Time-frequency Masking

EECS 352: Machine Perception of
Music & Audio
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STFT

 The Short-Time Fourier Transform (STFT) is a
succession of local Fourier Transforms (FT)

Time signal
ﬂ T T

Real spectrogram Imaginary spectrogram

-4
—

. J ’-- - ’-
window | time

frequency ===
frequency wp

‘ frame i time == frame i time == ,



STFT

* |f we used a window of N samples, the FT has
N values, from O to N-1; e.g., if N = 8...
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STFT

* Frequency index O is the DC component; it is
always real (it is the sum of the time values!)
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STFT

* Frequency indices from 1 to floor(N/2) are the
“unique” complex values (a + j*b)
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STFT

* Frequency indices from floor(N/2) to N-1 are
the “mirrored” complex conjugates (a - j*b)
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STFT

* |[f Nis even, there is a pivot component at
frequency index N/2; it is always real!
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STFT

 Summary of the frequency indices and values
in the STFT (in colors!)
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Spectrogram

 The (magnitude) spectrogram is the
magnitude (absolute value) of the STFT
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Spectrogram

* For a complex number a + j * b, the absolute

valueis |a + j * b| = Va? + b2
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Spectrogram

e All the N frequency values (frequency indices
from O to N-1) are real and positive (abs!)
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Spectrogram

* Frequency indices from O to floor(N/2) are the
unique frequency values (with DC and pivot)
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Spectrogram

* Frequency indices from floor(N/2)+1 to N-1

are the mirrored frequency values
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Spectrogram

* Since they are redundant, we can discard the
frequency values from floor(N/2)+1 to N-1
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Spectrogram

* The spectrogram has therefore floor(N/2)+1
unique frequency values (with DC and pivot)
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Spectrogram

* Why the magnitude spectrogram?
— Easy to visualize (compare with the STFT)
— Magnitude information more important
— Human ear less sensitive to phase
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Spectrogram

* When you display a spectrogram in Matlab...
— imagesc: data is scaled to use the full colormap
— 10*log10(V): magnitude spectrogram in dB
— set(gca,’YDir’,’normal’): y-axis from bottom to top
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frequency

Spectrogram

* The signal cannot be reconstructed from the
spectrogram (phase information is missing!)
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frequency

Time-frequency Masking

* Suppose we have a mixture of two sources:
a music signal and a voice signal
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Time-frequency Masking

 We assume that the sources are sparse = most
of the time-frequency bins have null energy
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Time-frequency Masking

 We assume that the sources are sparse = most
of the time-frequency bins have null energy
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Time-frequency Masking

 We assume that the sources are disjoint =
their time-frequency bins do not overlap
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Time-frequency Masking

 We assume that the sources are disjoint =
their time-frequency bins do not overlap
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Time-frequency Masking

* Assuming sparseness and disjointness, we can
discriminate the bins between mixed sources
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Time-frequency Masking

* Assuming sparseness and disjointness, we can
discriminate the bins between mixed sources
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Time-frequency Masking

Bins that are likely to belong to one source are
assigned to 1, the rest to O = binary maskmgI
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Time-frequency Masking

* By multiplying the binary mask to the mixture
spectrogram, we can “preview” the estimate
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Time-frequency Masking

e However, we cannot derive the estimate itself
because we cannot invert a spectrogram!
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Time-frequency Masking

 We mirror the redundant frequencies from
the unique frequencies (without DC and pivot)
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Time-frequency Masking

 We then apply this full binary mask to the
STFT using a element-wise multiplication
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Time-frequency Masking

* The estimate signal can now be reconstructed
via inverse STFT
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Time-frequency Masking

* Sources are not really sparse or disjoint in

time-frequency in the mixture
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Time-frequency Masking

* Bins that are likely to belong to one source are
close to 1, the rest close to 0 = soft masking!
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Time-frequency Masking

e Let’s listen to the results!
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Question

* How can we efficiently model a binary/soft
time-frequency mask for source separation?...

e To be continued...
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