
Discussion on
“Systematic Detection of Capability

Leaks in Stock Android Smartphones”

By William Ng

Android permission security system

• Smartphone has been used to store and
handle more and more personal data

• There is a need of a way to mediate the access
to personal information or phone function.

– Apple prompt users to approve the use of function
at run-time, upon first access

– Android requires application to request
permission up-front

The breakdown of the permission
system

• Capability leaks – App gain access to
permission without actual requesting it

– Explicit leaks: exploit publicly-accessbile interfaces
or services

– Implicit leaks: acquire or “inherit” permission
from another application

• This paper analyzed the preloaded app to see
if they caused any leaks

Explicit Capability Leak detection

• It involves 2 steps:

1. Possible Path Identification

• Identify possible paths from well-defined entry point
(public interface) to some use of the capability

2. Infeasible Path Pruning

• Employs field- and path-sensitive inter-procedural
data flow analysis to determine which of these paths
are feasible

Possible Path identification – Control
flow graph (wiki)

• A control flow graph (CFG) is a representation,
using graph notation, of all paths that might be
traversed through a program during its execution

– Each node in the graph represents a basic block

– Directed edges are used to represent jumps in the
control flow

Possible Path identification – entry
points

• There can be different type of components
contained in the app, defined by the manifest.
Each has a pre-defined interface to the rest of
the system, which could be exploited.

• So they represents multiple entry points for
CFG analysis.

• For example, onReceive would be an entry
point for BroadcastReceiver class

Capability leak detection – dangerous
API

• Need to identify the list of Android APIs that
might exercise the permission

• Each identified Android API call will be stored
in the dangerous class.

• Permission class stored the information
whether permission is checked.

• Capability leaks if it contains a dangerous call
without checking the permission

Implementation issue with control
flow graph – issue 1

• Issue 1: Indirect control-flow transfer
instructions in Dalvik bytecode

– Due to inheritance, often not possible to
determine what concrete class a reference
represents

– Solution: when ambiguous reference
encountered, consider all possible assignable class

Implementation issue with control
flow graph – issue 2

• Issue 2: Android’s event-driven nature

– App execution passes through framework and
emerge elsewhere

– Solution: semantics are well-defined and
understood, so they applied them to known
callbacks and methods in the framework

Implementation issue with control
flow graph – issue 3

• Issue 3: Applications may contain multiple
entry points

– Multiple components are defined in manifest file

– Each component can potentially define multiple
entry points accessible through the Binder IPC
mechanism

– Solution: run them all!

Feasible Path refinement –
Inter-procedural data flow analysis

• Data flow analysis (wiki):

– Gathering information about the possible set of
values calculated at various points

– It is trying to solve something like this:

Feasible Path refinement –
Inter-procedural data flow analysis

• Path of execution

– modeled as set of program states, following one
another

– Transfer function that produce output states from
input states

– Algorithm converges on a solution

Feasible Path refinement –
Inter-procedural data flow analysis

What is implicit capability leak

• Permit an app to acquire or “inherit” permission
from another app with the same signing key

• Misrepresent the capability available to an app
• Arise from an optional attribute in the manifest

file “sharedUserId.” which allows multiple apps
signed by the same developer certificate to share
a user identifier.

• This system reports the exercise of an
unrequested capability, which suspiciously has
been requested by another app by the same
author

Implicit capability leak – analysis

• Similar algorithm as explicit leaks detection but with a
few changes

• The fundamental difference is that explicit capability
leak detection assumes the caller of an app’s exposed
API is malicious, while implicit capability leak detection
assumes the app itself might be malicious.

• Need to broaden the search to include the app’s
initialization:
– Instance constructor: new-instance bytecode operation in

dalvik
– Class instructor or static initialization blocks

• Could be invoked in variety of orders

Implicit capability leak – reporting

• Consider capability to be leaked if there is
anyway to exercise the unrequested
permission

• Union the permissions granted to each
application with a given shared user identifier,
which yields the set of permissions given to
each of them.

• Report any implicitly leaked permissions
contained within that set

Evaluation

• Studied eight smartphones from four vendors

Capability leaked

Stock android phone

• Phone image with close to stock android
software has less capability leaks

• The stock android phone only have a single
minor explicit leak that com.svox.pico could be
tricked to remove another app
com.svox.langpack.installer

Case studies – explicit capability leaks
(without arguments)

• Samsung Epic 4G’s has a preloaded app,
com.sec.android.app.SelectiveReset, whose
purpose is to display a confirmation screen
that asks the user whether to reset the phone

• It has a class SelectiveResetReceiver to listen
for SELECTIVE_RESET Intent.

• After it receives the intent, it open GUI and
wait for user to confirm

Case studies – explicit capability leaks
(without arguments)

• Once that is done, it starts a service
SelectiveResetService which broadcasts an
intent SELECTIVE_RESET_DONE

• SelectiveResetReceiver class listens for this
Intent and then calls
CheckinService.masterClear()

• But this intent can be initiated by malicious
app because

Case studies – explicit capability leaks
(without arguments)

• But this intent can be initiated by malicious
app because SelectiveResetReceiver is defined
in the manifest file

• Similar leaks for REBOOT and SHUTDOWN is
observed on HTC EVO 4G; or capability FREEZE
is exposed by a system app

Performance management - speed

• Computer: AMD Athlon 64 X2 5200+ machine
with 2GB of memory and a Hitachi HDP72502
7200 rpm hard drive

• Data is averaged over 10 runs

Performance Measurement – false
positive and negative

• All the leaks reported by the system is verifed
manually, so there is no false positive.

• There is lack of ground truth and the approach
is conservative, so the author is confident that
the false negatives number is low.

Last words from authors

• Rather than relying on app creator to
diligently check for capability leaks, Android
framework could also be improved to mediate
app interaction and defend the integrity of
capability.

• Possibly to make this into a validator tool to
help app developer.

Future works from authors

• Expand to handle native code, but not just
Dalvik code

• Expand to handle app-defined permission

• Expand to analyze third party app developers
but not just preloaded app

