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REpeating Pattern Extraction Technique (REPET): A
Simple Method for Music/Voice Separation
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Abstract—Repetition is a core principle in music. Many musical
pieces are characterized by an underlying repeating structure
over which varying elements are superimposed. This is especially
true for pop songs where a singer often overlays varying vocals
on a repeating accompaniment. On this basis, we present the
REpeating Pattern Extraction Technique (REPET), a novel and
simple approach for separating the repeating “background” from
the non-repeating “foreground” in a mixture. The basic idea is to
identify the periodically repeating segments in the audio, compare
them to a repeating segment model derived from them, and extract
the repeating patterns via time-frequency masking. Experiments
on data sets of 1,000 song clips and 14 full-track real-world
songs showed that this method can be successfully applied for
music/voice separation, competing with two recent state-of-the-art
approaches. Further experiments showed that REPET can also be
used as a preprocessor to pitch detection algorithms to improve
melody extraction.

Index Terms—Melody extraction, music structure analysis,
music/voice separation, repeating patterns.

I. INTRODUCTION

R EPETITION “is the basis of music as an art” [1]. Music
theorists such as Schenker had shown that the concept of

repetition is very important for the analysis of structure in music.
In Music Information Retrieval (MIR), researchers used repeti-
tion/similarity mainly for audio segmentation and summariza-
tion, and sometimes for rhythm estimation (see Section I-A). In
this work, we show that we can also use the analysis of the re-
peating structure in music for source separation.

The ability to efficiently separate a song into its music and
voice components would be of great interest for a wide range of
applications, among others instrument/vocalist identification,
pitch/melody extraction, audio post processing, and karaoke
gaming. Existing methods in music/voice separation do not ex-
plicitly use the analysis of the repeating structure as a basis for
separation (see Section I-B). We take a fundamentally different
approach to separating the lead melody from the background
accompaniment: find the repeating patterns in the audio and
extract them from the non-repeating elements.
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The justification for this approach is that many musical
pieces are composed of structures where a singer overlays
varying lyrics on a repeating accompaniment. Examples in-
clude singing different verses over the same chord progression
or rapping over a repeated drum loop. The idea is to identify the
periodically repeating patterns in the audio (e.g., a guitar riff
or a drum loop), and then separate the repeating “background”
from the non-repeating “foreground” (typically the vocal line).
This is embodied in an algorithm called REpeating Pattern
Extraction Technique (REPET) (see Section I-C).

In Section II, we outline the REPET algorithm. In Section III,
we evaluate REPET on a data set of 1,000 song clips against a re-
cent competitive method. In Section IV, we evaluate REPET on
the same data set against another recent competitive method; we
also investigate potential improvements to REPET and analyze
the interactions between length, repetitions, and performance in
REPET. In Section V, we propose a simple procedure to extend
REPET to longer musical pieces, and evaluate it on a new data
set of 14 full-track real-world songs. In Section VI, we evaluate
REPET as a preprocessor for two pitch detection algorithms to
improve melody extraction. In Section VII, we conclude this
article.

A. Music Structure Analysis

In music theory, Schenker asserted that repetition is what
gives rise to the concept of the motive, which is defined as the
smallest structural element within a musical piece [1]. Ruwet
used repetition as a criterion for dividing music into small parts,
revealing the syntax of the musical piece [2]. Ockelford argued
that repetition/imitation is what brings order to music, and order
is what makes music aesthetically pleasing [3].

More recently, researchers in MIR have recognized the im-
portance of repetition/similarity for music structure analysis.
For visualizing the musical structure, Foote introduced the sim-
ilarity matrix, a two-dimensional matrix where each bin mea-
sures the (dis)similarity between any two instances of the audio
[4]. The similarity matrix (or its dual, the distance matrix) can
be built from different features, such as the Mel-Frequency Cep-
strum Coefficients (MFCC) [4]–[7], the spectrogram [8], [9], the
chromagram [7], [10]–[12], the pitch contour [11], [13], or other
features [7], [11], [12], as long as similar sounds yield similarity
in the feature space. Different similarity (or distance) functions
can also be used, such as the dot product [4], [10], the cosine
similarity [5], [8], [9], the Euclidean distance [6], [12], or other
functions [11], [13].

Foote suggested to use the similarity matrix for tasks such
as audio segmentation [8], music summarization [5], and beat
estimation [9]. For example, he generated a novelty curve by
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identifying changes in local self-similarity in a similarity ma-
trix built from the spectrogram [8]. Other audio segmentation
methods include Jensen who used similarity matrices built from
features related to rhythm, timbre, and harmony [12].

Bartsch detected choruses in popular music by analyzing
the structural redundancy in a similarity matrix built from the
chromagram [10]. Other audio thumbnailing methods include
Cooper et al. who built a similarity matrix using MFCCs [5].

Dannenberg et al. generated a description of the musical
structure related to the AABA form by using similarity ma-
trices built from a monophonic pitch estimation [13], and also
the chromagram and a polyphonic transcription [11]. Other
music summarization methods include Peeters who built sim-
ilarity matrices using MFCCs, the chromagram, and dynamic
rhythmic features [7].

Foote et al. developed the beat spectrum, a measure of
acoustic self-similarity as a function of the time lag, by using
a similarity matrix built from the spectrogram [9]. Other beat
estimation methods include Pikrakis et al. who built a similarity
matrix using MFCCs [6].

For a thorough review on music structure analysis, the reader
is referred to [7], [14] and [15].

B. Music/Voice Separation

Music/voice separation methods typically first identify the
vocal/non-vocal segments, and then use a variety of techniques
to separate the lead vocals from the background accompani-
ment, including spectrogram factorization, accompaniment
model learning, and pitch-based inference techniques.

Vembu et al. first identified the vocal and non-vocal regions
by computing features such as MFCCs, Perceptual Linear Pre-
dictive coefficients (PLP), and Log Frequency Power Coeffi-
cients (LFPC), and using classifiers such as Neural Networks
(NN) and Support Vector Machines (SVM). They then used
Non-negative Matrix Factorization (NMF) to separate the spec-
trogram into vocal and non-vocal basic components [16]. How-
ever, for an effective separation, NMF requires a proper initial-
ization and the right number of components.

