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Abstract

Security protocols are not as secure as we assumed.
In this paper, we identified a practical way to launch
DosS attacks on security protocols by triggering exceptions.
Through experiments, we show that even the latest strongly
authenticated protocols such as PEAP, EAP-TLS and EAP-
TTLS are vulnerable to these attacks. Real attacks have
been implemented and tested against TLS-based EAP pro-
tocols, the major family of security protocols for Wireless
LAN, as well as the Return Routability of Mobile IPv6,
an emerging lightweight security protocol in new IPv6 in-
frastructure. DoS attacks on PEAP, one popular TLS-based
EAP protocol were performed and tested on a major univer-
sity’s wireless network, and the attacks were highly success-
ful. We further tested the scalability of our attack through
a series of ns-2 simulations. Countermeasures for detec-
tion of such attacks and improvements of the protocols to
overcome these types of DoS attacks are also proposed and
verified experimentally.

1 Introduction

As the foundation of networks, protocols play vital roles
in authentication and communication, and thus become one
popular target of various malicious attacks. To be robust
for unexpected events, a well designed protocol should con-
sider and handle the exceptions properly. Unfortunately, the
way of dealing with exceptions in most current protocols is
simply to restart the protocol processing from the begin-
ning, which causes a waste of resources and potentially can
be used to launch serious denial-of-service (DoS) attacks.
Note in this paper, we also consider the performance degra-
dation attack as a weak DoS attack.

So far, people have paid little attention to such vulnera-
bilities caused by the (faked) exceptions including the TCP
RST attacks [25], probably because of the lack of practical
and severe attacks. In wired networks, it is very hard to sniff
packets unless the network operators attempt to do so or a
router gets compromised. Similarly, in wireless networks,
TCP sessions are usually protected by lower layer encryp-
tions. Therefore, it is hard to conduct TCP RST attack in
practice, and that is why such vulnerabilities are largely ig-
nored by the community.

In this paper, we reveal a serious vulnerability of excep-
tion handling in most wireless security and communication
protocols by showing an exception triggered attack. The ba-
sic idea of the attack is to sniff the protocol communication
and then inject fake error messages or misleading messages
to trigger exception handling to bring down the whole pro-
tocol session. Note we assume the cryptographic algorithms
are perfect and no encrypted data is readable by the attack-
ers.

This attack has the following properties.

e Easy to launch. Any normal user can launch such an
attack with cheap commaodity hardware. Actually one
important contribution of the paper is to demonstrate
the easiness of such attacks in the real life using
real-world experiments.

o Efficient and scalable. This attack only needs to
send small error or unexpected messages. The traffic
is much less than that of the normal connection setup.
Thus, even a single node can attack a large number of
clients simultaneously.

e Stealthy. Unlike jamming or rogue AS attacks, it
cannot be detected by any of the existing intrusion
detection systems.

e Generally applicable to a variety of protocols.
Such attack can be applied to any security or
communication protocol which involves exception
handling in its connection setup. For example, it can
even be applied to strong authentication protocols
such as TLS in our case studies.

In this paper, we show two case studies. The first one is
on TLS-based Extensible Authentication Protocols (EAP)
such as PEAP [9], EAP-TLS [30] and EAP-TTLS [17].
EAP is widely used as a strong authentication protocol for
wireless LANs and cellular networks. The second case
study is on the Return Routability protocol of Mobile IPv6.

Through both real-world experiments and ns-2 simula-
tions, we demonstrate the ease, efficiency and scalability of
the exception triggered attacks. For example, with a com-
modity laptop, we can easily launch DoS attacks on PEAP
authentications to stop clients from joining the the campus
wireless network of a major university.



In addition, we propose countermeasures to such attacks.
We analyze the symptoms of the exception triggered at-
tacks and propose detection approaches. Also, we propose
a game-theory based design principle to improve existing
protocols against such attacks. We implemented such strat-
egy in WPA supplicant [8] (an implementation of PEAP [9])
and show that the modified PEAP is immune to the fake er-
ror message based attacks in real experiments. Last, we
propose the guideline for the design of future authentica-
tion protocols to be invulnerable to the exception triggered
attacks.

The rest of the paper is organized as follows. In sec-
tion 2, we describe the requirements and techniques to
launch DoS attacks by triggering exceptions. In sections 3
and 4, two case studies for the exception triggered attacks
are presented, and then they are evaluated in section 5.
Next, in section 6, we discuss a few countermeasures to se-
cure protocols against the DoS attacks. Finally, we present
the related work in section 7 and conclude in section 8.

2 Attack Framework

In this section, we describe the framework of our excep-
tion triggered DoS attack on security protocols. Our attack
principle is to explore the vulnerability of the protocol ex-
ception handling mechanism. There are a few requirements
for launching the attack, but they are general and easy to
satisfy in the real world, as shown in this section and the
case studies in sections 3 and 4.

2.1 Attack Requirements

The following basic requirements are necessary to our
attack.

e Media Requirements: The attacker can sniff and
spoof packets.

e Protocol Requirements: Existence of fatal error
condition to stop the protocol before the protocol is
protected by strong cryptographic algorithms.

e Timing Requirements. Considerable time window
exists between normal protocol communication,
allowing attacks to inject packets at right place.

2.1.1 Media Requirements

Sniffing and spoofing are necessary for our exception
triggered attack as well as many other attacks. Sniffing
helps to know the status of the protocol and to determine
when to spoof the attack packets.

