
Comparing Javascript 
Engines

Xiang Pan, Shaker Islam, Connor Schnaith



1. Visiting a malicious website
 

2. Executing malicious javascript
 

3. Spraying the heap
 

4. Exploiting a certain vulnerability
 

5. Downloading malware
 

6. Executing malware

Background: Drive-by Downloads



1. Visiting a malicious website
 

2. Executing malicious javascript
 

3. Spraying the heap
 

4. Exploiting a certain vulnerability
 

5. Downloading malware
 

6. Executing malware

Background: Drive-by Downloads



Background: Drive-by Downloads
 



Background: Drive-by Downloads

Setup:  Making the prototype null while in the
        prototype creates a pointer to something

              random in the heap.



Environment: gc( ) is a function call specific to Firefox,
so the attacker would want to spray the

      heap with an exploit specific to firefox.

Background: Drive-by Downloads



Obfuscation:  If the browser executing the javascript it 
firefox,the code will proceed to the return 
statement.  Any other browser will exit with an
error due to an unrecognized call to gc( ).

Background: Drive-by Downloads



Download: The return will be to a random location in the 
heap and due to heap-spraying it will cause 
shell code to be executed.

Background: Drive-by Downloads



● The goal is to decode obfuscated scripts by triggering 
javascript events

● The problem is when triggering events, some errors, 
resulting from disparity of different engines or some 
other reasons, may occur and terminate the progress

● We need to find ways to eliminate the errors and 
therefore generate more de-obfuscated scripts

 

Background: Goal of Our Project

Ex 1
<script>

function f(){
        //some codes

gc();
var x=unescape(‘%u4149%u1982%u90 […]’));

        eval(x);
}

</script>
 
Ex 2
<script type="text/javascript" src="/includes/jquery/jquery.js"></script>



Project Overview - Part One

● Modify WebKit engine so that it can generate error 
informations.

● Modify WebKit engine so that it can pre-define any 
functions or pre-include any libraries.

● Analyze the errors resulting from executing more than 
140,000 malicious scripts.



● Create Spidermonkey (Firefox javascript engine) and V8 
(Chrome javscript engine) test suites and run them in 
Webkit

 

● Determine the cross-compatibility of Spidermonkey, V8 
and Webkit

 

● Compare the results to the javascript in the malicious 
files

Project Overview - Part Two



Project Overview - results



1. Modify webkit to make it output error 
informations:
 

Part One - malicious file analysis



2. Modify webkit to make it output can pre-
define the functions/objects or pre-include 
relevant libraries.
 
Before loading any pages, WebKit will read an 
assigned file and execute the scripts in it. This 
file may include the libraries and 
objects/functions we want webkit to define or 
include.

Part One - malicious file analysis



Part One - malicious file analysis

2. Analyze the errors from executing JavaScript 
events of 142338 malicious pages.
 



● Automatically put contents of .js files into .html files
 

● Modify webkit scripts to simplify testing process and 
print error messages

 

● Run scripts that take all .js.html files as input and 
output error messages for each file

Part two - test suite



 

 

// Flags: --expose-gc
 

// Test that safepoint tables are correctly generated for apply with
// arguments in the case where arguments adaptation is needed.
 

function f(x, y) {
  if (x == 149999) gc();
  return x + y;
}
 

function g() {
  f.apply(this, arguments);
}
 

for (var i = 0; i < 150000; i++) {
  g(i);
}
 

 

Part Two - test suites



QtTestBrowser
Starting webkit launcher, running against the built WebKit in 
/home/xpan/WebKit-r10xxxx/WebKitBuild/Release/lib...
size0
Reference Error: Can't find variable: gc
throw exception 
ReferenceError: Can't find variable: gc
line number: 34
{
  if (x == 149999) gc();
  return x + y;
}
 

 

Part Two - test suites



● SpiderMonkey
 

○ Installed SpiderMonkey engine with javascript shell
 

○ Gathered test suites from various sources specific to 
SpiderMonkey compatibility

 

○ Ran tests manually in shell and automatically in 
SpiderMonkey to verify compatibility

 

○ Next up... run test suites in Webkit

Current State 



● V8
 

○ Installed V8 engine with javascript shell
 

○ Modified scripts in order to test effectively and print 
detailed error messages

 

○ Modified test suites from javascript to html so they 
can be run by WebKit

 

○ Next up... run modified scripts and analyze error 
messages

Current State 



● More testing still needs to be done to get a 
comprehensive comparison of Webkit to Spidermonkey 
and V8

 

● Due to a large amount of malicious files (over a 
million!), we will search for specific terms to try and 
find javascript code of interest

 

● After complete analysis of the malicious scripts, we will 
comprise a venn-diagram type comparison to display 
the differences in each engine's vulnerabilities

 

● Finally, we will hypothesize as to the defensive 
techniques unique to each engine based on their 
vulnerability differences

Next Steps