Raj et al. used a priori known non-vocal segments to train an
accompaniment model based on a Probabilistic Latent Com-
ponent Analysis (PLCA). They then fixed the accompaniment
model to learn the vocal parts [17]. Ozerov et al. first performed
a vocal/non-vocal segmentation using MFCCs and Gaussian
Mixture Models (GMM). They then trained Bayesian models
to adapt an accompaniment model learned from the non-vocal
segments [18]. However, for an effective separation, such
accompaniment model learning techniques require a sufficient
amount of non-vocal segments and an accurate vocal/non-vocal
prior segmentation.

Li et al. performed a vocal/non-vocal segmentation using
MFCCs and GMMs. They then used a predominant pitch esti-
mator on the vocal segments to extract the pitch contour, which
was finally used to separate the vocals via binary masking [19].
Ryynänen et al. proposed to use a melody transcription method
to estimate the MIDI notes and the fundamental frequency
trajectory of the vocals. They then used sinusoidal models to
estimate and remove the vocals from the accompaniment [20].
However, such pitch-based inference techniques cannot deal

with unvoiced vocals and furthermore, the harmonic structure
of the instruments may interfere.

Virtanen et al. proposed a hybrid method where they first used
a pitch-based inference technique, followed by a binary masking
to extract the harmonic structure of the vocals. They then used
NMF on the remaining spectrogram to learn an accompaniment
model [21].

Hsu et al. first used a Hidden Markov Model (HMM) to iden-
tify accompaniment, voiced, and unvoiced segments. They then
used the pitch-based inference method of Li et al. to separate
the voiced vocals [19], while the pitch contour was derived from
the predominant pitch estimation algorithm of Dressler [22]. In
addition, they proposed a method to separate the unvoiced vo-
cals based on GMMs and a method to enhance the voiced vo-
cals based on spectral subtraction [23]. This is a state-of-the-art
system we compare to in our evaluation.

Durrieu et al. proposed to model a mixture as the sum of a
signal of interest (lead) and a residual (background), where the
background is parameterized as an unconstrained NMF model,
and the lead as a source/filter model. They then separated the
lead from the background by estimating the parameters of their
model in an iterative way using an NMF-based framework. In
addition, they incorporated a white noise spectrum in their de-
composition to capture the unvoiced components [24]. This is a
state-of the art system we compare to in our evaluation.

C. Proposed Method

We present the REpeating Pattern Extraction Technique
(REPET), a simple and novel approach for separating a re-
peating background from a non-repeating foreground. The
basic idea is to identify the periodically repeating segments,
compare them to a repeating segment model, and extract the
repeating patterns via time-frequency masking (see Section II).

The justification for this approach is that many musical pieces
can be understood as a repeating background over which a lead
is superimposed that does not exhibit any immediate repeating
structure. For excerpts with a relatively stable repeating back-
ground (e.g., 10 second verse), we show that REPET can be
successfully applied for music/voice separation (see Sections III
and IV). For full-track songs, the repeating background is likely
to show variations over time (e.g., verse followed by chorus). We
therefore also propose a simple procedure to extend the method
to longer musical pieces, by applying REPET on local windows
of the signal over time (see Section V).

Unlike other separation approaches, REPET does not depend
on particular statistics (e.g., MFCC or chroma features), does
not rely on complex frameworks (e.g., pitch-based inference
techniques or source/filter modeling), and does not require
preprocessing (e.g., vocal/non-vocal segmentation or prior
training). Because it is only based on self-similarity, it has
the advantage of being simple, fast, and blind. It is therefore,
completely and easily automatable.

A parallel can be drawn between REPET and background
subtraction. Background subtraction is the process of separating
a background scene from foreground objects in a sequence of
video frames. The basic idea is the same, but the approaches
are different. In background subtraction, no period estimation
nor temporal segmentation are needed since the video frames
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already form a periodic sample. Also, the variations of the back-
ground have to be handled in a different manner since they in-
volve characteristics typical of images. For a review on back-
ground subtraction, the reader is referred to [25].

REPET bears some similarity with the drum sound recognizer
of Yoshii et al. [26]. Their method iteratively updates time-fre-
quency templates corresponding to drum patterns in the spec-
trogram, by taking the element-wise median of the patterns that
are similar to a template, until convergence. As a comparison,
REPET directly derives a whole repeating segment model by
taking the element-wise median of all the periodically repeating
segments in the spectrogram (see Section II).

Although REPET was defined here as a method for sepa-
rating the repeating background from the non-repeating fore-
ground in a musical mixture, it could be generalized to any kind
of repeating patterns. In particular, it could be used in Active
Noise Control (ANC) for removing periodic interferences. Ap-
plications include canceling periodic interferences in electro-
cardiography (e.g., the power-line interference), or in speech
signals (e.g., a pilot communicating by radio from an aircraft)
[27]. While REPET can be applied for periodic interferences re-
moval, ANC algorithms cannot be applied for music/voice sep-
aration due to the simplicity of the models used. For a review
on ANC, the reader is referred to [27].

The idea behind REPET that repetition can be used for source
separation has also been supported by recent findings in psy-
choacoustics. McDermott et al. established that the human au-
ditory system is able to segregate individual sources by identi-
fying them as repeating patterns embedded in the acoustic input,
without requiring prior knowledge of the source properties [28].
Through a series of hearing studies, they showed that human lis-
teners are able to identify a never-heard-before target sound if it
repeats within different mixtures.

II. REPET

In this section, we detail the REpeating Pattern Extraction
Technique (REPET). The method can be summarized in three
stages: identification of the repeating period (Section II-A),
modeling of the repeating segment (Section II-B), and extrac-
tion of the repeating patterns (Section II-C). Compared to the
original REPET introduced in [29], we propose an enhanced
repeating period estimation algorithm, an improved repeating
segment modeling, and an alternate way for building the
time-frequency masking. In addition, we also propose a simple
procedure to extend the method to longer musical pieces (see
Section V-B).

A. Repeating Period Identification

Periodicities in a signal can be found by using the autocorre-
lation, which measures the similarity between a segment and a
lagged version of itself over successive time intervals.