Sniffing and spoofing are limited nowadays in wired net-
works. For example, current switches prevent sniffing in
Ethernet and it is usually very hard to sniff on routers. ISPs
and enterprises often use access control to block IP spoof-
ing. However, in wireless networks, especially in 802.11
networks, sniffing and spoofing can be done with well de-
signed software and off-the-shelf hardware. This is also the

reason that we focus on attacks in wireless networks, al-
though our attack principle should also work for protocols
for wired networks.

2.1.2 Protocol Requirements

Typical security protocols usually exchange a few con-
trol messages to authenticate one or both of the communi-
cating parties, before the session keys are established. All
the messages before the establishment of the keys are un-
encrypted. Normally a protocol has the exception handling
procedures, and an error message is usually triggered to in-
form the other partner whenever an exception occurs. In
most protocols, the fatal or unexpected exceptions are han-
dled by simply terminating the protocol, and the new au-
thentication process will restart from scratch, if retried. This
simple exception handling procedure could be used by an
attacker to launch a DoS attack.

As an example, in TLS v1.1, there are a lot of unen-
crypted and unauthenticated error messages before the ses-
sion key is established, and they could potentially be sent by
either of the parties (client or the server) when an error con-
dition occurs. In TLS v1.1, as long as there is a fatal error
message, the authentication process will be terminated [15].

2.1.3 Timing Requirements

If any protocol satisfies the above requirements, it is pos-
sible to launch a DoS attack on the protocol by triggering
exceptions. But for an attack to be practical, the spoofed
packet should reach the target at the right time, not too early
and not too late. So there is a so called time window for the
attacker to spoof attack packets, and the attack is practical
to launch if the time window is large enough.

Generally, the attacker first sniffs the messages on the
channel to determine when to send the spoofed message.
Then he sends a spoofed message to one of the parties to
make it believe that some error happened so as to terminate
the authentication process. Usually if the spoofed message
reaches the target party before the legitimate expected mes-
sage, the attack will take effect. Otherwise, a party will
process the expected message and then move to a new state,
in which the attack message may be obsolete and discarded
silently. Therefore, the time window for an attack usually
is from the moment of receiving the trigger message to the
moment a legitimate expected message reaches the target.

2.2 Attack Methodology

The exception triggered attack can be launched in two
ways. First, the attacker can directly spoof the error mes-
sages, which informs one or both parties involved in the
communication the failure of the protocol. The second way
is to send some misleading messages to trigger one party to
send out an error message. For example, in a negotiation
process the spoofed message can make the client choose a
wrong cipher suite to talk with the authentication server.
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3 Case Study 1: TLSbased EAP Protocols

In this section, we describe our first case study, exception
triggered based attacks on TLS-based EAP protocols. We
first give a brief background of the EAP protocol family
and the TLS protocol, and then describe in details the attack
procedure.

3.1 Background

3.1.1 Extensible Authentication Protocol (EAP)

Extensible Authentication Protocol (EAP) is a universal
authentication framework that is frequently used in wireless
networks, point-to-point connections and LANS.

EAP is not a specific authentication mechanism, but it
provides a series of common functions and a negotiation
process based on the desired authentication mechanism.
Currently about 40 such mechanisms, called EAP methods,
are supported. Those methods are defined in various IETF
RFCs including EAP-MD5 [11], EAP-OTP [11], EAP-
GTC [11], EAP-TLS [30], EAP-TTLS [17], PEAP [9],
EAP-IKEv2 [31], EAP-SIM [18], EAP-AKA [12], and
additionally a number of vendor specific methods. The
most commonly used methods that are suitable for oper-
ating in wireless networks are: PEAP [9], EAP-TLS [30],
EAP-TTLS [17],EAP-FAST [14], EAP-SIM [18] and EAP-
AKA [12]. Figure 1 shows how these typical EAP proto-
cols work with other layers. EAP-TLS, EAP-TTLS, EAP-
FAST and PEAP are widely used in WLAN, EAP-SIM is
designed for GSM systems and EAP-AKA is adopted in
UMTS/CDMA2000. Among them, EAP-TLS, EAP-TTLS,
EAP-FAST and PEAP all use TLS as their underlying au-
thentication and cryptographic method.

3.1.2 Transport Layer Security (TLS)

Transport Layer Security (TLS) [15] and its predeces-
sor, Secure Socket Layer (SSL) [6] are cryptographic pro-
tocols that provide secure communication on the Internet
for secure web browsing, e-mail, Internet faxing, instant
messaging and other data transfers. The protocol allows
client/server applications to communicate in a way that is
designed to prevent eavesdropping, tampering, or message
forgery. For example, HTTPS protocol layers on top of TLS
protocol to protect sensitive network traffic.

TLS is a layered protocol, and consists of the Record
protocol, the Alert protocol and the Handshake protocol.
The Record protocol is designed to serve the Handshake
protocol and Alert protocol, and offers symmetric encryp-
tion, data authenticity, and optionally compression [15].
The Alert protocol offers some signaling to the other pro-
tocols and between peers. An alert signal includes an alert
level indication, and a FATAL ALERT always terminates the
current connection. The Handshake protocol is responsible
for the cipher suite negotiation, the initial key exchange, and
the authentication of the two peers. In our attack we mainly
attack the Handshake protocol by triggering the alert mes-
sages defined in the Alert protocol.

