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ABSTRACT

Repetition is a core principle in music. This is especially true
for popular songs, generally marked by a noticeable repeat-
ing musical structure, over which the singer performs varying
lyrics. On this basis, we propose a simple method for sep-
arating music and voice, by extraction of the repeating mu-
sical structure. First, the period of the repeating structure is
found. Then, the spectrogram is segmented at period bound-
aries and the segments are averaged to create a repeating seg-
ment model. Finally, each time-frequency bin in a segment is
compared to the model, and the mixture is partitioned using
binary time-frequency masking by labeling bins similar to the
model as the repeating background. Evaluation on a dataset
of 1,000 song clips showed that this method can improve on
the performance of an existing music/voice separation method
without requiring particular features or complex frameworks.

Index Terms— Music/Voice Separation, Repeating Pat-
tern, Binary Time-Frequency Masking

1. INTRODUCTION

“Repetition [...] is the basis of music as an art.” [1]. A typ-
ical piece of popular music has generally an underlying re-
peating musical structure, with distinguishable patterns peri-
odically repeating at different levels, with possible variations.
An important part of music understanding is the identifica-
tion of those patterns. To visualize repeating patterns, a two-
dimensional representation of the musical structure can be
calculated by measuring the (dis)similarity between any two
instants of the audio. This similarity matrix can be built from
the Mel-Frequency Cepstrum Coefficients (MFCC) [2], the
spectrogram [3], the chromagram [4], or other features such
as the pitch contour (melody) [5] depending on the applica-
tion, as long as similar sounds yield similarity in the feature
space. The similarity matrix can then be used for example to
compute a measure of novelty to locate significant changes in
the audio [3] or to compute a beat spectrum to characterize
the rhythm of the audio [6]. This ability to detect relevant

boundaries within the audio can be of great utility for audio
segmentation and audio summarization [3], [4], [5].

We propose to apply such a pattern discovery approach for
sound separation, by means of extracting the repeating musi-
cal structure. The basic idea is to identify in the spectrogram
of a song, time-frequency bins that seem to periodically re-
peat, and extract them using binary time-frequency masking.
An immediate application would be music/voice separation.

Music/voice separation systems usually first detect the vo-
cal segments using some features such as MFCCs, and then
apply separation techniques such as Non-negative Matrix
Factorization [7], pitch-based inference [8],[9], or adaptive
Bayesian modeling [10]. Unlike previous approaches, our
method does not depend on particular features, does not rely
on complex frameworks, and does not require prior training.
Because it is only based on self-similarity, this method could
potentially work on any audio, as long as there is a repeating
structure. It has therefore the advantage of being simple, fast,
blind, and also completely automatable.

The rest of the paper is organized as follows. Section 2
presents the method. Evaluation is done in Section 3. Finally,
conclusion and perspectives are discussed in Section 4.

2. METHOD

2.1. Repeating Period

To identify the repeating segments in a song, we first need to
estimate a period of the repeating musical structure. Period-
icities in a signal can be found by using the autocorrelation
function, which measures the similarity between a segment
and a lagged version of itself over successive time intervals.

We first compute the spectrogram V of the mixture x,
calculated from the magnitude Short-Time Fourier Transform
(STFT) X with Hamming windowing of length N , with the
symmetric part discarded but the DC component kept. We
then compute the autocorrelation of each frequency compo-
nent (row) of V 2 and obtain the autocorrelation matrix B.
We use V 2 to emphasize the appearance of peaks in B. If the
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mixture x is stereo, V 2 is averaged over the channels. By tak-
ing the mean over the rows of B, we finally obtain the vector
b which estimates the overall acoustic self-similarity of x as
a function of the time lag. We normalize b by its first coeffi-
cient. The calculation of b is shown in Equation 1.

B(i, j) =
1

m− j + 1

m−j+1∑
k=1

V (i, k)2 V (i, k + j − 1)2

b(j) =
1

n

n∑
i=1

B(i, j)

for i = 1 . . . n and j = 1 . . .m, where n = N/2 + 1

(1)

The idea is very similar to the beat spectrum proposed in
[6], except that no similarity matrix is explicitly calculated
and the scalar product is used in lieu of the cosine similarity.
Our experiments showed that this method allows for a clearer
visualization of the beat structure in x. For simplicity, we will
refer to b as the beat spectrum for the remainder of the paper.

Once the beat spectrum is calculated, the first coefficient,
which measures the similarity of the whole signal with itself
(time lag of 0), is discarded. If a repeating structure is present
in x, b would form peaks periodically repeating at different
levels, revealing the hierarchical underlying repeating struc-
ture of x. The period p of the repeating musical structure is
then defined as the period of the longest strong repeating pat-
tern in x, represented by the peaks with the largest level and
repeating at the longest period in b. The calculation of the
beat spectrum b and the identification of the repeating period
p are illustrated in the top row of Figure 1.