Given a mixture signal , we first calculate its Short-Time
Fourier Transform (STFT) , using half-overlapping Hamming
windows of samples. We then derive the magnitude spectro-
gram by taking the absolute value of the elements of , after
discarding the symmetric part, while keeping the DC compo-
nent. We then compute the autocorrelation of each row of the
power spectrogram (element-wise square of ) and obtain

Fig. 1. Overview of the REPET algorithm. Stage 1: calculation of the beat spec-
trum � and estimation of the repeating period �. Stage 2: segmentation of the
mixture spectrogram � and computation of the repeating segment model �.
Stage 3: derivation of the repeating spectrogram model � and building of the
soft time-frequency mask � .

the matrix . We use to emphasize the appearance of peaks
of periodicity in . If the mixture signal is stereo, is av-
eraged over the channels. The overall acoustic self-similarity
of is obtained by taking the mean over the rows of . We fi-
nally normalize by its first term (lag 0). The calculation of is
shown in (1).

(1)

The idea is similar to the beat spectrum introduced in [9], ex-
cept that no similarity matrix is explicitly calculated here and the
dot product is used in lieu of the cosine similarity. Pilot experi-
ments showed that this method allows for a clearer visualization
of the beat structure in . For simplicity, we will refer to as the
beat spectrum for the remainder of the paper.

Once the beat spectrum is calculated, the first term which
measures the similarity of the whole signal with itself (lag 0)
is discarded. If repeating patterns are present in , would form
peaks that are periodically repeating at different levels, revealing
the underlying hierarchical repeating structure of the mixture, as
exemplified in the top row of Fig. 1.

We use a simple procedure for automatically estimating the
repeating period . The basic idea is to find which period in the
beat spectrum has the highest mean accumulated energy over its
integer multiples. For each possible period in , we check if its
integer multiples (i.e., , , , etc.) correspond to the highest
peaks in their respective neighborhoods , where

is a variable distance parameter, function of . If they do, we
sum their values, minus the mean of the given neighborhood to
filter any possible “noisy background.”
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Algorithm 1 Find repeating period from beat spectrum

for each possible period in the first 1/3 of do
,

for each possible integer multiple of in do

if then

end if
end for

end for

We then divide this sum by the total number of integer mul-
tiples of found in , leading to a mean energy value for each
period . We define the repeating period as the period that
gives the largest mean value. This helps to find the period of the
strongest repeating peaks in , corresponding to the period of the
underlying repeating structure in , while avoiding lower-order
(periods of smaller repeating patterns) and higher-order errors
(multiples of the repeating period).

The longest lag terms of the autocorrelation are often unre-
liable, since the further we get in time, the fewer coefficients
are used to compute the similarity. Therefore, we choose to ig-
nore the values in the longest 1/4 of lags in . Because we want
to have at least three segments to build the repeating segment
model, we limit our choice of periods to those periods that allow
three full cycles in the remaining portion of .

We set the distance parameter to for each possible
period , where represents the floor function. This creates
a window around a peak that is wide, but not so wide that it
includes other peaks at multiples of . Because of tempo devia-
tions, the repeating peaks in might not be exact integer multi-
ples of , so we also introduce a fixed deviation parameter that
we set to 2 lags. This means that when looking for the highest
peak in the neighborhood , we assume that the value
of the corresponding integer multiple is the maximum of the
local interval . The estimation of the repeating pe-
riod is described in Algorithm 1. The calculation of the beat
spectrum and the estimation of the repeating period are il-
lustrated in the top row of Fig. 1.

B. Repeating Segment Modeling

Once the repeating period is estimated from the beat spec-
trum , we use it to evenly time-segment the spectrogram into

segments of length . We define the repeating segment model
as the element-wise median of the segments, as exemplified

in the middle row of Fig. 1. The calculation of the repeating seg-
ment model is shown in (2).

(2)

The rationale is that, assuming that the non-repeating fore-
ground ( ) has a sparse and varied time-frequency rep-
resentation compared with the time-frequency representation of
the repeating background ( ) – a reasonable assump-
tion for voice in music, time-frequency bins with little devia-
tion at period would constitute a repeating pattern and would
be captured by the median model. Accordingly, time-frequency
bins with large deviations at period would constitute a non-re-
peating pattern and would be removed by the median model.

The median is preferred to the geometrical mean originally
used in [29] because it was found to lead to a better discrimi-
nation between repeating and non-repeating patterns. Note that
the use of the median is the reason why we chose to estimate
the repeating period in the first 1/3 of the stable portion of the
beat spectrum, because we need at least three segments to define
a reasonable median. The segmentation of the mixture spectro-
gram and the computation of the repeating segment model
are illustrated in the middle row of Fig. 1.

C. Repeating Patterns Extraction

Once the repeating segment model is calculated, we use it to
derive a repeating spectrogram model , by taking the element-
wise minimum between and each of the segments of the
spectrogram , as exemplified in the bottom row of Fig. 1. As
noted in [30], if we assume that the non-negative spectrogram

is the sum of a non-negative repeating spectrogram and a
non-negative non-repeating spectrogram , then we must
have , element-wise, hence the use of the minimum
function. The calculation of the repeating spectrogram model

is shown in (3).

(3)

Once the repeating spectrogram model is calculated, we
use it to derive a soft time-frequency mask , by normalizing

by , element-wise. The idea is that time-frequency bins
that are likely to repeat at period in will have values near
1 in and will be weighted toward the repeating background,
and time-frequency bins that are not likely to repeat at period

in would have values near 0 in and would be weighted
toward the non-repeating foreground. The calculation of the soft
time-frequency mask is shown in (4).

(4)

The time-frequency mask is then symmetrized and ap-
plied to the STFT of the mixture . The estimated music
signal is obtained by inverting the resulting STFT into the time
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domain. The estimated voice signal is obtained by simply sub-
tracting the time-domain music signal from the mixture signal

. The derivation of the repeating spectrogram model and
the building of the soft time-frequency mask are illustrated
in the bottom row of Fig. 1.

We could also further derive a binary time-frequency mask
by forcing time-frequency bins in with values above a cer-
tain threshold to 1, while the rest is forced to 0. Our
experiments actually showed that the estimates sound perceptu-
ally better when using a soft time-frequency mask.

III. MUSIC/VOICE SEPARATION ON SONG CLIPS 1

In this section, we evaluate REPET on a data set of 1,000 song
clips, compared with a recent competitive singing voice separa-
tion method. We first introduce the data set (Section III-A) and
the competitive method (Section III-B). We then present the per-
formance measures (Section III-C). We finally present the ex-
perimental settings (Section III-D) and the comparative results
(Section III-E).

