malicious
files

Project Overview - results

Part One - malicious file analysis

1. Modify webkit to make it output error

informations:

FE609a091bcl54fad7 d30268385ed12.
731237 F16109d95b92328a95d44c4 .
FFf750d1a82b3ad5f2ed32b6466376Ff.
Ff7b12b@55c8c@5616b1749022bc40a.
7 ed48ffdac996beel46675119chbBBC.
f84f@bane52d41205ad@d7 3ec®65dS.
F88cab4dcf42801343e24d29be2d59.
ff8bobear 2ddby 3ea2al 50417 2a468.
ffare2el19e62537895b05e9abc31 6.
FFfa6290aea5deb@c3b3df55c56cdfet.
Fffabe@Rab36a0491588beefebba53034 .

html.
html .
html.
html.

2y
err
err
err

net.err

html
html
html
html
html
html

- [EIRIT
20y
SR
JEIRIF
SR
JIRIF

Syntax Error: JSON Parse error: Unexpected identifier
line number: 10
{return JS0N.parse(a);}

Syntax Error: JSON Parse error: Unexpected identifier
line number: 151
{try{return window.JSON.parse{a)}catch{cO{return _.q}}

Syntax Error: JSON Parse error: Unexpected identifier
line number: 151
{try{return window.JSON.parse{a)}catch{cO{return _.q}}

"™

b

“cp®

Part One - malicious file analysis

2. Modify webkit to make it output can pre-
define the functions/objects or pre-include
relevant libraries.

Before loading any pages, WebKit will read an
assigned file and execute the scripts in it. This
file may include the libraries and
objects/functions we want webkit to define or
include.

Part One - malicious file analysis

2. Analyze the errors from executing JavaScript
events of 142338 malicious pages.

Syntax Error Unexpected token '<' Possible due to nested script tag
JSON Parse error: Expected ' Possible due to nested script tag
Type Error undefined' is not an object/function perhaps is the consequence of other reference error
null' is not an object
qwtqwt/a/b is not a function Perhaps the author try to invoke some undefined function

It is possible this function is defined in

"components/comments/js/comments.js", but this file has not been
Reference Error Can' find variable: loadComments successfully imported

It is possible this function is defined in

"components/comments/js/comments.js", but this file has not been

Can' find variable: addComments successfully imported

Can't find variable: $ JQuery has not been successfully downloaded

Can' find variable: ActiveXObject ActiveXObject is only defined in IE

Can' find variable: CollectGarbage This is a JScript global object

Cant find variable: chgBg DHTML Menu Studio library has not been successfully imported
Can' find variable: SWFObject FLASH plugin has not been installed

Can't find variable: asdas/qwtqwt/FB/a2/b/twttr/asdvds

Can' find variable: MM_preloadimages These function seems to be defined by Macromedia

Can't find variable: MM_swaplmgRestore
Cant find variable: MM_swaplmage
Can't find variable: write_ref
This function seems to emerge only in malicious pages. It's
Can' find variable: check_colors_picked definition ma be obfuscated when triggering the events

Part two - test suite

® Automatically put contents of .js files into .html files

® Modify webkit scripts to simplify testing process and
print error messages

e Run scripts that take all .js.html files as input and
output error messages for each file

Part Two - test suites
// Flags: --expose-gc

// Test that safepoint tables are correctly generated for apply with
// arguments in the case where arguments adaptation is needed.

function f(x, y) {

if (x == 149999) gc();
return x +y;

¥

function g() {
f.apply(this, arguments);

}
for (vari = 0;1 < 150000; i++) {

g(1);
¥

Part Two - test suites

QtTestBrowser

Starting webkit launcher, running against the built WebKit in
/home/xpan/WebKit-r1ioxxxx/WebKitBuild/Release/lib...

sizeO

Reference Error: Can't find variable: gc
throw exception

ReferenceError: Can't find variable: gc
line number: 34

{
if (x == 149999) gc();
return x +vy;

b

Current State

e SpiderMonkey

O

O

Installed SpiderMonkey engine with javascript shell

Gathered test suites from various sources specific to
SpiderMonkey compatibility

Ran tests manually in shell and automatically in
SpiderMonkey to verify compatibility

Next up... run test suites in Webkit

Current State

o Installed V8 engine with javascript shell

o Modified scripts in order to test effectively and print
detailed error messages

o Modified test suites from javascript to html so they
can be run by WebKit

o Next up... run modified scripts and analyze error
messages

Next Steps

e More testing still needs to be done to get a
comprehensive comparison of Webkit to Spidermonkey
and V8

e Due to a large amount of malicious files (over a
million!), we will search for specific terms to try and
find javascript code of interest

e After complete analysis of the malicious scripts, we will
comprise a venn-diagram type comparison to display
the differences in each engine's vulnerabilities

e Finally, we will hypothesize as to the defensive
techniques unique to each engine based on their
vulnerability differences