Figure 2 shows the flowchart of a successful TLS hand-
shake process. We do not introduce the handshake protocol
in detail due to space limitation, but the details can be found
in [15]. Generally, the TLS server starts the procedure and
the client responds with a hello message. The server then
sends its certificate, selected cipher suit and so on. Note that
TLS provides an option to authenticate the client as well by
requesting the client certificate. The client returns selected
cipher, its certificate (optional) and other cryptographic in-
formation. Note in Figure 2, we put some messages close
as if bundled together because they may be embedded in a
single EAP packet, depending on the message sizes.

3.2 Vulnerability in TLS based EAP Pro-
tocols

The vulnerability we find is in the TLS protocol, which is
widely used in many security protocols such as HTTPS and
TLS based EAP protocols. Therefore, all the TLS based
EAP protocols such as PEAP, EAP-TLS, EAP-TTLS and
EAP-FAST will be vulnerable to our attack. It is worth
mentioning that we also implemented the same attack ap-
proach targeting HTTPS protocol which also relies on TLS,
and the attack successfully stopped the GMail authentica-
tion using the HTTPS protocol. However, the hardness of
sniffing and deciphering application layer data in wired and
encrypted wireless networks makes such application level
attack not very practical. Hence we mainly focus on the
TLS based EAP protocols, which are MAC layer authenti-
cation protocols for wireless networks.

An attacker sniffs the communication between the wire-
less client and the access point, inspecting the authenti-
cation procedure through the Handshake protocol of TLS.
Note before the handshake protocol of TLS establishes the
keys to encrypt following packets, all the wireless packets
are in clear-text and unencrypted. Triggered by some mes-
sages, the attacker spoofs corresponding messages to make
the TLS authentication fail. In particular, the attacker have
two ways to trigger the exception handling in TLS: 1) spoof-
ing the FATAL ALERT messages to directly fool the client
or the server to stop the authentication, 2) spoofing negoti-
ation messages with different authentication parameters to
confuse the two parties. Next we will discuss the detailed
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Figure 2: TLS Handshake.

attack approaches.
3.2.1 Exception Triggered based Attack

Spoofing Server The attacker can spoof the messages as
if they were coming from the TLS server 1. There are at
least two attack points in the TLS authentication frame-
work: one is after the client sending the CLIENT HELLO
and the other is the point after the bundle of client response
messages (including CLIENT CERTIFICATE, CLIENT KEY
EXCHANGE and other messages) (See Figure 3). If the bun-
dles of messages are broken into multiple EAP packets, we
have more attack points after each EAP packet.

The attacks to different points are similar and we use the
first one as an example. As shown in figure 3, if the at-
tacker sniffs a CLIENT HELLO message, he simply spoofs
a FATAL ALERT message. The SERVER HELLO and further
messages from the server are dropped. The client consid-
ers only the alert message, and sends a failure message to
the server. Since the TLS transaction has failed, the encap-
sulating EAP protocol terminates with an EAP FAILURE
message. An important problem in this attack is to sat-
isfy the timing requirement. The attacker needs his spoofed
message to reach the client earlier than the normal SERVER
HELLO message from the server (See Figure 3). This time
gap contains: 1) the message delivery time in wired net-
work (both from the AP to the TLS server and from the TLS
server to the AP), 2) the server’s processing time and 3) the
message delivery time from the AP to the client in the wire-
less network. This time gap may vary in different situations.
For example, at the second attack point, the server usually
needs to query the database and then verify the user’s iden-
tity and password, and hence the processing time may be
large. The background traffic affects the transmitting time
in both wireless and wired networks. Meanwhile, the at-

1To do so, we use AP's MAC address as the source MAC address of
the spoofed message to spoof the AP. Note EAP protocol isdirectly on top
of the MAC layer, and the IP and higher layers are not used at this stage.
Therefore, attacks on IP layers and above such as TCP RST attack are not
applicable in this scenario at all.
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Figure 3: TLS Handshake failed - Attacker spoofi ng Server.

tacker’s spoofing time contains two parts: 1) the time gen-
erating the spoofed message, which is negligible and 2) the
transmitting time in the wireless network.

Spoofing Client Similarly, the attacker can spoof to be
the client, and there are also at least two attack points ac-
cording to the TLS authentication protocol. As shown in
Figure 4, the first attack point is right after the client sniff-
ing the HELLO REQUEST and the other is after receiving
the SERVER HELLO DONE.

As shown in Figure 4, if the attacker’s FATAL ALERT
message reaches the server before the CLIENT HELL O mes-
sage, then further messages from the client are dropped
since the server considers only the alert message and sends
a failure message to the client indicating the detection of
an error. Then the EAP protocol terminates with an EAP
FAILURE message. The second attack point is quite similar
and hence we do not repeat its details.

3.2.2 Misleading Message based Attack

Besides directly spoofing and sending error messages to
destroy the TLS communication, the attacker is also able
to stealthily spoof misleading messages that intentionally
trigger the exception handling mechanism of the TLS pro-
tocol. We found out that using a spoofed SERVER HELLO
message with various parameter setting will cause the client
side automatically respond a FATAL ALERT message to the
server side.

The message exchange procedure is shown in the Fig-
ure 5. Regarding to the TLS RFC, the client side should
provide a valid CLIENT HELLO message that contains a
list of supportive cipher suites in the first place. After that
the server responds to the client a SERVER HELLO mes-
sage that indicates its choice of the cipher suite. Besides
the SERVER HELLO message, client side needs to collect
other required messages before moving forward to the next
state, e.g., SERVER KEY-EXCHANGE message. Therefore
when the attack takes place, the client side will receive two
SERVER HELLO messages. In that case, the client itself is
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not able to figure out which of the SERVER HELLO mes-
sages is the authenticate one that should be used in the fol-
lowing process. Thus the client side has to notify the server
side that there is an error happened using the FATAL ALERT
message and eventually terminate the whole procedure.