A. Data Set 1

Hsu et al. proposed a data set called MIR-1K1. The data set
consists of 1,000 song clips in the form of split stereo WAVE
files sampled at 16 kHz, extracted from 110 karaoke Chinese
pop songs, performed mostly by amateurs, with the music and
voice recorded separately on the left and right channels, respec-
tively. The duration of the clips ranges from 4 to 13 seconds.
The data set also includes manual annotations of the pitch con-
tours, indices of the vocal/non-vocal frames, indices and types
of the unvoiced vocal frames, and lyrics [23].

Following the framework adopted by Hsu et al. in [23], we
used the 1,000 song clips of the MIR-1K data set to create three
sets of 1,000 mixtures. For each clip, we mixed the music and
the voice components into a monaural mixture using three dif-
ferent “voice-to-music” ratios: dB (music is louder), 0 dB
(same original level), and 5 dB (voice is louder).

B. Competitive Method 1

Hsu et al. proposed a singing voice separation system based
on a pitch-based inference technique [23] (see Section I-B).
They used the predominant pitch estimation algorithm of
Dressler, which got the best overall accuracies for the task of
audio melody extraction in the Music Information Retrieval
Evaluation eXchange (MIREX) of 2005, 2006, and 20092.

C. Performance Measures

To measure performance in source separation, Févotte et al.
designed the BSS_EVAL toolbox3. The toolbox proposes a set
of measures that intend to quantify the quality of the separation
between a source and its estimate. The principle is to decompose
an estimate of a source as follows:

(5)

1http://sites.google.com/site/unvoicedsoundseparation/mir-1k
2http://www.music-ir.org/mirex/wiki/MIREX_HOME
3http://bass-db.gforge.inria.fr/bss_eval/

where is an allowed distortion of source , and ,
, and represent respectively the interferences of the

unwanted sources, the perturbation noise, and the artifacts intro-
duced by the separation algorithm [31]. We do not assume any
perturbation noise, so we can drop the term.

The following performance measures can then be defined:
Source-to-Distortion Ratio (SDR), Source-to-Interferences
Ratio (SIR) and Sources-to-Artifacts Ratio (SAR).

(6)

(7)

(8)

Higher values of SDR, SIR, and SAR suggest better separation.
We chose those measures because they are widely known and
used, and also because they have been shown to be well corre-
lated with human assessments of signal quality [32].

Following the framework adopted by Hsu et al. in [23], we
then computed the Normalized SDR (NSDR) which measures
the improvement of the SDR between the estimate of a source

and the mixture , and the Global NSDR (GNSDR) which
measures the overall separation performance, by taking the
mean of the NSDRs over all the mixtures of a given mixture
set, weighted by their length . Higher values of NSDR and
GNSDR suggest better separation.

(9)

(10)

D. Experimental Settings

We calculated the STFT of all the mixtures for the
three mixture sets ( , 0, and 5 dB), using half-overlapping
Hamming windows of , corresponding
to 64 milliseconds at 16 kHz. The repeating period was
automatically estimated using Algorithm 1. We derived only
a soft time-frequency mask as described in (4), because pilot
experiments showed that the estimates sound perceptually
better in that case. In addition, we applied a high-pass filtering
with a cutoff frequency of 100 Hz on the voice estimates. This
means that all the energy under 100 Hz in the voice estimates
was transferred to the corresponding music estimates. The
rationale is that singing voice rarely happens below 100 Hz.

We compared REPET with the best automatic version of
Hsu’s system, i.e., with estimated pitch, computer-detected
unvoiced frames, and singing voice enhancement [23], and
also with the initial version of REPET with binary masking
used in [29]. Since Hsu et al. reported the results only for the
voice estimates in [23], we evaluated REPET here only for the
extraction of the voice component.

Following the framework adopted by Hsu et al. in [23], we
calculated the NSDR for all the voice estimates and measured
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Fig. 2. Separation performance via the GNSDR in dB, for the voice compo-
nent, at voice-to-music ratios of ��, 0, and 5 dB, from left to right, using only
a high-pass filtering (� , black), Hsu’s system (���, dark color), the initial
REPET with binary masking (��, medium color), REPET (with soft masking)
(�, light color), and REPET plus high-pass filtering (� � � , white). Higher
values are better.

the separation performance for the voice component by com-
puting the GNSDR for each of the three mixture sets. We also
computed the NSDRs and GNSDRs directly from the mixtures
after a simple high-pass filtering of 100 Hz.

E. Comparative Results

Fig. 2 shows the separation performance via the GNSDR in
dB, for the voice component, at voice-to-music ratios of 5, 0,
and 5 dB. From left to right, the black bars represent using only
a high-pass filtering on the mixtures ( ). The dark-colored bars
represent Hsu’s system ( ). The medium-colored bars repre-
sent the initial REPET with binary masking ( ). The light-col-
ored bars represent REPET (with soft masking) ( ). The white
bars represent REPET plus high-pass filtering ( ). Higher
values are better.

As we can see in Fig. 2, a simple high-pass filtering on the
mixtures can give high GNSDRs for the voice estimates, al-
though the GNSDRs for the music estimates (not shown here)
are much lower in comparison. REPET gives higher GNSDRs
for the voice estimates compared with Hsu’s system, and the
initial REPET, while giving satisfactory GNSDRs for the music
estimates (not shown here). Finally, a high-pass filtering on the
voice estimates of REPET is shown to boost the GNSDRs. Note
that in [29], the algorithm for estimating the repeating period
was tuned for the initial REPET to lead to the best voice esti-
mates, regardless of the separation performance for the music
estimates, while here Algorithm 1 is tuned for REPET to lead
to the best music and voice estimates.

A series of multiple comparison statistical tests showed
that, for the voice component, gives statistically the
best NSDR, for all the three voice-to-music ratios. gives
statistically better NSDR compared with , except at dB
where there is no statistically significant difference. For the
music component, still gives statistically the best NSDR,
and gives statistically the worst NSDR, considerably worse
than with the voice component, for all the three voice-to-music
ratios. Since Hsu et al. reported their results only using the
GNSDR, which is a weighted mean, we were not able to
perform a statistical comparison with Hsu’s system. We used
ANOVA when the compared distributions were all normal,
and a Kruskal-Wallis test when at least one of the compared

distributions was not normal. We used a Jarque-Bera normality
test to determine if a distribution was normal or not.