2.2. Repeating Segment Model

After estimating the period p of the repeating musical struc-
ture, we use it to evenly segment the spectrogram V into seg-
ments of length p. We then compute a mean repeating seg-
ment V over the r segments of V , which can be thought of as
the repeating segment model. The idea is that time-frequency
bins comprising the repeating patterns would have similar val-
ues at each period, and would also be similar to the repeating
segment model. Our experiments showed that the geomet-
ric mean leads to a better extraction of the repeating musical
structure than the arithmetic mean. The calculation of V is
shown in Equation 2. The segmentation of the spectrogram
V and the calculation of the mean repeating segment V are
illustrated in the middle row of Figure 1.

V (i, l) =

(
r∏

k=1

V (i, l + (k − 1) p)

) 1
r

for i = 1 . . . n and l = 1 . . . p

(2)

2.3. Binary Time-Frequency Masking

After computing the mean repeating segment V , we divide
each time-frequency bin in each segment of the spectrogram

V by the corresponding bin in V . We then take the absolute
value of the logarithm of each bin to get a modified spectro-
gram Ṽ where time-frequency bins repeating at period p have
values near 0. The calculation of V is shown in Equation 3.

Ṽ (i, l + (k − 1) p) =

∣∣∣∣log(V (i, l + (k − 1) p)

V (i, l)

)∣∣∣∣
for i = 1 . . . n, l = 1 . . . p and k = 1 . . . r

(3)

V can then be partitioned by assigning time-frequency
bins with values near 0 in Ṽ to the repeating background.
This assumes that the repeating structure (the music) and
the varying sound (the vocals) have sparse and disjoint time-
frequency representations. In practice, time-frequency bins of
music and voice can overlap, and furthermore the repeating
musical structure generally involves variations. Therefore,
we introduce a tolerance t when creating the binary time-
frequency maskM . Our experiments show that a tolerance of
t = 1 gives good separation results, both for music and voice.
The calculation ofM is shown in Equation 4. The calculation
of the modified spectrogram Ṽ and the binary time-frequency
mask M are illustrated in the bottom row of Figure 1.

M(i, j) =

{
1 if Ṽ (i, j) ≤ t
0 otherwise

for i = 1 . . . n and j = 1 . . .m

(4)

Once the binary time-frequency mask M is computed, it
is symmetrized and applied to the STFT X of the mixture x
to get the STFT of the music X̂music and the STFT of the
voice X̂voice, as shown in Equation 5. The estimated music
signal x̂music and voice signal x̂voice are finally obtained by
inverting their corresponding STFTs into the time domain.{

X̂music(i, j) = M(i, j) X(i, j)

X̂voice(i, j) = (1−M(i, j)) X(i, j)

for i = 1 . . . N and j = 1 . . .m

(5)

Figure 1 illustrates the whole separation system.

3. EVALUATION

3.1. Dataset

We evaluated our music/voice separation system using the
MIR-1K dataset1. The dataset contains 1,000 song clips
recorded at a sample rate of 16 kHz, with durations rang-
ing from 4 to 13 sec. The clips were extracted from 110
karaoke Chinese pop songs performed by male and female
amateurs. The dataset includes manual annotations of the
pitch contours, indices of the vocal/non-vocal frames, indices
and types for unvoiced frames, and lyrics.

The work in [9] performed music/voice separation on
the MIR-1K dataset using a pitch-based inference separation

1http://sites.google.com/site/unvoicedsoundseparation/mir-1k
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Fig. 1. Overview of our separation system. 1st row: repeating
period p from the beat spectrum b; 2nd row: segmentation of
V to get the mean repeating segment V ; 3rd row: bin-wise
division of V by V to get the binary time-frequency mask M .

system. The method combined the singing voice separation
method presented in [8] with the separation of the unvoiced
singing voice frames and a spectral subtraction technique to
enhance music/voice separation.

Following the evaluation framework adopted in [9], we
used the 1,000 song clips of the MIR-1K dataset to create 3
sets of mixtures. For each clip, we mixed the music accompa-
niment and the singing voice into a monaural mixture using 3
different “voice-to-music” ratios: -5 dB (music is louder), 0
dB (same level), and 5 dB (voice is louder).