3.2.3 Discussion

Comparison between Error Message based Attack and
Misleading Message based Attack Compared to the di-
rect error message based attack, the misleading message
based attack is more stealthy and harder to deal with. If the
unprotected messages have multiple parameters to choose
or set, the spoofed messages have lots of tricks to play. Even
if the receiver notices the attack and get multiple “normal”
messages with different content, the receiver may not be
able to differentiate the legitimate message with the faked
ones. This brings the difficulty in countermeasures and we
will further discuss it in Section 6.

Increasing the Attack Success Rate Obviously our at-
tacks on TLS based EAP protocols satisfy the medium re-
quirement and the channel requirement (see Section 2.1).
The only potential problem is the timing requirement,
which requires the attack packet to reach the victim earlier
than the legitimate packet. To make the attacker’s packet
sent out to air faster, we play a trick described below.

Wireless LAN uses the IEEE 802.11°s DCF (Distributed
Coordination Function) [10], which is based on CSMA/CA
(Carrier Sense Multiple Access with Collision Avoid-
ance). According to the collision avoidance mechanism of
CSMAJCA, a station performs a back-off procedure before
initiating the transmission of a frame. After detecting that
the medium is idle for a DIFS (DCF inter-frame spacing)
interval, the station selects a random backoff period from
[0, CW-1], where CW is referred to as contention win-
dow. The station waits for the channel to be idle for a total
time equal to this back-off period, after which it can trans-
mit a data frame. The contention window C'W has an initial
value CWMin (31 in the standard), and is doubled when a
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collision occurs, up to the maximum value CWMax. When
a frame is successfully transmitted, the contention window
is set to its initial value CWMin.

To send packet faster, a simple way is to fix the CWMin
and CWMax to the minimal number. Attacker can set its
CWMin to be as small as 1, and in this case the back-off
time of the attacker is much smaller than that of the normal
wireless nodes. In this case, the chance of sending the attack
packet earlier than the legitimate packet is close to 1. In our
real experiments (See Section 5.1.1), we find that MADWifi
driver [4] provides command line parameters to change the
CWMin and CWMax easily.

3.3 Generalization to Other EAP proto-
cols

The exception triggered vulnerability does not only
lie in TLS based EAP protocols. Analyzing the au-
thentication protocols in 2G and 3G cellular networks,
EAP-SIM and EAP-AKA, we found they also potentially
have a similar vulnerability. In EAP-SIM and EAP-
AKA, the EAP NOTIFICATION message is used to indi-
cate the result and exception cases, which is not protected
through the authentication procedure. This protocol de-
sign offers the attacker an opportunity to maliciously use
the EAP-Response/SIM/Client-Error message and EAP-
Response/ AKA/Client-Error message to interrupt the pro-
cessing between clients and the authentication server and
fail the authentication procedure. Note that the attack on
EAP-SIM and EAP-AKA will work analytically, and it will
be our future work to study its practicality.

4 Case Study 2: Mobile IPv6 Return
Routability Procedure

In this section, we describe our second case study on
Mobile IPv6 Return Routability (RR) procedure. We first
introduce Mobile IPv6 RR procedure, and then describe in
detail the attack procedure.
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4.1 Background

Mobile IPv6 [20] is a protocol which allows nodes to re-
main reachable while moving around in the IPv6 Internet.
Each mobile node (or MN in short) has a home address, re-
gardless of its current location. If the mobile node roams to
the remote network while communicating with other nodes
(called Correspondent Nodes or CN), the packets from the
Correspondent Nodes go to the home network first. These
packets will be further forwarded to the MN’s address in
the remote network (called care-of address) by the Home
Agent. Obviously this triangular routing is not optimized
and hence the Return Routability procedure is proposed
in Mobile IPv6 to allow the direct routing. Basically, the
Mobile Node tells its care-of address to the Correspondent
Nodes, and the following traffics from CNs are sent to the
MN’s care-of address directly. The application layer is not
aware of the changes of the IP layer. To secure the Return
Routability procedure, a simple weak authentication proto-
col is used, detailed in the following paragraphs.

Figure 6 shows the message exchange in the Return
Routability procedure (RR procedure). The RR proce-
dure begins when the MN sends HOME TEST INIT(HOTI)
message to CN through HA and the CARE-OF TEST
INIT(COTI) message directly to CN. CN responds with a
HoT sent through HA and a CoT sent directly to MN. MN
uses the information in HoT and CoT to generate a key,
which it uses to sign the BINDING UPDATE message to CN.
Upon the receipt of the BINDING UPDATE, CN adds an en-
try for the MN in its binding cache and optionally sends
BINDING ACKNOWLEDGEMENT. Once this happens, MN
and CN will be capable of communicating over a direct
route. Thus they need not have to go through the HA any
more and hence the route between MN and CN is optimized.

4.2 Vulnerabilities in Mobile IPv6 RR
Procedure

Now we introduce two vulnerabilities in the MIPv6 RR
procedure to the exception triggered attack: binding error
vulnerability and binding acknowledgement vulnerability.
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Figure 7: MIPv6 Bind Error and Bind Ack Vulnerahility.