The high NSDRs and GNSDRs observed for for the
voice component are probably due to the fact that, although not
leading to good separation results, using a high-pass filtering
of 100 Hz on the mixtures still yields some improvement of
the SDR between the voice estimates and the mixtures, since
singing voice rarely happens below 100 Hz. However, this also
means leaving only the energy below 100 Hz for the music esti-
mates, which obviously yields very bad NSDRs and GNSDRs,
since music does not happen only below 100 Hz.

In this section, we showed that REPET can compete with a
recent singing voice separation method. However, there might
be some limitations with this evaluation. First, Hsu et al. re-
ported their results only using the GNSDR. The GNSDR is a
single value that intends to measure the separation performance
of a whole data set of 1,000 mixtures, which makes us wonder if
it is actually reliable, especially given the high values obtained
when using a simple high-pass filtering on the mixtures. Also,
the GNSDR is a weighted mean, which prevents us for doing
a comparison with the competitive method, because no proper
statistical analysis is possible.

Then, Hsu et al. reported the results only for the voice esti-
mates. We showed that reporting the results for one component
only is not sufficient to assess the potential of a separation al-
gorithm. Also, this prevents us for comparing our music esti-
mates. In the next section, we therefore propose to conduct a
new evaluation, comparing REPET with another recent com-
petitive method, for the separation of both the music and voice
components, using the standard SDR, SIR, and SAR.

IV. MUSIC/VOICE SEPARATION ON SONG CLIPS 2

In this section, we evaluate REPET on the same data set of
song clips, compared with another competitive music/voice
separation. We first introduce the new competitive method
(Section IV-A). We then present the experimental settings
(Section IV-B) and the comparative results (Section IV-C).
We finally investigate potential improvements (Section IV-D)
and analyze the interactions between length, repetitions, and
performance in REPET (Section IV-E).

A. Competitive Method 2

Durrieu et al. proposed a music/voice separation method
based on a source/filter modeling [24] (see Section I-B). Given
a WAVE file as an input, the program4 outputs four WAVE
files: the accompaniment and lead estimates, with and without
unvoiced lead estimation. We used an analysis window of 64
milliseconds, an analysis Fourier size of , a
step size of 32 milliseconds, and a number of 30 iterations.

B. Experimental Settings

For the evaluation, we used the MIR-1K data set, with the
three mixture sets (see Section III-A). To measure performance
in source separation, we used the standard SDR, SIR, and SAR
(see Section III-C). For the parameterization of REPET, we

4http://www.durrieu.ch/research/jstsp2010.html
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Fig. 3. Separation performance via the SDR in dB, for the music (top plot) and
voice (bottom plot) components, at voice-to-music ratios of �� (left column),
0 (middle column), and 5 dB (right column), using Durrieu’s system (�), Dur-
rieu’s system plus high-pass filtering (� ��), REPET (�), and REPET plus
high-pass filtering (� � �). Outliers are not shown. Median values are dis-
played. Higher values are better.

used the same settings used in the previous evaluation (see
Section III-D).

We compared REPET with Durrieu’s system enhanced with
the unvoiced lead estimation [24]. We also applied a high-pass
filtering of 100 Hz on the voice estimates for both methods.

C. Comparative Results

Fig. 3 shows the separation performance via the SDR in dB,
for the music (top plot) and voice (bottom plot) components, at
voice-to-music ratios of (left column), 0 (middle column),
and 5 dB (right column). In each column, from left to right,
the first box represents Durrieu’s system. ( ). The second box
represents Durrieu’s system plus high-pass filtering ( ).
The third box represents REPET ( ). The fourth box represents
REPET plus high-pass filtering ( ). The horizontal line
in each box represents the median of the distribution, whose
value is displayed above the box. Outliers are not shown. Higher
values are better.

As we can see in Fig. 3, a high-pass filtering on the voice es-
timates of Durrieu’s system increases the SDR, but also the SIR
(not shown here), for both the music and voice components, and
for all the three voice-to-music ratios. While it also increases the
SAR for the music component, it however decreases the SAR
for the voice component (not shown here). The same behavior
is observed for REPET. A series of multiple comparison statis-
tical tests showed that the improvement for Durrieu’s system is
statistically significant only for the SAR for the music compo-
nent and the SIR for the voice component. The improvement
for REPET is statistically significant in all cases, except for the
SAR for the voice component where a statistically significant
decrease is observed. This suggests that the high-pass filtering
helps REPET more than it helps Durrieu’s system.

As we can also see in Fig. 3, compared with Durrieu’s system,
with or without high-pass filtering, REPET gives lower SDR

for the music component, for all the three voice-to-music ratios.
The same results are observed for the SIR for the voice compo-
nent and the SAR for the music component. With high-pass fil-
tering, REPET gives similar SDR for the voice component, and
even higher SDR at dB. REPET gives also higher SIR for
the music component at dB, and higher SAR for the voice
component for all the three voice-to-music ratios. This suggests
that, although Durrieu’s system is better at removing the vocal
interference from the music, it also introduces more artifacts
in the music estimates. REPET gets also better than Durrieu’s
system at removing the musical interference from the voice as
the music gets louder. This makes sense since REPET models
the musical background. A series of multiple comparison statis-
tical tests showed that those results were statistically significant
in all cases.

Durrieu’s system shows also larger statistical dispersions, and
this for all the three performance measures, for both the music
and voice components, and for all the three voice-to-music ra-
tios. This suggests that, while being sometimes much better than
REPET, it is also sometimes much worse.

The average computation time for REPET, over all the mix-
tures and all of the three mixture sets, was 0.016 second for 1
second of mixture, when implemented in Matlab. The average
computation time for Durrieu’s system was 3.863 seconds for
1 second of mixture, when implemented in Python. Both al-
gorithms ran on the same PC with Intel Core2 Quad CPU of
2.66 GHz and 6 GB of RAM. This shows that, in addition to
being competitive with a recent music/voice separation method,
REPET is also much faster.