3.2. Process

In the separation process, the STFT of each mixture xwas cal-
culated using a half-overlapping Hamming window of N =
1024 samples, equivalent to an analysis length of 0.064 sec at
sampling rate of 16 kHz. The repeating period p was auto-
matically estimated from the beat spectrum b simply by com-
puting the local maxima in b and identifying the one that
periodically repeats the most often, with the highest accu-
mulated energy over its periods. When building the binary
time-frequency mask, we fixed the tolerance t to 1. Our mu-
sic/voice separation system is thus completely automatic.

For simplicity, xvoice is here denoted v. To measure the
separation quality between the estimated voice v̂ and the orig-
inal voice v, we used the Signal-to-Distortion Ratio (SDR).
As done in [9], we evaluated the separation performance for
each mixture by computing the Normalized SDR (NSDR),
shown in Equation 6, which measures the improvement of the
SDR between the mixture x and the estimated voice v̂.

NSDR(x̂, v, x) = SDR(v̂, v)− SDR(x, v) (6)

For overall separation performance, the Global NSDR
(GNSDR) was calculated by taking the mean of the NSDRs

over all the mixtures of each set, weighted by their length.
Higher values of GNSDR mean better separation.

3.3. Results

Figure 2 shows the comparison of the overall separation per-
formance for “voice-to-music” ratios of -5, 0, and 5 dB. Black
bars (Hsu) show the best automatic version of the pitch-based
inference music/voice separation system proposed in [9],
with estimated pitch, computer-detected unvoiced frames,
and voice enhancement. Gray bars (Rafii) show our auto-
matic music/voice separation system, with estimated period
and fixed tolerance. White bars (Ideal) show the ideal binary
mask, which serves as the upper-bound on the separation
performance. As we can see, our automatic music/voice sep-
aration system gave higher GNSDRs than the best automatic
version of the pitch-based inference system proposed in [9].

Fig. 2. Comparison of the overall separation performance
for “voice-to-music” ratios of -5, 0, and 5 dB, between the
best automatic version of the music/voice separation method
proposed in [9] (black), our automatic method (gray) and the
ideal binary mask (white). Higher values are better.

The average computation time for our automatic mu-
sic/voice separation system over all the mixtures and all the
sets was 26 µsec for 1 sec of mixture, when implemented in
Matlab on a PC with Intel Core2 Quad CPU of 2.66 GHz and
6 GB of RAM. This shows that our method is also very fast.

The separation performance of our automatic music/voice
separation system can be potentially improved if using an op-
timal period, an optimal tolerance, and the index information
of the vocal frames. Therefore, we also evaluated our system
by successively adding those enhancements. An optimal pe-
riod was estimated by identifying the local maxima of the beat
spectrum b which led to the highest NSDR. An optimal toler-
ance was estimated by trying successive values of t, ranging
from 0.5 to 2.0 with a step of 0.1, and keeping the one which
led to the highest NSDR. The index information of the vocal
frames was provided by the MIR-1K dataset and was used to
filter out the non-vocal frames of the estimated voice signal v̂
at the end.
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Figure 3 shows the distributions of the separation perfor-
mance for “voice-to-music” ratio of 0 dB of our automatic
music/voice separation system with estimated period and
fixed tolerance, and its enhanced versions obtained by suc-
cessively adding the use of an optimal period, an optimal
tolerance, and the index information of the vocal frames. As
we can see, our music/voice separation system can be im-
proved using optimal parameters and extra information. A
multivariate analysis of variance (MANOVA) showed that
those results were statistically different between cases.

Fig. 3. Separation performance for “voice-to-music” ratio of
0 dB of our automatic music/voice separation method and its
successive enhancements. The line in the middle of each box
represents the median. Outliers are not shown.

4. CONCLUSION

We have proposed a novel method for music/voice separa-
tion, by extraction of the underlying musical repeating struc-
ture. Evaluation on a dataset of 1,000 song clips showed that
this method can achieve better separation performance than
an existing automatic approach, without requiring particular
features or complex frameworks. This method also has the
advantage of being simple, fast and completely automatable.

There are several directions in which we want to take
this work. First, we would like to improve our automatic
music/voice separation system by (1) implementing a bet-
ter repeating period finder, (2) building better time-frequency
masks, for example by using a measure of repetitiveness when
assigning time-frequency bins, and (3) taking into account the
pitch, timbre, or multichannel information. We could also
combine our method with other existing music/voice separa-
tion systems to improve separation performance. Then, we
would like to extend this separation approach for the extrac-
tion of multiple hierarchical repeating structures, by using re-
peating periods at different levels. Finally, we would like to
apply this separation approach to the extraction of individual
repeating patterns by using a similarity matrix. This could be
used for the separation of structural elements in music.

The authors would like to thank Chao-Ling Hsu for pro-
viding his numerical results. This work was supported by
NSF grant numbers IIS-0643752 and IIS-0757544.
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