First, according to Mobile IPv6 [20], if a BINDING ER-
ROR message is sent from the CN to the MN with the sta-
tus field set to 2 (meaning unrecognized mobility header),
the mobile node should cease the attempt to use route opti-
mization. Since the BINDING ERROR message is not pro-
tected, it could easily be spoofed by an attacker to nullify
the Return Routability procedure. As shown in Figure 7,
when the attacker sniffs the BINDING UPDATE sent by the
Mobile Node, it sends the spoofed BINDING ERROR to the
Mobile Node. If the spoofed BINDING ERROR reaches the
MN earlier than the valid BINDING ACKNOWLEDGEMENT
from the CN, the MN will discard the valid BINDING AcC-
KNOWLEDGEMENT, and thus the Return Routability proce-
dure fails. Usually the CN is far away from the MN while
the attacker is in the same wireless network as the MN, the
attacking time window is quite loose for the attacker.

Second, similar to the binding error vulnerability, the
binding acknowledgement vulnerability arises from the fact
that BINDING ACKNOWLEDGEMENT message with status
136, 137 and 138 is used to indicate an error and is not pro-
tected at all [20]. Similarly, it could be easily spoofed by
an external entity and accepted by the Mobile Node. The
timing diagram in Figure 7 gives the details.

Disrupting On-Going Sessions We can disrupt the route
optimization in on-going sessions as well, not limited to
new sessions. Mobile IPv6 RFC states that the Return
Routability procedure is repeated every few minutes so that
the communication can be maintained and the binding keys
can be updated. For example, in the MIPL [5] implemen-
tation, by default the binding keys should be updated every
3 minutes by performing the Return Routability procedure
again. So the attacker only needs to waits for at most 3
minutes to disrupt an on-going session’s route optimization,
using the two vulnerabilities introduced above.

5 Evaluation

In this section, we describe our evaluations on our ex-
ception triggered based attack on both TLS-based EAP pro-
tocols and MIPv6 Return Routability procedure.



5.1 Evaluation of DoS Attacks on TLS-
based EAP Protocols

First, we use the real world experiment to evaluate the
attack feasibility and efficiency. Then we rely on simula-
tions to show the scalability of the attack on multiple users
simultaneously. In the evaluation we use PEAP [9] as the
example, simply because PEAP is widely deployed, and we
have at hand a large operative campus wireless network us-
ing PEAP to authenticate about 15,000 users. We believe
the real experiments on an operative network lead to the
most genuine evaluation results.

5.1.1 Real-world Experiment

Experiment Methodology The university’s wireless net-
work authenticates its users using PEAP (Protected
EAP) [9], which adopts PEAPVO/EAP-MSCHAPV2 with
TLSv1.1 [15] as the security method. The Access Point
(AP) passes the EAP messages to the back-end authenti-
cation server for processing. Unless the authentication is
successfully done, the client computer cannot obtain an IP
address and therefore is unable to access the network re-
sources. In our experiment, we use up to three laptops as
the normal clients to connect to the university’s wireless
network, while another laptop acts as an attacker.

We first executed some controlled in-lab experiments.
We used different wireless cards in various operating sys-
tems as the normal users, and tried to launch DoS attacks
against them. The various wireless network management
utilities we tested include: 1) the windows native client
utility of windows XP and Vista, 2) the Dell utility, 3) the
Proxim utility, and 4) the Linux NetworkManager utility of
Ubuntu. We also let 1 to 3 clients connect to the network
at the same time, so that we can test the attack against mul-
tiple simultaneous authentications. We also tested the at-
tack in the university’s cafeteria, where the clients are more
diverse and out of our control. Note that in the cafe envi-
ronment, there are two channels available and our attacker
only works on one channel. If one channel does not work
properly, the client software usually automatically switches
to another channel, and hence we do not really DoS the net-
work?.

The attacker program was written in C++ on the Linux
platform. It uses MADWiIfi drivers [4] and libpcap li-
brary [2] to sniff the channel and leverages on the lorcon [3]
library® to send spoofed messages. We also use MADWifi
drivers [4] to configure the wireless cards, e.g., changing the
CWMin parameter of IEEE 802.11.

Experimental Results
Feasibility. We found that different WLAN card manage-
ment programs have quite different automatic retry func-

2 laptop can easily equip three or even more wireless cards via PCM-
CIA and USB interfaces and hence attacking multiple channels simultane-
ously isnot a problem for out attack.

3The lorcon library was tweaked a little so that it does not change the
content of spoofed packets.

tions. The windows native client utility of windows XP
and Vista, and the Dell utility try to connect to the network
only once. If the authentication fails, they do not automat-
ically retry the connection, but wait for some user initiated
action, e.g., entering a new password. On the other hand
the Proxim utility and the Linux NetworkManager utility
of Ubuntu store the supplied credentials and automatically
retry to connect to the network even if it fails multiple times.
Especially, the Linux NetworkManager tries 6 times on av-
erage with the supplied credentials, and then it pops up a
dialog box asking for a new credential. Although the auto-
matic retry function may make the attack to be harder, we
do not find any difference in our real experiments on the
attack success rate, shown in the following paragraphs.

We also studied the time taken by the attacker to respond
with a spoofed message once it has encountered an appro-
priate message. We found that on average it takes 0.29 mil-
liseconds to compute the spoofed message and put it in the
air. The numbers are obtained by measuring at the attacker
the time difference from the time an EAP/TLS response is
received to the time at which a spoofed error message is put
on the channel. The average time for getting a reply from
the server to the client was around 10ms. Thus there is a
sufficient timing window to launch the DoS attacks.