D. Potential Improvements

We now investigate potential improvements to REPET. First,
we consider a post-processing of the outputs, by using a high-
pass filtering of 100 Hz on the voice estimates (see above). This
can be done automatically without any additional information.
Then, we consider an optimal parameterization of the algorithm,
by selecting the repeating period that leads to the best mean
SDR between music and voice estimates. This shows the max-
imal improvement possible given the use of an ideal repeating
period finder. Finally, we consider prior information about the
inputs, by using the indices of the vocal frames. This shows
the maximal improvement possible given the use of an ideal
vocal/non-vocal discriminator.

Fig. 4 shows the separation performance via the SDR in dB,
for the music (top plot) and voice (bottom plot) components, at
voice-to-music ratios of (left column), 0 (middle column),
and 5 dB (right column). In each column, from left to right,
the first box represents REPET ( ). The second box represents
REPET, plus high-pass filtering ( ). The third box rep-
resents REPET, plus high-pass filtering, plus the best repeating
period ( ). The fourth box represents REPET, plus
high-pass filtering, plus the best repeating period, plus the in-
dices of the vocal frames ( ).

As we can see in Fig. 4, the high-pass filtering, the best re-
peating period, and the indices of the vocal frames successively
improve the SDR, for both the music and voice components,
and for all the three voice-to-music ratios. A similar pattern is
also observed for the SIR and SAR (not shown here), for both
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Fig. 4. Separation performance via the SDR in dB, for the music (top plot) and
voice (bottom plot) components, at voice-to-music ratios of �� (left column),
0 (middle column), and 5 dB (right column), using REPET (�), then enhanced
with a high-pass filtering (� � �), further enhanced with the best repeating
period (����� ), and finally enhanced with the indices of the vocal frames
(� �� � � � � ).

Fig. 5. Distributions for the best repeating period in seconds (left plot) and the
corresponding number of repetitions (right plot) for REPET, at voice-to-music
ratios of �5, 0, and 5 dB.

the music and voice components, and for all the three voice-to-
music ratios, except for the SAR for the voice component. This
suggests that there is still room for improvement for REPET. A
series of multiple comparison statistical tests showed that those
results are statistically significant in all cases, except for the
SAR for the voice component where a statistically significant
decrease is observed.

E. Interactions Between Length, Repetitions, and Performance

Fig. 5 shows the distributions of the best repeating period in
seconds (left plot) and the corresponding number of repetitions
(right plot) for REPET, at voice-to-music ratios of 5, 0, and
5 dB. As we can see, as the voice-to-music ratio gets larger,
the best repeating period gets smaller, and the number of repe-
titions gets larger. This suggests that, as the voice gets louder,
REPET needs more repetitions to derive effective repeating seg-
ment models, which constrains REPET to dig into the finer re-
peating structure (e.g., at the beat level).

In addition, we found that there is no correlation between the
mixture length and the best number of repetitions, or the per-
formance measures, and this for all the three voice-to-music ra-

tios. This suggests that the mixture length has no influence on
REPET here. We also found that, as the voice-to-music ratio
gets smaller, a positive correlation appears between the best
number of repetitions and the performance measures, given the
SIR for the music component, and the SDR and SIR for the
voice component, while a negative correlation appears given the
SAR for the voice component. This suggests that, as the music
gets louder, a larger number of repetitions means a reduction
of the interferences in the music and voice estimates, but also
an increase of the artifacts in the voice estimates. We used the
Pearson product-moment correlation coefficient.

In this section, we showed that REPET can compete with
another recent music/voice separation method. However, there
might also be some limitations with this evaluation. First, the
MIR-1K data set was created from karaoke pop songs. The
recordings are not of great quality; some vocals are still present
in some of the accompaniments. Also, it could be interesting to
evaluate REPET on real-world recordings.

Then, the MIR-1K data set is composed of very short clips.
REPET needs sufficiently long excerpts to derive good repeating
segment models. Also, it could be interesting to evaluate REPET
on full-track songs. In the next section, we propose to conduct a
new evaluation, analyzing the applicability of REPET on a new
data set of full-track real-world songs.

V. MUSIC/VOICE SEPARATION ON FULL SONGS

In this section, we evaluate the applicability of REPET on a
new data set of 14 full-track real-world songs. We first intro-
duce the new data set (Section V-A). We then propose a simple
procedure to extend REPET to longer pieces (Section V-B). We
then present the experimental settings (Section V-C). We then
analyze the interactions between length, repetitions, and perfor-
mance (Section V-D). We finally show some comparative results
(Section V-E).

A. Data Set 2

The new data set consists of 14 full-track real-world songs,
in the form of split stereo WAVE files sampled at 44.1 kHz,
with the music and voice recorded separately on the left and
right channels, respectively. These 14 stereo sources were cre-
ated from live-in-the-studio recordings released by The Beach
Boys, where some of the accompaniments and vocals were made
available as split stereo tracks5 and separated tracks6. The dura-
tion of the songs ranges from 2’05” to 3’10.” For each song, we
mixed the music and voice components into a monaural mixture
at voice-to-music ratio of 0 dB only.

B. Extended REPET

For excerpts with a relatively stable repeating background
(e.g., 10 second verse), we showed that REPET can be success-
fully applied for music/voice separation (see Sections III and
IV). For full-track songs, the repeating background is likely to
show variations over time (e.g., verse followed by chorus).

We could extend REPET to full-track songs by applying the
algorithm to individual sections where the repeating background

5Good Vibrations: Thirty Years of The Beach Boys, 1993
6The Pet Sounds Sessions, 1997
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is stable (e.g., verse/chorus). This could be done by first per-
forming an audio segmentation of the song. For example, an in-
teresting work could be that of Weiss et al. [33], who proposed to
automatically identify repeated patterns in music using a sparse
shift-invariant PLCA, and showed how such analysis can be ap-
plied for audio segmentation (see also Section I-A).

Recently, Liutkus et al. proposed to adapt the REPET algo-
rithm along time to handle variations in the repeating back-
ground [34]. The method first tracks local periods of the re-
peating structure, then models local estimates of the repeating
background, and finally extracts the repeating patterns.

Instead, we propose a very simple procedure to extend
REPET to longer pieces. We simply apply the algorithm to
local windows of the signal over time. Given a window size
and an overlap percentage, we successively extract the local
repeating backgrounds using REPET. We then reconstruct the
whole repeating background via overlap-add, after windowing
the overlapping parts to prevent from reconstruction artifacts.