Success Rates. In our lab experiments, we tested our
DosS attack against 1 ~ 3 clients which attempted to con-
nect to the major university’s wireless network simultane-
ously. We tested both the error message based attack (in-
cluding spoofing both the client and the server) and the mis-
leading message based attack. Our attacker always achieved
a 100% success rate, as no clients could get authenticated
and enter the wireless network under the attack. We also
performed the experiment in the university’s cafeteria as
mentioned above. Our attacker was 100% successful in
these experiments on the channel which it was running on,
as we did not detect even a single EAP SUCCESS message.
This experiment ran for 35 minutes, and all 7 different hosts
were observed with failed authentications.

Efficiency. Unlike the jamming based attack, the ex-
ception triggered attack needn’t send attack messages fre-
quently. Suppose the error message based attacker suc-
cessfully disrupts the victim computer at the first attack
point, it only costs the attacker one spoofed error message
of 79 bytes, compared to 14 messages of a total length of
1480 bytes between the victim clients and the TLS server 4.
Thus the attack efficiency ratio for spoofing error messages
(i.e. attack traffic compared to the authentication traffic) is
5.34% in terms of packet volume and the ratio in the num-
ber of messages is 7.14%. For the success of the second
attack point, the ratio in volume is 6.84% and the ratio in
the number of messages is 6.25%. If the attack with mis-
leading message is used, the length of the SERVER HELLO

4The 14 messages includes the EAP messages and the IEEE 802.11
control messages involved in the authentication, which are not shown in
the fi gure of the EAP protocol communication.



message is 119 bytes and there is only one attack point. The
efficiency ratio in terms of packet volume is 8.04%, and the
ratio in the number of messages is 7.14%.

5.1.2 Ns-2 Simulation

Simulation Methodology We simulated the DoS attack
of spoofing a server in ns-2 simulator [7] to study the per-
formance and scalability of our attacker. Ns-2, by itself,
does not have the TLS and EAP protocols, and hence we
first implemented the TLS and EAP modules in it. In our
simulation, we simulate the error message based attack of
spoofing the server. Similar to the real attack, the attacker
spoofs a FATAL ALERT message and sends it to the client
whenever it sniffs a relevant message from the TLS client to
the TLS server. The attacker was active at two attack points,
the same as the real attacker (See Section 3.2.1). The at-
tacker has the ability to change the CWMin parameter of
his WLAN card driver so that the attacker can potentially
get fast access to the channel. We vary the CWMin of the
attacker node from 1 to 31, while keeping the CWMin as
31 for all other nodes. The automatic retry feature is also
implemented into the TLS protocol. The TLS authentica-
tion process is restarted if the client fails in its authentica-
tion attempt. By default, the client tries for a maximum
of 18 times before it gives up completely. The number of
18 comes from the imagined typical scenario: Linux Net-
workManager retries 6 times on average before giving user
a chance to enter new credentials, and the user tries for 3
times before giving up. An interval of 1 second, as observed
from our real-world experiment, is set between each retry.

In our ns-2 simulation setup we create one TLS server,
one TLS attacker, and vary the number of TLS clients
from 1 to a maximum of 50. We believe it is extremely
rare for more than 50 clients to authenticate simultaneously
in a wireless LAN network.The inter-arrival time between
clients is very small, randomly chosen between 0 and 0.5s.
This small interval guarantees that the authentications of
all the clients are overlapped. The access points broadcast
BEACON messages every 50ms, as observed in the real ex-
periments. The TLS server and access points are connected
via wired network in practice. However, for convenience
we put them on the same node and inject certain latency in
the communication between the TLS server and the access
point. This latency is to simulate the wired network delay
and the TLS server’s processing delay. The default latency
is set to be 10ms, which is observed in our real experiment
in the campus setting. We also vary this latency in the sim-
ulation to study its effect on the attack success rates. All the
results are taken on an average of 20 runs.

Experimental Results Figure 8 shows the attack success
rate with different CWMin values as a function of number
of clients. Except for CWMin=31, the attack stops all the
authentication attempts, no matter how many clients are try-
ing simultaneously. With CWMin as 31, the attacker has
the same ability as normal clients to access the channel, and

hence with certain possibility the attack packets are later
than the legitimate responses, letting some clients get au-
thenticated. Interestingly, we see the authentication success
rate goes up first and then drop to 0. By inspecting the logs
carefully, we find that when the number of clients is small
( eq., less than 10), the TLS server delay plays an impor-
tant role. The attack packet can usually get into channel
during the 10ms delay. But as the number of clients in-
crease, the attacker may have to wait more than 10ms to
get the channel when other nodes, by chance, occupy the
channel to send packets. So the 10ms advantage of the at-
tacker over the AP is mitigated. However, as the number of
clients keeps increasing, the AP has more and more packets
in its queue. Thus the TLS server response may be delayed
for quite a long time at AP. On the other hand, the attacker
packets usually are not queued, because attacker has much
less packets to send than the AP.

Figure 9 shows the effect of the TLS server delay on the
TLS Attack. This delay aids the attacker by giving ita much
larger time window and hence the attacker has higher suc-
cess rate. So we can see that the smaller the server delay,
the larger the authentication success rate. Consider the ex-
treme case when the server delay is 0 ms and CWMin is
set to be 31. It is clear that as the number of clients in-
crease, the packets queued at the AP play an important role,
and hence decreases the authentication success rate when
there are more and more simultaneous authentications. Still,
when CWMin=1, no authentication can finish at all.

5.2 Evaluation on MIPv6 Route Opti-
mization Protocol

Being the emerging new infrastructure, MIPv6 as well as
IPv6 is not widely deployed currently. So we conducted a
testbed experiment to demonstrate the practicality of this at-
tack. Due to the space limit, we briefly describe our testbed
experiment and results in this paper, leaving the details in
our technique report [33].

We built the Mobile IPv6 network using the Mobile
IPv6 Implementation for Linux (MIPL v2.0.2) [5], the most
popular open source MIPv6 implementation. The under-
lying network is all 1Pv4, and all logical interfaces were
GRE-based (Generic Routing Encapsulation developed by
Cisco), to tunnel IPv6-over-1Pv4.

In the experiment, the Mobile Node was first in the
Home Network, and it kept pinging the Correspondent
Node continuously. Then we moved it to the Foreign Net-
work. After configuring the new care-of address and regis-
tering it with the Home Agent, the Mobile Node started re-
turn routability. We conducted the experiment for 100 runs.
Every time we observed that, with the attacker in action, the
return routability procedure was disrupted and the Mobile
Node repeatedly tried to complete the procedure. While the
retry attempts were being made, none of the ICMPv6 echo
requests (Ping) reached the Correspondent Node. Hence,
in the MIPL implementation [5], the effect of the attack in-
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creased and made it a DoS attack instead of a performance
degradation attack.

6 Countermeasures to Exception Triggered
DoS Attacks

In this section, we discuss countermeasures to the excep-
tion triggered attacks. First, we consider how to detect such
attacks, which is not supported generally by intrusion detec-
tion systems, to the best of our knowledge. Since it is usu-
ally more desirable to secure a system against such attacks,
we propose a general approach that can be easily adopted by
protocols to gain robustness against the exception triggered
attacks. Third, we propose the design guideline for future
authentication protocols to be invulnerable to such attacks.

6.1 Attack Detection

The detection of the exception triggered attacks can-
not be done by the general signature based IDS such as
snort [29] or network IDS such as bro [28]. The detection
must understand the protocol and identify the symptoms of
the attack. We find there are two symptoms of such attacks:
1) There are duplicated response messages with different
contents in the same stage of the protocol’s state machine.
2) The protocol finally ends abnormally. If such two symp-
toms happen many times in a certain time period, it is an
indication that the exception triggered attack is in action.
Note the first symptom can rule out most ‘normal’ excep-
tions, such as wrong password.

6.2 Protocol Improvement against Excep-
tion Triggered Attacks

To secure a protocol against such attacks, we propose
a game-theory based design principle. For a protocol en-
tity, the processing of a received message will be delayed
if its consequence is costly, and the amount of delay time
will be proportional to the cost of the consequence. When
multiple conflicting messages are received, the one with the
least cost of consequence should be taken. This preference
is particular helpful to deal with attacks directly using er-
ror messages. In case that multiple messages are of the

0 > .
0 5 10 15 20 25 30 35 40 45 50
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Figure 9: Authentication success rate with  Figure 10: The design of robust security
various server delays.

protocol.

same consequence but differ on contents such as authentica-
tion parameters (e.g. the misleading message based attack),
there are two solutions:

e The receiver randomly accepts one message because
the receiver cannot find out the legitimate packet.
Therefore, the authentication has some chance to be
success if the receiver by chance picks the correct
one. With multiple times of authentication retries, the
authentication is expected to get through anyway.

e The receiver accepts all the messages and starts
different branches to deal with them. With this
solution, the authentication will succeed without
retries, which is the advantage of the solution.
However, the implementation is much complex,
especially when the authentication protocol takes
several steps of unprotected communication before
encryption.

Take our case study on TLS-base EAP protocol as an
example. The fatal error messages and their triggering mes-
sages cause the worst consequence, i.e., a termination of the
authentication. So these messages will take longest delay in
processing (e.g., 1 sec in our countermeasure implementa-
tion described in Section 6.2), and such introduced latency
has only limited effect on the protocol performance. For
normal messages, the delay time will be very small (e.g.,
hundreds of milliseconds) in order to maintain the perfor-
mance. If the entity receives both a fatal error message and
a normal message that advances the authentication stage,
the entity will select the latter one, which obviously has a
consequence of least cost.

There may be a concern that smart attackers will utilize
the countermeasures for new attacks. For example, an at-
tacker may spoof “correct” messages to advance an authen-
tication even if the authentication has real errors and should
terminate. However, the attack cannot proceed with the fake
authentication for a long time without paying a proportional
cost, and can never finish it because of the lack of the se-
crecy. So potentially the attack can delay the restart of the
authentication shortly, but this consequence is not severe.

Implementation and Experiments of Countermeasures
We implemented the above proposals into the TLS protocol



to test its effectiveness. Since we only have the control of
clients, we modified the client software, WPA Supplicant
v0.5.10 [8] software to incorporate the above approaches in
the client side.

First, WPA Supplicant was modified so that normal mes-
sages are preferred over the error messages. Whenever the
client receives a TLS ALERT message it waits for a maxi-
mum of 1 second before processing the alert message. 1f the
client gets a legitimate message that fits the current state of
the authentication process, then it discards the alert message
and processes the other messages. Second, the misleading
message attack can only send multiple SERVER HELLO and
Server Key Exchange messages, but the server certificate
cannot be spoofed. The modified WPA Supplicant will gen-
erate multiple keys and finally only the correct one can work
in the following communications. The tests were performed
in the same experimental setup as described in 5.1.1. The
experiments were conducted 10 times and the attacker was
never successful in any of the runs. It is because that the
client always receives the real server response message be-
fore the one second threshold. Also, since the client will
process the real positive messages immediately, there is no
delay on the authentication time. Our experiments show
that the average delay of authentication remains the same
as that of the clients without being attacked.