C. Experimental Settings

We evaluated this extended REPET on the Beach Boys data
set, using different window sizes (2.5, 5, 10, 20, and 40 seconds),
and overlap percentages (0, 25, 50, and 75%). We calculated the
STFT for each window in a mixture, using half-overlapping
Hamming windows of , corresponding to
46.4 milliseconds at 44.1 kHz. The repeating period was auto-
matically estimated using Algorithm 1. We also applied REPET
on the full mixtures without windowing.

We compared this extended REPET with Durrieu’s system
enhanced with the unvoiced lead estimation [24]. We used an
analysis window of 46.4 milliseconds, an analysis Fourier size
of , a step size of 23.2 milliseconds, and a
number of 30 iterations. We also applied a high-pass filtering
of 100 Hz on the voice estimates for both methods, and use the
best repeating period for REPET.

D. Interactions Between Length, Repetitions, and Performance

Fig. 6 shows the separation performance via the SDR in dB,
for the music (left plot) and voice (right plot) components, using
the extended REPET with windows of 2.5, 5, 10, 20, and 40
seconds, and overlap of 75%, and the full REPET without win-
dowing (full). We evaluated the extended REPET for overlap of
75% only, because our experiments showed that overall the per-
formance measures were higher in that case, for both the music
and voice components, although a series of multiple comparison
statistical tests showed that there was no statistically significant
difference between the overlaps.

As we can see in Fig. 6, there is an overall bell-shaped curve,
with the extended REPET with window of 10 seconds having
the highest SDR, and the full REPET having the lowest SDR.
A similar curve is also observed for the SIR and SAR (not
shown here), for both the music and voice components, except
for the SAR for the voice component. This suggests that there
is a trade-off for the window size in REPET. If the window is
too long, the repetitions will not be sufficiently stable; if the
window is too short, there will not be sufficient repetitions. This
is closely related with the time/frequency trade-off of the STFT.
A series of multiple comparison statistical tests showed that

Fig. 6. Separation performance via the SDR in dB, for the music (left plot)
and voice (right plot) components, using the extended REPET with windows of
2.5, 5, 10, 20, and 40 seconds, and overlap of 75%, and the full REPET without
windowing (full).

Fig. 7. Distributions for the best repeating period in seconds (left plot) and the
corresponding number of repeating segments (right plot), in one window, for the
extended REPET with windows of 2.5, 5, 10, 20, and 40 seconds, and overlap
of 75%.

there is overall no statistically significant difference between the
windows.

Fig. 7 shows the distributions for the best repeating period in
seconds (left plot), and the corresponding number of repetitions
(right plot), in one window, for the extended REPET with win-
dows of 2.5, 5, 10, 20, and 40 seconds, and overlap of 75%. As
we can see, REPET has a minimum median of 5.1 repetitions.
This is line with the recent findings that the performance of the
human auditory system in segregating the same embedded re-
peating sound in different mixtures asymptotes with about five
mixtures [28].

In addition, we found that, as the window size gets larger, the
SDR, SIR, and SAR for the music component decrease from
positive correlations between the best number of repetitions and
the performance measures to negative correlations, while they
increase for the voice component from no correlation to posi-
tive correlations. This suggests that a smaller repeating period
is likely to give better voice estimates, while a larger repeating
period is likely to give better music estimates.

E. Comparative Results

Fig. 8 shows the separation performance via the SDR in dB,
for the music (left plot) and voice (right plot) components. In
each plot, from left to right, the first box represents Durrieu’s
system ( ). The second box represent Durrieu’s system plus
high-pass filtering ( ). The third box represents the ex-
tended REPET with window of 10 seconds and overlap of 75%
( ). The fourth box represents the extended REPET plus high-
pass filtering ( ). The fourth box represents the extended
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Fig. 8. Separation performance via the SDR in dB, for the music (left plot)
and voice (right plot) components, using Durrieu’s system (�), Durrieu’s
system plus high-pass filtering (� � �), the extended REPET with window
of 10 seconds and overlap of 75% (�), the extended REPET plus high-pass
filtering (� � �), and the extended REPET plus high-pass filtering, plus the
best repeating period (� �� � � ).

REPET, plus high-pass filtering, plus the best repeating period
( ).

As we can see in Fig. 8, a high-pass filtering on the voice
estimates of Durrieu’s system increases the SDR, and also the
SIR (not shown here), for both the music and voice components.
While it also increases the SAR for the music component, it
however decreases the SAR for the voice component (not shown
here). The same behavior is observed for the extended REPET.
The best repeating period further improves the SDR, and also
the SAR, for both the music and voice components. While it
also increases the SIR for the music component, it however de-
creases the SIR for the voice component. A series of multiple
comparison statistical tests showed that the improvements for
Durrieu’s system are not statistically significant. The improve-
ment for the extended REPET are statistically significant only
for the SDR for the music component where a statistically sig-
nificant increase is observed between and , and
for the SAR for the voice component where a statistically sig-
nificant decrease is observed between and .

As we can also see in Fig. 8, compared with Durrieu’s system,
with or without high-pass filtering, REPET gives higher SDR,
and also SAR, for the music component, when enhanced with
both a high-pass filtering and the best repeating period. For the
voice component, REPET gives higher SDR, and also SAR, in
all cases. REPET gives higher SIR for the music component
when only enhanced with a high-pass filtering. A series of mul-
tiple comparison statistical tests showed that those results were
actually not statistically significant.

The average computation time for the extended REPET with
a window of 10 seconds and an overlap of 75%, over all the
mixtures of the Beach Boys data set, was 0.212 second for 1
second of mixture. The average computation time for Durrieu’s
system was 7.556 seconds for 1 second of mixture. These results
show that REPET is applicable on full-track real-world songs,
competing with a recent music/voice separation method.

VI. MELODY EXTRACTION

In this section, we evaluate REPET as a preprocessor for
two pitch detection algorithms to improve melody extrac-
tion. We first introduce the two pitch detection algorithms

(Section VI-A). We then present the performance mea-
sures (Section VI-B). We finally show the extraction results
(Section VI-C).