In short, the experiments and results show that our coun-
termeasures are easy to be adopted by existing protocols,
and are effective against the exception triggered attacks in
practice.

6.3 Design of Robust Security Protocols

In this section, we present the guideline for new protocol
design to be robust to the exception triggered attack. The
high-level idea is: Get packets encrypted or authenticated
as early as possible. And do not have complex states and
parameters before packets are encrypted or authenticated.

Figure 10 illustrates an example of the design philoso-
phy. First, the client sends a HELL O message to request for
authentication. The HELL O message only notifies the server
for authentication and does not include any particular infor-
mation such as the identity of the client. Second, the server
sends back its certificate, signed by the well-known certifi-
cate authorities. In the certificate, the client obtains the ver-
ified public key K} of the server. Third, the client uses
the public key K} to encrypt a random session identity I
and a random string S and sends back the encrypted packet.
In the following communications, the server and the client
take I as the session ID and use S to authenticate packets.
Because S is hidden from the sniffer, the attack has no way
to interfere the legitimate authentication procedure once the
session ID I and shared key S are established. Note we
can also use Deffie-Hellman key exchange algorithm [16]
to take place the server certificate to exchange S against
eavesdroppers, if server certificate is not available.

Let’s consider if attacker can attack during the communi-
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cation of the first three messages. The first HELL O message
has no useful information for the attacker, and the server
even does not need to allocate a new session. The second
message is server’s certificate, which cannot be spoofed.
After getting the server certificate, the attacker may send
back an error message, e.g., saying the certificate is wrong,
or send back a misleading message, e.g., with guessed iden-
tity I’ and a random string .S”. Neither the attack will work
actually. The server simply ignores the error message and
only waits for encrypted messages with the server’s public
key. The misleading message will be accepted by the server,
but since the attacker’s I’ and S’ are different to the client’s,
the attacker cannot interfere with the client’s authentication.

7 Redated Work

Wireless networks seem to be more vulnerable than the
wired networks, simply because of the open media nature of
the wireless networks. Since the thrive of the wireless LAN,
cellular networks, ad hoc and sensor networks, there are a
great number of fresh vulnerabilities and novel attacks dis-
covered on different wireless networks [1, 13, 19, 24, 27,
32]. This paper mainly focuses on the DoS attacks, espe-
cially on protocols of wireless LAN.

Denial of Service attack is a notorious problem in wire-
less networks. Since the early time of radio networks, jam-
ming has been a powerful method to disable wireless com-
munications. Recently in [32], Xu et al. studied the feasi-
bility of launching and detecting jamming attacks in wire-
less networks. They proposed four different jamming at-
tack models that can be used by an attacker to disable the
operation of a wireless network, and evaluated the effec-
tiveness of each attack model. Noubir et al. investigated the
resiliency to jamming on data protocols, such as IP, over
WLAN [27]. They concluded that without good coding, the
jamming attack can be very efficient by only injecting a sin-
gle bit to disrupt a packet in current WLAN.

Other than jamming, people also found many other
stealthy and practical attacks on wireless networks, espe-
cially on WLAN. In [13], Bellardo et al. described some
vulnerabilities in the 802.11 management and media access
services, and more importantly, implemented them to show
the practice. They demonstrated with the deauthentication
and virtual carrier sense attacks, which can easily disable
the wireless connections with PDAs. Martinovic et al. pro-
posed two different and novel attacks against web-based au-
thentication in wireless environment [21]. The first attack is
similar to the rogue AP attack in order to hijack wireless
clients, while the other attack was based on the well-known
ARP spoofing.

It is a popular direction to use model checkers to au-
tomatically find vulnerabilities in protocols [22-24, 26].
Narayana et al. used TLA+ to automatically find vulner-
abilities in WiMax initial ranging and authentication pro-
cess. Mitchell et al. used the finite-state verification tools,
Murg, to analyze authentication protocols such as SSL,



EAP-GPSK and others [22-24]. Among them, EAP-GPSK
analysis [24] is most related to our work. The Denial-
of-Service attack in [24] also spoofs messages to confuse
the authentication entities and stops the authentication pro-
cess. It is similar in principle to our attacks on TLS based
EAP protocols, but differs much in the real implementation.
While Mitchell et al. mainly worked on the theoretical anal-
ysis and proof, our work focus more on the practical side
and use real experiments to demonstrate the effectiveness of
the attacks. Meanwhile, instead of studying protocols case
by case with the same methodology, we tend to identify one
potential vulnerable component in different protocols, i.e,
the exception handle with error messages.

8 Conclusion

In this paper, we propose the exception triggered denial-
of-service attacks on wireless security protocols. The at-
tacks explore the vulnerabilities in the exception handling
process in security protocols, i.e., blindly accepting error
messages and terminating the communication imprudently.
We demonstrated the effect of these attacks on two case
studies: TLS-based EAP protocols and the Return Routabil-
ity procedure of Mobile IPv6 protocol. Using real-world ex-
periments and testbed experiments we prove the success and
the practicality of the attacks, with off-the-shelf hardwares
and well-written softwares available online. We also pro-
pose the detection scheme and protocol improvement prin-
ciple against the exception triggered based attacks. Real
implementation and experiments demonstrate the effect of
the proposed countermeasures.
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