A. Pitch Detection Algorithms

We have shown that REPET can be successfully applied for
music/voice separation. We now show that REPET can conse-
quently improve melody extraction, by using it to first sepa-
rate the repeating background, and then applying a pitch detec-
tion algorithm on the voice estimate to extract the pitch con-
tour. We employ two different pitch detection algorithms: the
well-known single fundamental frequency ( ) estimator YIN
proposed by de Cheveigné et al. in [35], and the more recent
multiple estimator proposed by Klapuri in [36].

For the evaluation, we used the MIR-1K data set, with the
three derived mixture sets. As ground truth, we used the pro-
vided manual annotated pitch contours. The frame size corre-
sponds to 40 milliseconds with half-overlapping, and the pitch
values are in semitone, encoded as MIDI numbers. Values of 0
represent frames where no voice is present.

YIN is an estimator designed for speech and music, based
on the autocorrelation method [35]. Given a sampled signal as
an input, the program7 outputs a vector of estimates in oc-
taves, a vector of aperiodicity measures, and a vector of powers.
We fixed the range of candidates between 80 and 1280 Hz.
We used a frame size of 40 milliseconds with half-overlapping.
By default, YIN outputs a pitch estimate for every frame. We can
however discard unlikely pitch estimates, i.e., those that show
too much aperiodicity and not enough power. Pilot experiments
showed that thresholds of 0.5 for the aperiodicity and 0.001 for
the power (after normalization by the maximum) lead to good
pitch estimates.

Klapuri proposed a multiple estimator designed for poly-
phonic music signals, based on an iterative estimation and can-
cellation of the multiple s [36]. Given a sampled signal as
an input, the program outputs a vector of estimates in Hz,
and a vector of saliences. We fixed the range of candi-
dates between 80 and 1280 Hz. We used a frame size of 2048
samples and a hop size of 882 samples. By default, Klapuri’s
system outputs a pitch estimate for every frame. We can how-
ever discard unlikely pitch estimates, i.e., those that do not show
sufficient salience. Pilot experiments showed that a threshold of
0.3 for the salience (after normalization by the maximum) leads
to good pitch estimates.

B. Performance Measures

To measure performance in pitch estimation, we used the pre-
cision, recall, and -measure. We define true positive (tp) to be
the number of correctly estimated pitch values compared with
the ground truth pitch contour, false positive (fp) the number of
incorrectly estimated pitch values, and false negative (fn) the
number of incorrectly estimated non-pitch values. A pitch esti-
mate was treated as correct if the absolute difference from the
ground truth was less than 1 semitone.

We then define precision ( ) to be the percentage of esti-
mated pitch values that are correct, recall ( ) the percentage

7http://audition.ens.fr/adc/
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of correct pitch values that are estimated, and -measure the
harmonic mean between and . Higher values of precision,
recall, and -measure suggest better pitch estimation.

(11)

(12)

(13)

C. Extraction Results

We extracted the pitch contours from the voice estimates
obtained from REPET, including the potential enhancements
(see Section IV-D), using YIN and Klapuri’s system. We
also extracted the pitch contours from the mixtures and the
voice sources to serve, respectively, as a lower-bound and
upper-bound on the performance in pitch estimation. Perfor-
mance in pitch estimation was measured by using the precision,
recall, and -measure, in comparison with the ground truth
pitch contours.

Fig. 9 shows the melody extraction performance via the
-measure, at voice-to-music ratios of (left column), 0

(middle column), and 5 dB (right column), using YIN (top
plot) and Klapuri’s system (bottom plot). In each column, from
left to right, the first box represents the results from the mix-
tures (mixtures). The second box represents the results using
REPET plus high-pass filtering ( ). This represents the
improvement from applying an automatic REPET. The third
box represents the results using REPET plus high-pass filtering,
plus the best repeating period and the indices of the vocal
frames ( ). This represents the improvement
from applying an ideal REPET. The fourth box represents the
results from the voice sources (voices).

As we can see in Fig. 9, compared with extracting the pitch di-
rectly from the mixtures, using REPET plus high-pass filtering
to first extract the voice estimates improves the -measure, for
all the three voice-to-music ratios, for both YIN and Klapuri’s
system. The best repeating period and the indices of the vocal
frames further improves the -measure. A similar pattern is also
observed for the precision (not shown here), for all the three
voice-to-music ratios, for both YIN and Klapuri’s system. As
for the recall (not shown here), in the case of YIN, while using
REPET plus high-pass filtering improves the results, the addi-
tional enhancements do not further improve them. In the case of
Klapuri’s system, a decrease is actually observed for the recall.

A series of multiple comparison statistical tests showed that
those results are statistically significant in all cases, for both the

-measure and the precision. As for the recall, in the case of
YIN, using REPET plus high-pass filtering is shown to statisti-
cally improve the results, however a statistically significant de-
crease is then observed when further adding the best repeating
period and the indices of the vocal frames. In the case of Kla-
puri’s system, a statistically significant decrease is actually ob-
served for the recall. These results also confirm that overall there
is still room for improvement for REPET.

Fig. 9. Melody extraction performance via the �-measure, at voice-to-music
ratios of �� (left column), 0 (middle column), and 5 dB (right column), using
YIN (top plot) and Klapuri’s system (bottom plot), on the mixtures (mixtures),
on the voice estimates of REPET plus high-pass filtering (���), then enhanced
with the best repeating period and the indices of the vocal frames (� � � �

� � � ), and on the voice sources (voices).

VII. CONCLUSION

In this work, we have presented the REpeating Pattern Extrac-
tion Technique (REPET), a novel and simple approach for sep-
arating the repeating background from the non-repeating fore-
ground in a mixture. The basic idea is to identify the periodically
repeating segments in the audio, compare them to a repeating
segment model derived from them, and extract the repeating pat-
terns via time-frequency masking.

Experiments on a data set of 1,000 song clips showed that
REPET can be efficiently applied for music/voice separation,
competing with two state-of-the-art approaches, while still
showing room for improvement. More experiments on a data
set of 14 full-track real-world songs showed that REPET is
robust to real-world recordings and can be easily extended to
full-track songs. Further experiments showed that REPET can
also be used as a preprocessor to pitch detection algorithms to
improve melody extraction.

In addition, more information about REPET, including the
source code and audio examples, can be found online8.
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